1
|
Zhang J, Wang B. Illuminating green fluorescent protein: Characterizing tri-peptide fluorescent chromophore, probing reactivity of cysteines, and unveiling site-directed modifications through mass spectrometry. J Pharm Biomed Anal 2025; 259:116771. [PMID: 40031130 DOI: 10.1016/j.jpba.2025.116771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
Bioconjugation technologies enable covalent attachment of diagnostic or therapeutic effectuators onto biological targets, allowing for the precise delivery of desired drugs to the intended targets with enhanced potency, selectivity, specificity, and prolonged duration of action. As the number of bioconjugation techniques has grown enormously, identification and in-depth characterization of in-process products play a critical role in the development of covalent drug conjugates. This is especially significant in light of the increased complexity of novel biotherapeutics derived from biological matrices. This paper describes liquid chromatography-mass spectrometry (LC-MS/MS)-based studies that have contributed to the development of site-specific genetic incorporation of non-natural amino acids (nnAAs) into proteins. A holistic approach was implemented to characterize a wild type green fluorescent protein (wtGFP) and an enhanced green fluorescent protein (eGFP). By using the wtGFP as a pilot and model system, the reactivity of cysteine residues was investigated under different sample processing conditions, followed by a stability evaluation using intact mass measurement. The subsequent complementary proteolytic peptide mappings were performed to achieve full sequence coverage of the proteins, identification of predominant modifications, and granular details of the fluorescent chromophore. The developed method was successfully applied to isolate the eGFP incorporated with nnAA from cells. This enables the verification of the specific site of nnAA incorporation, and the characterization of complex variants using de novo sequencing techniques. MS studies demonstrated that p-azido-phenylalanine (pAzF) was specifically incorporated into the desired site of eGFP with high efficiency and fidelity.
Collapse
Affiliation(s)
- Jianmin Zhang
- Global Discovery Chemistry, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States.
| | - Bing Wang
- Global Discovery Chemistry, Novartis Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, United States.
| |
Collapse
|
2
|
Garaulet G, Báez BB, Medrano G, Rivas-Sánchez M, Sánchez-Alonso D, Martinez-Torrecuadrada JL, Mulero F. Radioimmunotheragnosis in Cancer Research. Cancers (Basel) 2024; 16:2896. [PMID: 39199666 PMCID: PMC11352548 DOI: 10.3390/cancers16162896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The combination of immunoPET-where an antibody (Ab) is labeled with an isotope for PET imaging-and radioimmunotherapy (RIT), using the same antibody with a therapeutic isotope, offers significant advantages in cancer management. ImmunoPET allows non-invasive imaging of antigen expression, which aids in patient selection for subsequent radioimmunotherapy. It also facilitates the assessment of tumor response to therapy, allowing for treatment adjustments if necessary. In addition, immunoPET provides critical pharmacokinetic data, including antibody biodistribution and clearance rates, which are essential for dosimetry calculations and treatment protocol optimization. There are still challenges to overcome. Identifying appropriate target antigens that are selectively expressed on cancer cells while minimally expressed on normal tissues remains a major hurdle to reduce off-target toxicity. In addition, it is critical to optimize the pharmacokinetics of radiolabeled antibodies to maximize tumor uptake and minimize normal tissue uptake, particularly in vital organs such as the liver and kidney. This approach offers the potential for targeted and personalized cancer therapy with reduced systemic toxicity by exploiting the specificity of monoclonal antibodies and the cytotoxic effects of radiation. However, further research is needed to address remaining challenges and to optimize these technologies for clinical use.
Collapse
Affiliation(s)
- Guillermo Garaulet
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - Bárbara Beatriz Báez
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - Guillermo Medrano
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| | - María Rivas-Sánchez
- Protein Production Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (M.R.-S.); (D.S.-A.)
| | - David Sánchez-Alonso
- Protein Production Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (M.R.-S.); (D.S.-A.)
| | | | - Francisca Mulero
- Molecular Imaging Unit, Spanish National Cancer Center—CNIO, 28029 Madrid, Spain; (G.G.); (B.B.B.); (G.M.)
| |
Collapse
|
3
|
Sebastiano J, Samuels ZV, Kao WS, Zeglis BM. Site-specific bioconjugation and nuclear imaging. Curr Opin Chem Biol 2024; 81:102471. [PMID: 38833913 PMCID: PMC11323144 DOI: 10.1016/j.cbpa.2024.102471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Monoclonal antibodies and antibody fragments have proven to be highly effective vectors for the delivery of radionuclides to target tissues for positron emission tomography (PET) and single-photon emission computed tomography (SPECT). However, the stochastic methods that have traditionally been used to attach radioisotopes to these biomolecules inevitably produce poorly defined and heterogeneous probes and can impair the ability of the immunoglobulins to bind their molecular targets. In response to this challenge, an array of innovative site-specific and site-selective bioconjugation strategies have been developed, and these approaches have repeatedly been shown to yield better-defined and more homogeneous radioimmunoconjugates with superior in vivo performance than their randomly modified progenitors. In this Current Opinion in Chemical Biology review, we will examine recent advances in this field, including the development - and, in some cases, clinical translation - of nuclear imaging agents radiolabeled using strategies that target the heavy chain glycans, peptide tags, and unnatural amino acids.
Collapse
Affiliation(s)
- Joni Sebastiano
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ph.D. Program in Biochemistry, Graduate Center of City University of New York, New York, NY, USA
| | - Zachary V Samuels
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, NY, USA
| | - Wei-Siang Kao
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian M Zeglis
- Department of Chemistry, Hunter College, City University of New York, New York, NY, USA; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Ph.D. Program in Biochemistry, Graduate Center of City University of New York, New York, NY, USA; Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, NY, USA; Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
4
|
Declerck NB, Huygen C, Mateusiak L, Stroet MCM, Hernot S. The GEM-handle as convenient labeling strategy for bimodal single-domain antibody-based tracers carrying 99mTc and a near-infrared fluorescent dye for intra-operative decision-making. Front Immunol 2023; 14:1285923. [PMID: 38035094 PMCID: PMC10684908 DOI: 10.3389/fimmu.2023.1285923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Intra-operative fluorescence imaging has demonstrated its ability to improve tumor lesion identification. However, the limited tissue penetration of the fluorescent signals hinders the detection of deep-lying or occult lesions. Integrating fluorescence imaging with SPECT and/or intra-operative gamma-probing synergistically combines the deep tissue penetration of gamma rays for tumor localization with the precision of fluorescence imaging for precise tumor resection. In this study, we detail the use of a genetically encoded multifunctional handle, henceforth referred to as a GEM-handle, for the development of fluorescent/radioactive bimodal single-domain antibody (sdAb)-based tracers. A sdAb that targets the urokinase plasminogen activator receptor (uPAR) was engineered to carry a GEM-handle containing a carboxy-terminal hexahistidine-tag and cysteine-tag. A two-step labeling strategy was optimized and applied to site-specifically label IRDye800CW and 99mTc to the sdAb. Bimodal labeling of the sdAbs proved straightforward and successful. 99mTc activity was however restricted to 18.5 MBq per nmol fluorescently-labeled sdAb to prevent radiobleaching of IRDye800CW without impeding SPECT/CT imaging. Subsequently, the in vivo biodistribution and tumor-targeting capacity of the bimodal tracer were evaluated in uPAR-positive tumor-bearing mice using SPECT/CT and fluorescence imaging. The bimodal sdAb showed expected renal background signals due to tracer clearance, along with slightly elevated non-specific liver signals. Four hours post-injection, both SPECT/CT and fluorescent images achieved satisfactory tumor uptake and contrast, with significantly higher values observed for the anti-uPAR bimodal sdAb compared to a control non-targeting sdAb. In conclusion, the GEM-handle is a convenient method for designing and producing bimodal sdAb-based tracers with adequate in vivo characteristics.
Collapse
Affiliation(s)
| | | | | | | | - Sophie Hernot
- Molecular Imaging and Therapy Laboratory (MITH), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
5
|
De Pauw T, De Mey L, Debacker JM, Raes G, Van Ginderachter JA, De Groof TWM, Devoogdt N. Current status and future expectations of nanobodies in oncology trials. Expert Opin Investig Drugs 2023; 32:705-721. [PMID: 37638538 DOI: 10.1080/13543784.2023.2249814] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
INTRODUCTION Monoclonal antibodies have revolutionized personalized medicine for cancer in recent decades. Despite their broad application in oncology, their large size and complexity may interfere with successful tumor targeting for certain applications of cancer diagnosis and therapy. Nanobodies have unique structural and pharmacological features compared to monoclonal antibodies and have successfully been used as complementary anti-cancer diagnostic and/or therapeutic tools. AREAS COVERED Here, an overview is given of the nanobody-based diagnostics and therapeutics that have been or are currently being tested in oncological clinical trials. Furthermore, preclinical developments, which are likely to be translated into the clinic in the near future, are highlighted. EXPERT OPINION Overall, the presented studies show the application potential of nanobodies in the field of oncology, making it likely that more nanobodies will be clinically approved in the upcoming future.
Collapse
Affiliation(s)
- Tessa De Pauw
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lynn De Mey
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Jens M Debacker
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
- Nuclear Medicine Department, UZ Brussel, Brussels, Belgium
| | - Geert Raes
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Jo A Van Ginderachter
- Cellular and Molecular Immunology Lab, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Timo W M De Groof
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
6
|
MacPherson DS, Hwang D, Sarrett SM, Keinänen O, Rodriguez C, Rader C, Zeglis BM. Leveraging a Dual Variable Domain Immunoglobulin to Create a Site-Specifically Modified Radioimmunoconjugate. Mol Pharm 2023; 20:775-782. [PMID: 36377696 PMCID: PMC10263003 DOI: 10.1021/acs.molpharmaceut.2c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Site-specifically modified radioimmunoconjugates exhibit superior in vitro and in vivo behavior compared to analogues synthesized via traditional stochastic methods. However, the development of approaches to site-specific bioconjugation that combine high levels of selectivity, simple reaction conditions, and clinical translatability remains a challenge. Herein, we describe a novel solution to this problem: the use of dual-variable domain immunoglobulins (DVD-IgG). More specifically, we report the synthesis, in vitro evaluation, and in vivo validation of a 177Lu-labeled radioimmunoconjugate based on HER2DVD, a DVD-IgG containing the HER2-targeting variable domains of trastuzumab and the catalytic variable domains of IgG h38C2. To this end, we first modified HER2DVD with a phenyloxadiazolyl methlysulfone-modified variant of the chelator CHX-A″-DTPA (PODS-CHX-A''-DTPA) and verified the site-specificity of the conjugation for the reactive lysines within the catalytic domains via chemical assay, MALDI-ToF mass spectrometry, and SDS-PAGE. The chelator-bearing immunoconjugate was subsequently labeled with [177Lu]Lu3+ to produce the completed radioimmunoconjugate, [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD, in >80% radiochemical conversion and a specific activity of 29.5 ± 7.1 GBq/μmol. [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD did not form aggregates upon prolonged incubation in human serum, displayed 87% stability to demetalation over a 7 days of incubation in serum, and exhibited an immunoreactive fraction of 0.95 with HER2-coated beads. Finally, we compared the pharmacokinetic profile of [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD to that of a 177Lu-labeled variant of trastuzumab in mice bearing subcutaneous HER2-expressing BT-474 human breast cancer xenografts. The in vivo performance of [177Lu]Lu-CHX-A″-DTPAPODS-HER2DVD matched that of 177Lu-labeled trastuzumab, with the former producing a tumoral activity concentration of 34.1 ± 12.1 %ID/g at 168 h and tumor-to-blood, tumor-to-liver, and tumor-to-kidney activity concentration ratios of 10.5, 9.6, and 21.8, respectively, at the same time point. Importantly, the DVD-IgG did not exhibit a substantially longer serum half-life than the traditional IgG despite its significantly larger size (202 kDa for the former vs 148 kDa for the latter). Taken together, these data suggest that DVD-IgGs represent a viable platform for the future development of highly effective site-specifically labeled radioimmunoconjugates for diagnostic imaging, theranostic imaging, and radioimmunotherapy.
Collapse
Affiliation(s)
- Douglas S. MacPherson
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Advanced Science Research Center (ASRC) at The Graduate Center, City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Dobeen Hwang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Samantha M. Sarrett
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Outi Keinänen
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| | - Cindy Rodriguez
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida 33458, United States
| | - Brian M. Zeglis
- Department of Chemistry, Hunter College of the City University of New York, 413 East 69th Street, New York, New York 10028, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
- Department of Radiology, Weill Cornell Medical College, 520 East 70th Street, New York, New York 10065, United States
| |
Collapse
|
7
|
Modular Site-Specific Conjugation of Nanobodies Using Two Co-Associating Tags. Int J Mol Sci 2022; 23:ijms232214405. [PMID: 36430882 PMCID: PMC9696751 DOI: 10.3390/ijms232214405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
The homogeneous labeling of antibodies and their fragments is a critical step for the generation of robust probes used in immuno-detection applications. To date, numerous chemical, genetic and peptide-based site-specific coupling methods have been developed. Among these methods, co-assembling peptide-tags is one of the most straightforward and versatile solutions. Here, we describe site-specific labeling of nanobodies through the use of two co-associating peptides tags, E3 and K3, originating from the tetramerization domain of p53. These E3 and K3-tags provide a simple and robust method for associating stoichiometric amount of VHH and fluorescent probes, either fluorescent proteins or fluorochromes, at specific positions. As a proof of concept, a nanobody targeting the human epidermal growth factor receptor 2 (HER2), the nano-HER2 was genetically fused to the E3 and associated with different fluorescent K3-derivates. Entities were produced separately in Escherichia coli in soluble forms at high yields and co-assembled in vitro. These molecular probes present high binding specificity on HER2-overexpressing cells in flow-cytometry with relative binding constants in the low nanomolar range and are stable enough to stain HER2-receptor on living cells followed detection using fluorescent confocal microscopy. Altogether, our results demonstrate that the non-covalent conjugation method using these two co-associating peptides can be easily implemented for the modular engineering of molecular probes for cell immuno-staining.
Collapse
|
8
|
Caers J, Duray E, Vrancken L, Marcion G, Bocuzzi V, De Veirman K, Krasniqi A, Lejeune M, Withofs N, Devoogdt N, Dumoulin M, Karlström AE, D’Huyvetter M. Radiotheranostic Agents in Hematological Malignancies. Front Immunol 2022; 13:911080. [PMID: 35865548 PMCID: PMC9294596 DOI: 10.3389/fimmu.2022.911080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/06/2022] [Indexed: 12/23/2022] Open
Abstract
Radioimmunotherapy (RIT) is a cancer treatment that combines radiation therapy with tumor-directed monoclonal antibodies (Abs). Although RIT had been introduced for the treatment of CD20 positive non-Hodgkin lymphoma decades ago, it never found a broad clinical application. In recent years, researchers have developed theranostic agents based on Ab fragments or small Ab mimetics such as peptides, affibodies or single-chain Abs with improved tumor-targeting capacities. Theranostics combine diagnostic and therapeutic capabilities into a single pharmaceutical agent; this dual application can be easily achieved after conjugation to radionuclides. The past decade has seen a trend to increased specificity, fastened pharmacokinetics, and personalized medicine. In this review, we discuss the different strategies introduced for the noninvasive detection and treatment of hematological malignancies by radiopharmaceuticals. We also discuss the future applications of these radiotheranostic agents.
Collapse
Affiliation(s)
- Jo Caers
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
- *Correspondence: Jo Caers,
| | - Elodie Duray
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Louise Vrancken
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
- Department of Hematology, CHU de Liège, Liège, Belgium
| | - Guillaume Marcion
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Valentina Bocuzzi
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Kim De Veirman
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Margaux Lejeune
- Laboratory of Hematology, GIGA I³, University of Liège, Liège, Belgium
| | - Nadia Withofs
- Department of Nuclear Medicine, CHU de Liège, Liège, Belgium
| | - Nick Devoogdt
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Mireille Dumoulin
- Centre for Protein Engineering, Inbios, University of Liège, Liège, Belgium
| | - Amelie Eriksson Karlström
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Matthias D’Huyvetter
- Laboratory of In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
9
|
Barakat S, Berksöz M, Zahedimaram P, Piepoli S, Erman B. Nanobodies as molecular imaging probes. Free Radic Biol Med 2022; 182:260-275. [PMID: 35240292 DOI: 10.1016/j.freeradbiomed.2022.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022]
Abstract
Camelidae derived single-domain antibodies (sdAbs), commonly known as nanobodies (Nbs), are the smallest antibody fragments with full antigen-binding capacity. Owing to their desirable properties such as small size, high specificity, strong affinity, excellent stability, and modularity, nanobodies are on their way to overtake conventional antibodies in terms of popularity. To date, a broad range of nanobodies have been generated against different molecular targets with applications spanning basic research, diagnostics, and therapeutics. In the field of molecular imaging, nanobody-based probes have emerged as a powerful tool. Radioactive or fluorescently labeled nanobodies are now used to detect and track many targets in different biological systems using imaging techniques. In this review, we provide an overview of the use of nanobodies as molecular probes. Additionally, we discuss current techniques for the generation, conjugation, and intracellular delivery of nanobodies.
Collapse
Affiliation(s)
- Sarah Barakat
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Melike Berksöz
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Pegah Zahedimaram
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956, Tuzla, Istanbul, Turkey.
| | - Sofia Piepoli
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| | - Batu Erman
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Bogazici University, 34342, Bebek, Istanbul, Turkey.
| |
Collapse
|
10
|
Luo R, Liu H, Cheng Z. Protein scaffolds: Antibody alternative for cancer diagnosis and therapy. RSC Chem Biol 2022; 3:830-847. [PMID: 35866165 PMCID: PMC9257619 DOI: 10.1039/d2cb00094f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost. These issues have led scientists to explore and develop novel antibody alternatives. Protein scaffolds are small monomeric proteins with stable tertiary structures and mutable residues, which emerged in the 1990s. By combining robust gene engineering and phage display techniques, libraries with sufficient diversity could be established for target binding scaffold selection. Given the properties of small size, high affinity, and excellent specificity and stability, protein scaffolds have been applied in basic research, and preclinical and clinical fields over the past two decades. To date, more than 20 types of protein scaffolds have been developed, with the most frequently used being affibody, adnectin, ANTICALIN®, DARPins, and knottin. In this review, we focus on the protein scaffold applications in cancer therapy and diagnosis in the last 5 years, and discuss the pros and cons, and strategies of optimization and design. Although antibodies are well developed and widely used in cancer therapy and diagnostic fields, some defects remain, such as poor tissue penetration, long in vivo metabolic retention, potential cytotoxicity, patent limitation, and high production cost.![]()
Collapse
Affiliation(s)
- Renli Luo
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Hongguang Liu
- Department of Molecular Medicine, College of Life and Health Sciences, Northeastern University Shenyang China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- Drug Discovery Shandong Laboratory, Bohai Rim Advanced Research Institute for Drug Discovery Yantai Shandong 264117 China
| |
Collapse
|
11
|
Li D, Peng Q, Huang C, Zang B, Ren J, Ji F, Muyldermans S, Jia L. Cytoplasmic Expression of Nanobodies with Formylglycine Generating Enzyme Tag and Conversion to a Bio-Orthogonal Aldehyde Group. Methods Mol Biol 2022; 2446:357-371. [PMID: 35157283 DOI: 10.1007/978-1-0716-2075-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanobodies (Nbs) can be successfully retrieved following phage, bacterial, yeast, or ribosome display of immune, synthetic, or naïve libraries. However, after panning, multiple individual Nb clones need to be screened and assessed for solubility, antigen specificity, affinity, and potential biological function. Therefore, it is highly desirable to have a convenient expression strategy to obtain sufficient protein for in-depth characterization of the Nbs. The presence of a purification and detection tag, as well as a chemically reactive group to enable simple generation of Nb derivatives, would be of great help in this regard. Here, we provide a general protocol for high yield cytoplasmic expression and purification of formylglycine generating enzyme (FGE)-tagged Nbs. The cysteine within the FGE tag is easily converted to formylglycine by passing the FGE-tag containing Nb over a continuous-flow bio-catalysis system. The aldehyde group within the formylglycine side chain at the C-terminal end of the Nb is suitably located for subsequent bio-orthogonal reactions to fluorescent dyes, biotin, polyethylene glycol, or chromatography resins. We also include methods for production of high yield recombinant FGE, as well as conditions for its immobilization on Sepharose to produce the continuous-flow bio-catalysis system.
Collapse
Affiliation(s)
- Da Li
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Qiang Peng
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Chungdong Huang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Berlin Zang
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Jun Ren
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Fangling Ji
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| | - Serge Muyldermans
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China.
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Lingyun Jia
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, Liaoning, China
| |
Collapse
|
12
|
Rondon A, Rouanet J, Degoul F. Radioimmunotherapy in Oncology: Overview of the Last Decade Clinical Trials. Cancers (Basel) 2021; 13:cancers13215570. [PMID: 34771732 PMCID: PMC8583425 DOI: 10.3390/cancers13215570] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Monoclonal antibody-bearing radionuclides have been under clinical investigation over the last two decades for their use in theranostic (diagnostic and therapeutic) applications in cancer. However, despite the numerous trials that have been conducted, only two radioimmunotherapies (RIT) have been approved by the FDA for the targeted therapy of hematologic tumors expressing CD20 antigens. Moreover, RIT applications for solid cancers faced major issues—such as radiotoxicity due to low antibodies penetrance requiring substantial curative dose—where new discoveries concerning antibody engineering or radionuclides are trying to overcome. Here, we performed an overview of the last 11-year clinical trials involving RIT for solid and non-solid cancers conducted either with full antibodies or antibody fragments. We discussed the low-to-moderate efficiency of RIT compared to conventional therapies and described the last advances in clinic for antibodies carriers (F(ab′)2, Fab′, ScFv). Finally, we discussed about the complexity of RIT as a therapy and depicted both the issues and the prospects of such a strategy. Abstract The specific irradiation of tumors with selective radiolabeled antibodies constitutes an attractive therapeutic approach. Consequent preclinical research has been conducted by both biologists to identify pertinent targets and to select corresponding antibodies (mAb) and by radiochemists to radiolabel mAbs. These numerous preclinical investigations have ascertained the therapeutic interest of radioimmunotherapy (RIT) protocols in mice models. Here, we summarize the clinical studies that have been performed the last decade, including clinical trials (phases I, II, and III), prospective and retrospective studies, and cases series. We thereby reported 92 clinical studies. Among them, 62 concern the treatment of hematological malignancies, and 30 concern solid tumors. For hematologic diseases, the analysis was complex due to the high discrepancy of therapeutic strategies (first-line therapy, consolidation, stem cell transplantation conditioning) as well as the high variety of malignancies that were treated. The clinical studies from the last decade failed to expand anti-CD20 RIT indications but confirmed that RIT using radiolabeled anti-CD20 remains a pertinent choice for patients with relapse follicular lymphomas. For solid tumors, the positive benefit of RIT is more mitigated, apart for few malignancies that can be treated locally. Clinical trials also demonstrated the potential of some antibody formats, such as F(ab′)2, which has already been approved by the China State FDA under the trend name Licartin®. Despite disparate results, mAb fragments are an interesting prospect for the improvement of RIT efficiency as well as for pretargeted strategies that delay the injection of radioactive treatments from the mAb ones.
Collapse
Affiliation(s)
- Aurélie Rondon
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, UCLouvain, BE-1200 Brussels, Belgium
- Correspondence: (A.R.); (F.D.)
| | - Jacques Rouanet
- Imagerie Moléculaire et Stratégies Théranostiques, Inserm UMR1240, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France;
- Service de Dermatologie et d’Oncologie Cutanée, CHU Estaing, F-63011 Clermont-Ferrand, France
| | - Françoise Degoul
- CNRS 6293, INSERM U1103, GReD, Centre de Recherche et de Biologie Clinique, Université Clermont-Auvergne, F-63000 Clermont-Ferrand, France
- Correspondence: (A.R.); (F.D.)
| |
Collapse
|
13
|
Feiner IVJ, Longo B, Gómez-Vallejo V, Calvo J, Chomet M, Vugts DJ, Windhorst AD, Padro D, Zanda M, Rejc L, Llop J. Comparison of analytical methods for antibody conjugates with application in nuclear imaging - Report from the trenches. Nucl Med Biol 2021; 102-103:24-33. [PMID: 34492606 DOI: 10.1016/j.nucmedbio.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) are widely used in nuclear imaging. Radiolabelling with positron emitting radionuclides, typically radiometals, requires the incorporation of a bifunctional chelator for the formation of the radiometal-mAb complex. Additionally, mAbs can be conjugated with small molecules capable to undergo bioorthogonal click reactions in vivo, enabling pre-targeting strategies. The determination of the number of functionalities attached to the mAb is critically important to ensure a good labelling yield or to guarantee pre-targeting efficacy. In this work, we compare three different analytical methods for the assessment of average functionalisation and heterogeneity of the conjugated mAbs. METHODS Two selected mAbs (Trastuzumab and Bevacizumab) were randomly conjugated through lysine residues with 3-10 equivalents p-isothiocyanatobenzyl-desferrioxamine (p-NCS-Bz-DFO) or 20-200 equivalents trans-cyclooctene-N-hydroxysuccinimide ester (TCO-NHS). The DFO- or TCO-to-mAb ratio were determined using three different methods: direct titration (radiometric for DFO-conjugated mAbs, photometric for TCO-conjugated mAbs), MALDI/TOF MS mass analysis (Matrix-Assisted Laser Desorption-Ionization/Time of Flight Mass Spectrometry), and UPLC/ESI-TOF MS mass analysis (Ultra High Performance Liquid Chromatography/Electrospray Ionization-Time of Flight Mass Spectrometry). RESULTS Radiometric and photometric titrations provided information on the average number of DFO and TCO functionalities per mAb respectively. MALDI/TOF MS provided equivalent results to those obtained by titration, although investigation of the heterogeneity of the resulting mixture was challenging and inaccurate. UPLC/ESI-TOF MS resulted in good peak resolution in the case of DFO-conjugated mAbs, where an accurate discrimination of the contribution of mono-, di- and tri-substituted mAbs could be achieved by mathematical fitting of the spectra. However, UPLC/ESI-TOF MS was unable to discriminate between different conjugates when the smaller TCO moiety was attached to the mAbs. CONCLUSIONS The three techniques offered comparable results in terms of determining the average number of conjugates per mAb. Additionally, UPLC/ESI-TOF MS was able to shed a light on the heterogeneity of the resulting functionalised mAbs, especially in the case of DFO-conjugated mAbs. Finally, while using a single analytical method might not be a reliable way to determine the average functionalisation and assess the heterogeneity of the sample, a combination of these methods could substantially improve the characterization of mAb conjugates.
Collapse
Affiliation(s)
- Irene V J Feiner
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Beatrice Longo
- Kosterlitz Centre for Therapeutics, University of Aberdeen, UK
| | - Vanessa Gómez-Vallejo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Javier Calvo
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Marion Chomet
- Amsterdam UMC, VU University, Dept. of Radiology and Nuclear Medicine, De Boelelaan 1085c, 1117 HV Amsterdam, the Netherlands
| | - Danielle J Vugts
- Amsterdam UMC, VU University, Dept. of Radiology and Nuclear Medicine, De Boelelaan 1085c, 1117 HV Amsterdam, the Netherlands
| | - Albert D Windhorst
- Amsterdam UMC, VU University, Dept. of Radiology and Nuclear Medicine, De Boelelaan 1085c, 1117 HV Amsterdam, the Netherlands
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain
| | - Matteo Zanda
- Kosterlitz Centre for Therapeutics, University of Aberdeen, UK; CNR-SCITEC, via Mancinelli 7, 20131 Milan, Italy
| | - Luka Rejc
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo Miramon 182, 20014 San Sebastian, Spain; Centro de Investigación Biomédica en Red - Enfermedades Respiratorias (CIBERES), Spain.
| |
Collapse
|
14
|
Hrynchak I, Santos L, Falcão A, Gomes CM, Abrunhosa AJ. Nanobody-Based Theranostic Agents for HER2-Positive Breast Cancer: Radiolabeling Strategies. Int J Mol Sci 2021; 22:ijms221910745. [PMID: 34639086 PMCID: PMC8509594 DOI: 10.3390/ijms221910745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023] Open
Abstract
The overexpression of human epidermal growth factor 2 (HER2) in breast cancer (BC) has been associated with a more aggressive tumor subtype, poorer prognosis and shorter overall survival. In this context, the development of HER2-targeted radiotracers is crucial to provide a non-invasive assessment of HER2 expression to select patients for HER2-targeted therapies, monitor response and identify those who become resistant. Antibodies represent ideal candidates for this purpose, as they provide high contrast images for diagnosis and low toxicity in the therapeutic setting. Of those, nanobodies (Nb) are of particular interest considering their favorable kinetics, crossing of relevant biological membranes and intratumoral distribution. The purpose of this review is to highlight the unique characteristics and advantages of Nb-based radiotracers in BC imaging and therapy. Additionally, radiolabeling methods for Nb including direct labeling, indirect labeling via prosthetic group and indirect labeling via complexation will be discussed, reporting advantages and drawbacks. Furthermore, the preclinical to clinical translation of radiolabeled Nbs as promising theranostic agents will be reported.
Collapse
Affiliation(s)
- Ivanna Hrynchak
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Liliana Santos
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Amílcar Falcão
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Célia M. Gomes
- iCBR—Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal
- CACC—Clinical Academic Center of Coimbra, 3000-075 Coimbra, Portugal
| | - Antero J. Abrunhosa
- ICNAS-Produção Unipessoal, Lda.—University of Coimbra, 3000-548 Coimbra, Portugal; (I.H.); (L.S.)
- CIBIT/ICNAS—Institute for Nuclear Sciences Applied to Health, University of Coimbra, 3000-548 Coimbra, Portugal;
- Correspondence:
| |
Collapse
|
15
|
Küppers J, Kürpig S, Bundschuh RA, Essler M, Lütje S. Radiolabeling Strategies of Nanobodies for Imaging Applications. Diagnostics (Basel) 2021; 11:1530. [PMID: 34573872 PMCID: PMC8471529 DOI: 10.3390/diagnostics11091530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Nanobodies are small recombinant antigen-binding fragments derived from camelid heavy-chain only antibodies. Due to their compact structure, pharmacokinetics of nanobodies are favorable compared to full-size antibodies, allowing rapid accumulation to their targets after intravenous administration, while unbound molecules are quickly cleared from the circulation. In consequence, high signal-to-background ratios can be achieved, rendering radiolabeled nanobodies high-potential candidates for imaging applications in oncology, immunology and specific diseases, for instance in the cardiovascular system. In this review, a comprehensive overview of central aspects of nanobody functionalization and radiolabeling strategies is provided.
Collapse
Affiliation(s)
- Jim Küppers
- Department of Nuclear Medicine, University Hospital Bonn, 53127 Bonn, Germany; (S.K.); (R.A.B.); (M.E.); (S.L.)
| | | | | | | | | |
Collapse
|
16
|
Chigoho DM, Lecocq Q, Awad RM, Breckpot K, Devoogdt N, Keyaerts M, Caveliers V, Xavier C, Bridoux J. Site-Specific Radiolabeling of a Human PD-L1 Nanobody via Maleimide-Cysteine Chemistry. Pharmaceuticals (Basel) 2021; 14:ph14060550. [PMID: 34201323 PMCID: PMC8228271 DOI: 10.3390/ph14060550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 01/13/2023] Open
Abstract
Immune checkpoint inhibitors targeting the programmed cell death-1 (PD-1) and its ligand PD-L1 have proven to be efficient cancer therapies in a subset of patients. From all the patients with various cancer types, only 20% have a positive response. Being able to distinguish patients that do express PD-1/PD-L1 from patients that do not allows patients to benefit from a more personalized and efficient treatment of tumor lesion(s). Expression of PD-1 and PD-L1 is typically assessed via immunohistochemical detection in a tumor biopsy. However, this method does not take in account the expression heterogeneity within the lesion, nor the possible metastasis. To visualize whole-body PD-L1 expression by PET imaging, we developed a nanobody-based radio-immunotracer targeting PD-L1 site-specifically labeled with gallium-68. The cysteine-tagged nanobody was site-specifically conjugated with a maleimide (mal)-NOTA chelator and radiolabeling was tested at different nanobody concentrations and temperatures. Affinity and specificity of the tracer, referred to as [68Ga]Ga-NOTA-mal-hPD-L1 Nb, were assayed by surface plasmon resonance and on PD-L1POS or PD-L1NEG 624-MEL cells. Xenografted athymic nude mice bearing 624-MEL PD-L1POS or PD-L1NEG tumors were injected with the tracer and ex vivo biodistribution was performed 1 h 20 min post-injection. Ideal 68Ga-labeling conditions were found at 50 °C for 15 min. [68Ga]Ga-NOTA-mal-hPD-L1 Nb was obtained in 80 ± 5% DC-RCY with a RCP > 99%, and was stable in injection buffer and human serum up to 3 h (>99% RCP). The in vitro characterization showed that the NOTA-functionalized Nb retained its affinity and specificity. Ex vivo biodistribution revealed a tracer uptake of 1.86 ± 0.67% IA/g in the positive tumors compared with 0.42 ± 0.04% IA/g in the negative tumors. Low background uptake was measured in the other organs and tissues, except for the kidneys and bladder, due to the expected excretion route of Nbs. The data obtained show that the site-specific 68Ga-labeled NOTA-mal-hPD-L1 Nb is a promising PET radio-immunotracer due to its ease of production, stability and specificity for PD-L1.
Collapse
Affiliation(s)
- Dora Mugoli Chigoho
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
| | - Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Q.L.); (R.M.A.); (K.B.)
| | - Robin Maximilian Awad
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Q.L.); (R.M.A.); (K.B.)
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (Q.L.); (R.M.A.); (K.B.)
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
| | - Marleen Keyaerts
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
- Department of Nuclear Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
- Department of Nuclear Medicine, UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
| | - Jessica Bridoux
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Medical Imaging Department (MIMA), Vrije Universiteit Brussel, 1090 Brussels, Belgium; (D.M.C.); (N.D.); (M.K.); (V.C.); (C.X.)
- Correspondence: ; Tel.: +32-24774991
| |
Collapse
|
17
|
Luciano MP, Dingle I, Nourian S, Schnermann MJ. Preferential Light-Chain Labeling of Native Monoclonal Antibodies Improves the Properties of Fluorophore Conjugates. Tetrahedron Lett 2021; 75. [PMID: 34321699 DOI: 10.1016/j.tetlet.2021.153211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Site specific labeling methods have significant potential to enhance the properties of antibody conjugates. While studied extensively in the context of antibody-drug conjugates (ADCs), few studies have examined the impact of homogenous labeling on the properties of antibody-fluorophore conjugates (AFCs). We report the application of pentafluorophenyl (PFP) esters, which had previously been shown to be reasonably selective for K188 of the kappa light chain of human IGG antibodies, toward producing AFCs. We show that simple replacement of N-hydroxy succinimide (NHS) with PFP dramatically increases the light-chain specificity of near-infrared (NIR) AFCs. Comparing the properties of AFCs labeled using NHS and PFP-activated esters reveals that the latter exhibits reduced aggregation and improved brightness, both in vitro and in vivo. Overall, the use of PFP esters provides a remarkably simple approach to provide selectively labeled antibodies with improved properties.
Collapse
Affiliation(s)
- Michael P Luciano
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Ivan Dingle
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Saghar Nourian
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, United States
| |
Collapse
|
18
|
Altunay B, Morgenroth A, Beheshti M, Vogg A, Wong NCL, Ting HH, Biersack HJ, Stickeler E, Mottaghy FM. HER2-directed antibodies, affibodies and nanobodies as drug-delivery vehicles in breast cancer with a specific focus on radioimmunotherapy and radioimmunoimaging. Eur J Nucl Med Mol Imaging 2021; 48:1371-1389. [PMID: 33179151 PMCID: PMC8113197 DOI: 10.1007/s00259-020-05094-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of the present paper is to review the role of HER2 antibodies, affibodies and nanobodies as vehicles for imaging and therapy approaches in breast cancer, including a detailed look at recent clinical data from antibody drug conjugates and nanobodies as well as affibodies that are currently under development. RESULTS Clinical and preclinical studies have shown that the use of monoclonal antibodies in molecular imaging is impaired by slow blood clearance, associated with slow and low tumor uptake and with limited tumor penetration potential. Antibody fragments, such as nanobodies, on the other hand, can be radiolabelled with short-lived radioisotopes and provide high-contrast images within a few hours after injection, allowing early diagnosis and reduced radiation exposure of patients. Even in therapy, the small radioactively labeled nanobodies prove to be superior to radioactively labeled monoclonal antibodies due to their higher specificity and their ability to penetrate the tumor. CONCLUSION While monoclonal antibodies are well established drug delivery vehicles, the current literature on molecular imaging supports the notion that antibody fragments, such as affibodies or nanobodies, might be superior in this approach.
Collapse
Affiliation(s)
- Betül Altunay
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | - Mohsen Beheshti
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Division of Molecular PET-Imaging and Theranostics , Paracelsus Medical University , Salzburg, 5020, Austria
| | - Andreas Vogg
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany
| | | | - Hong Hoi Ting
- Nanomab Technology Limited, Shanghai, People's Republic of China
| | | | - Elmar Stickeler
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany
- Department of Gynecology and Obstetrics, RWTH Aachen, Aachen, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital Aachen, RWTH Aachen University, 52074, Aachen, Germany.
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne and Düsseldorf, Kerpener Str. 62, 50937, Cologne, Germany.
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), 6202, Maastricht, The Netherlands.
| |
Collapse
|
19
|
Kang W, Ding C, Zheng D, Ma X, Yi L, Tong X, Wu C, Xue C, Yu Y, Zhou Q. Nanobody Conjugates for Targeted Cancer Therapy and Imaging. Technol Cancer Res Treat 2021; 20:15330338211010117. [PMID: 33929911 PMCID: PMC8111546 DOI: 10.1177/15330338211010117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Conventional antibody-based targeted cancer therapy is one of the most promising avenues of successful cancer treatment, with the potential to reduce toxic side effects to healthy cells surrounding tumor cells. However, the full potential of antibodies is severely limited due to their large size, low stability, slow clearance, and high immunogenicity. Alternatively, recently discovered nanobodies, which are the smallest naturally occurring antigen-binding format, have shown great potential for addressing these limitations. Bioconjugation of nanobodies to functional groups such as toxins, enzymes, radionucleotides, and fluorophores can improve the efficacy and potency of nanobodies, enhance their in vivo pharmacokinetics, and expand the range of potential applications. Herein, we review the superior characteristics of nanobodies in comparison to conventional antibodies and provide insight into recent developments in nanobody conjugates for targeted cancer therapy and imaging.
Collapse
Affiliation(s)
- Wei Kang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Chuanfeng Ding
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Zheng
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xiao Ma
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Lun Yi
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Xinyi Tong
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Chuang Wu
- Xiamen Medical College, Xiamen, China
| | - Chuang Xue
- School of Bioengineering, Dalian University of Technology, Dalian, China.,Ningbo Institute of Dalian University of Technology, Ningbo, China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Sharma SK, Adumeau P, Keinänen O, Sisodiya V, Sarvaiya H, Tchelepi R, Korsen JA, Pourat J, Edwards KJ, Ragupathi A, Hamdy O, Saunders LR, Rudin CM, Poirier JT, Lewis JS, Zeglis BM. Synthesis and Comparative In Vivo Evaluation of Site-Specifically Labeled Radioimmunoconjugates for DLL3-Targeted ImmunoPET. Bioconjug Chem 2021; 32:1255-1262. [PMID: 33835770 PMCID: PMC8295218 DOI: 10.1021/acs.bioconjchem.1c00121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Delta-like ligand 3 (DLL3) is a therapeutic target for the treatment of small cell lung cancer, neuroendocrine prostate cancer, and isocitrate dehydrogenase mutant glioma. In the clinic, DLL3-targeted 89Zr-immunoPET has the potential to aid in the assessment of disease burden and facilitate the selection of patients suitable for therapies that target the antigen. The overwhelming majority of 89Zr-labeled radioimmunoconjugates are synthesized via the random conjugation of desferrioxamine (DFO) to lysine residues within the immunoglobulin. While this approach is admittedly facile, it can produce heterogeneous constructs with suboptimal in vitro and in vivo behavior. In an effort to circumvent these issues, we report the development and preclinical evaluation of site-specifically labeled radioimmunoconjugates for DLL3-targeted immunoPET. To this end, we modified a cysteine-engineered variant of the DLL3-targeting antibody SC16-MB1 with two thiol-reactive variants of DFO: one bearing a maleimide moiety (Mal-DFO) and the other containing a phenyloxadiazolyl methyl sulfone group (PODS-DFO). In an effort to obtain immunoconjugates with a DFO-to-antibody ratio (DAR) of 2, we explored both the reduction of the antibody with tris(2-carboxyethyl) phosphine (TCEP) as well as the use of a combination of glutathione and arginine as reducing and stabilizing agents, respectively. While exerting control over the DAR of the immunoconjugate proved cumbersome using TCEP, the use of glutathione and arginine enabled the selective reduction of the engineered cysteines and thus the formation of homogeneous immunoconjugates. A head-to-head comparison of the resulting 89Zr-radioimmunoconjugates in mice bearing DLL3-expressing H82 xenografts revealed no significant differences in tumoral uptake and showed comparable radioactivity concentrations in most healthy nontarget organs. However, 89Zr-DFOPODS-DAR2SC16-MB1 produced 30% lower uptake (3.3 ± 0.5 %ID/g) in the kidneys compared to 89Zr-DFOMal-DAR2SC16-MB1 (4.7 ± 0.5 %ID/g). In addition, H82-bearing mice injected with a 89Zr-labeled isotype-control radioimmunoconjugate synthesized using PODS exhibited ∼40% lower radioactivity in the kidneys compared to mice administered its maleimide-based counterpart. Taken together, these results demonstrate the improved in vivo performance of the PODS-based radioimmunoconjugate and suggest that a stable, well-defined DAR2 radiopharmaceutical may be suitable for the clinical immunoPET of DLL3-expressing cancers.
Collapse
Affiliation(s)
- Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States
| | - Pierre Adumeau
- Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States
| | - Outi Keinänen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States
| | - Vikram Sisodiya
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Hetal Sarvaiya
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Robert Tchelepi
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Joshua A Korsen
- Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States
| | - Jacob Pourat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Kimberly J Edwards
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Omar Hamdy
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Laura R Saunders
- Abbvie Stemcentrx, South San Francisco, California 94080, United States
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - John T Poirier
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Pharmacology, Weill Cornell Medical College, New York, New York 10021, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States.,Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States.,Department of Chemistry, Hunter College, City University of New York, New York, New York 10021, United States.,Department of Radiology, Weill Cornell Medical College, New York, New York 10021, United States
| |
Collapse
|
21
|
Harmand TJ, Islam A, Pishesha N, Ploegh HL. Nanobodies as in vivo, non-invasive, imaging agents. RSC Chem Biol 2021; 2:685-701. [PMID: 34212147 PMCID: PMC8190910 DOI: 10.1039/d1cb00023c] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
In vivo imaging has become in recent years an incredible tool to study biological events and has found critical applications in diagnostic medicine. Although a lot of efforts and applications have been achieved using monoclonal antibodies, other types of delivery agents are being developed. Among them, VHHs, antigen binding fragments derived from camelid heavy chain-only antibodies, also known as nanobodies, have particularly attracted attention. Indeed, their stability, fast clearance, good tissue penetration, high solubility, simple cloning and recombinant production make them attractive targeting agents for imaging modalities such as PET, SPECT or Infra-Red. In this review, we discuss the pioneering work that has been carried out using VHHs and summarize the recent developments that have been made using nanobodies for in vivo, non-invasive, imaging.
Collapse
Affiliation(s)
- Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
| | - Ashraful Islam
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
- Department of Clinical Medicine, UiT The Arctic University of Norway Tromso Norway
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
- Society of Fellows, Harvard University Cambridge MA USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard Cambridge MA USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School Boston MA USA
| |
Collapse
|
22
|
Not so innocent: Impact of fluorophore chemistry on the in vivo properties of bioconjugates. Curr Opin Chem Biol 2021; 63:38-45. [PMID: 33684856 DOI: 10.1016/j.cbpa.2021.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 12/11/2022]
Abstract
The combination of targeting ligands and fluorescent dyes is a powerful strategy to observe cell types and tissues of interest. Conjugates of peptides, proteins, and, in particular, monoclonal antibodies (mAbs) exhibit excellent tumor targeting in various contexts. This approach has been translated to a clinical setting to provide real-time molecular insights during the surgical resection of solid tumors. A critical element of this approach is the generation of highly fluorescent bioconjugates that maintain the properties of the parent targeting ligand. A number of studies have found that fluorophores can dramatically impact the pharmacokinetic and tumor-targeting properties of the bioconjugates they are meant to only innocently observe. In this review, we summarize several examples of these effects and highlight strategies that have been used to mitigate them. These include the application of site-specific labeling chemistries, modulating label density, and altering the structure of the fluorescent probe itself. In particular, we point out the significant potential of fluorophores with hydrophilic but net-neutral structures. Overall, this review highlights recent progress in refining the in vivo properties of fluorescent bioconjugates, and we hope, will inform future efforts in this area.
Collapse
|
23
|
Liu M, Li L, Jin D, Liu Y. Nanobody-A versatile tool for cancer diagnosis and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1697. [PMID: 33470555 DOI: 10.1002/wnan.1697] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
In spite of the successful use of monoclonal antibodies (mAbs) in clinic for tumor treatment, their applications are still hampered in therapeutic development due to limitations, such as tumor penetration and high cost of manufacture. Nanobody, a single domain antibody that holds the strong antigen targeting and binding capacity, has demonstrated various advantages relative to antibody. Nanobody is considered as a next-generation of antibody-derived tool in the antigen related recognition and modulation. A number of nanobodies have been developed and evaluated in different stages of clinical trials for cancer treatment. Here we summarized the current progress of nanobody in tumor diagnosis and therapeutics, particularly on the conjugation of nanobody with functional moieties. The nanobody conjugation of diagnostic agents, such as radionuclide and optical tracers, can achieve specific tumor imaging. The nanobody-drug conjugates can enhance the therapeutic efficacy of anti-tumor drugs and reduce the adverse effects. The decoration of nanobody on nanodrug delivery systems can further improve the drug targeting to specific tumors. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Manman Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Li Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Duo Jin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Yangzhong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, China
| |
Collapse
|
24
|
Yu S, Xiong G, Zhao S, Tang Y, Tang H, Wang K, Liu H, Lan K, Bi X, Duan S. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (Review). Int J Mol Med 2020; 47:444-454. [PMID: 33416134 PMCID: PMC7797440 DOI: 10.3892/ijmm.2020.4817] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/21/2022] Open
Abstract
The immune checkpoint blockade is an effective strategy to enhance the anti-tumor T cell effector activity, thus becoming one of the most promising immunotherapeutic strategies in the history of cancer treatment. Several immune checkpoint inhibitor have been approved by the FDA, such as anti-CTLA-4, anti-PD-1, anti-PD-L1 monoclonal antibodies. Most tumor patients benefitted from these antibodies, but some of the patients did not respond to them. To increase the effectiveness of immunotherapy, including immune checkpoint blockade therapies, miniaturization of antibodies has been introduced. A single-domain antibody, also known as nanobody, is an attractive reagent for immunotherapy and immunoimaging thanks to its unique structural characteristic consisting of a variable region of a single heavy chain antibody. This structure confers to the nanobody a light molecular weight, making it smaller than conventional antibodies, although remaining able to bind to a specific antigen. Therefore, this review summarizes the production of nanobodies targeting immune checkpoint molecules and the application of nanobodies targeting immune checkpoint molecules in immunotherapy and immunoimaging.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Gui Xiong
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Shimei Zhao
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Yanbo Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Hua Tang
- Department of Clinical Laboratory, The Second Clinical Medical College of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545006, P.R. China
| | - Kaili Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Hongjing Liu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Ke Lan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| | - Xiongjie Bi
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545001, P.R. China
| | - Siliang Duan
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, Guangxi Zhuang Autonomous Region 545005, P.R. China
| |
Collapse
|
25
|
Cheloha RW, Harmand TJ, Wijne C, Schwartz TU, Ploegh HL. Exploring cellular biochemistry with nanobodies. J Biol Chem 2020; 295:15307-15327. [PMID: 32868455 PMCID: PMC7650250 DOI: 10.1074/jbc.rev120.012960] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Reagents that bind tightly and specifically to biomolecules of interest remain essential in the exploration of biology and in their ultimate application to medicine. Besides ligands for receptors of known specificity, agents commonly used for this purpose are monoclonal antibodies derived from mice, rabbits, and other animals. However, such antibodies can be expensive to produce, challenging to engineer, and are not necessarily stable in the context of the cellular cytoplasm, a reducing environment. Heavy chain-only antibodies, discovered in camelids, have been truncated to yield single-domain antibody fragments (VHHs or nanobodies) that overcome many of these shortcomings. Whereas they are known as crystallization chaperones for membrane proteins or as simple alternatives to conventional antibodies, nanobodies have been applied in settings where the use of standard antibodies or their derivatives would be impractical or impossible. We review recent examples in which the unique properties of nanobodies have been combined with complementary methods, such as chemical functionalization, to provide tools with unique and useful properties.
Collapse
Affiliation(s)
- Ross W Cheloha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Charlotte Wijne
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas U Schwartz
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
26
|
Graulus GJ, Ta DT, Tran H, Hansen R, Billen B, Royackers E, Noben JP, Devoogdt N, Muyldermans S, Guedens W, Adriaensens P. Site-Selective Functionalization of Nanobodies Using Intein-Mediated Protein Ligation for Innovative Bioconjugation. Methods Mol Biol 2020; 2033:117-130. [PMID: 31332751 DOI: 10.1007/978-1-4939-9654-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
An expression strategy is presented in order to produce nanobodies modified with a clickable alkyne functionality at their C-terminus via the intein-mediated protein ligation (IPL) technique. The protocol focuses on the cytoplasmic expression and extraction of a nanobody-intein-chitin binding domain (CBD) fusion protein in E. coli SHuffle® T7 cells, in the commonly used Luria-Bertani (LB) medium. The combination of these factors results in a high yield and nearly complete alkynation of the nanobody at its C-terminus via IPL. The resulting alkynated nanobodies retain excellent binding capacity toward the nanobody targeted antigen. The presented protocol benefits from time- and cost-effectiveness and allows for a feasible upscaling of functionalized (here alkynated) nanobodies. The production of high quantities of site-specifically modified nanobodies paves the way to (1) novel biosurface applications that demand for homogeneously oriented nanobodies having their active site fully accessible for target (e.g., biomarker) binding, and (2) innovative applications such as localized drug delivery and image guided surgery by covalent "click" chemistry coupling of these alkynated nanobodies to a multitude of azide-containing counterparts as there are drug containing polymers and contrast labeling agents.
Collapse
Affiliation(s)
- Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Duy Tien Ta
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Huong Tran
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Rebekka Hansen
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Brecht Billen
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Erik Royackers
- Biomedical Research Institute (Biomed), Hasselt University, Diepenbeek, Belgium
| | - Jean-Paul Noben
- Biomedical Research Institute (Biomed), Hasselt University, Diepenbeek, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Brussels, Belgium
| | - Serge Muyldermans
- Cellular and Molecular Immunology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium.
- Applied and Analytical Chemistry, Institute for Materials Research (IMO), Hasselt University, Diepenbeek, Belgium.
| |
Collapse
|
27
|
Singh G, Zarschler K, Hunoldt S, Martínez IIS, Ruehl CL, Matterna M, Bergmann R, Máthé D, Hegedüs N, Bachmann M, Comba P, Stephan H. Versatile Bispidine-Based Bifunctional Chelators for 64 Cu II -Labelling of Biomolecules. Chemistry 2020; 26:1989-2001. [PMID: 31755596 PMCID: PMC7028042 DOI: 10.1002/chem.201904654] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 12/11/2022]
Abstract
Bifunctional chelators as parts of modular metal-based radiopharmaceuticals are responsible for stable complexation of the radiometal ion and for covalent linkage between the complex and the targeting vector. To avoid loss of complex stability, the bioconjugation strategy should not interfere with the radiometal chelation by occupying coordinating groups. The C9 position of the very stable CuII chelator 3,7-diazabicyclo[3.3.1]nonane (bispidine) is virtually predestined to introduce functional groups for facile bioconjugation as this functionalisation does not disturb the metal binding centre. We describe the preparation and characterisation of a set of novel bispidine derivatives equipped with suitable functional groups for diverse bioconjugation reactions, including common amine coupling strategies (bispidine-isothiocyanate) and the Cu-free strain-promoted alkyne-azide cycloaddition. We demonstrate their functionality and versatility in an exemplary way by conjugation to an antibody-based biomolecule and validate the obtained conjugate in vitro and in vivo.
Collapse
Affiliation(s)
- Garima Singh
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Kristof Zarschler
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Sebastian Hunoldt
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Irma Ivette Santana Martínez
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Carmen L. Ruehl
- Anorganisch-Chemisches Institut INF 270Universität Heidelberg69120HeidelbergGermany
| | - Madlen Matterna
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Domokos Máthé
- Department of Biophysics and Radiation BiologySemmelweis University1094BudapestHungary
- CROmed Translational Research Centers Ltd.1047BudapestHungary
| | - Nikolett Hegedüs
- Department of Biophysics and Radiation BiologySemmelweis University1094BudapestHungary
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| | - Peter Comba
- Anorganisch-Chemisches Institut INF 270Universität Heidelberg69120HeidelbergGermany
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-RossendorfInstitute of Radiopharmaceutical Cancer ResearchBautzner Landstrasse 40001328DresdenGermany
| |
Collapse
|
28
|
Eisenblätter M, Wildgruber M. Optical and Optoacoustic Imaging Probes. Recent Results Cancer Res 2020; 216:337-355. [PMID: 32594392 DOI: 10.1007/978-3-030-42618-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tissue has characteristic properties when it comes to light absorption and scattering. For optical (OI) and optoacoustic imaging (OAI) these properties can be utilised to visualise biological tissue characteristics, as, for example, the oxygenation state of haemoglobin alters the optical and optoacoustic properties of the molecule.
Collapse
Affiliation(s)
- Michel Eisenblätter
- Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Freiburg im Breisgau, Germany.
| | - Moritz Wildgruber
- Department of Radiology, Ludwig Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
29
|
One-Step Fluorescent Protein Labeling by Tubulin Tyrosine Ligase. Methods Mol Biol 2019. [PMID: 31332754 DOI: 10.1007/978-1-4939-9654-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tub-tag labeling, a novel chemoenzymatic protein functionalization method, facilitates one-step fluorescent labeling of functional biomolecules. The enzyme tubulin tyrosine ligase incorporates coumarin-amino acids to the terminal carboxylic acid of proteins containing a short peptidic recognition sequence called Tub-tag. Here we describe the one-step Tub-tag protein modification protocol in detail and explain its utilization to generate fluorescently labeled proteins for advanced applications in imaging and diagnostics.
Collapse
|
30
|
A photo-triggered conjugation approach for attaching RGD ligands to biodegradable mesoporous silica nanoparticles for the tumor fluorescent imaging. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 19:136-144. [DOI: 10.1016/j.nano.2019.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 01/29/2023]
|
31
|
Debie P, Hernot S. Emerging Fluorescent Molecular Tracers to Guide Intra-Operative Surgical Decision-Making. Front Pharmacol 2019; 10:510. [PMID: 31139085 PMCID: PMC6527780 DOI: 10.3389/fphar.2019.00510] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/24/2019] [Indexed: 12/26/2022] Open
Abstract
Fluorescence imaging is an emerging technology that can provide real-time information about the operating field during cancer surgery. Non-specific fluorescent agents, used for the assessment of blood flow and sentinel lymph node detection, have so far dominated this field. However, over the last decade, several clinical studies have demonstrated the great potential of targeted fluorescent tracers to visualize tumor lesions in a more specific way. This has led to an exponential growth in the development of novel molecular fluorescent contrast agents. In this review, the design of fluorescent molecular tracers will be discussed, with particular attention for agents and approaches that are of interest for clinical translation.
Collapse
Affiliation(s)
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging (ICMI-BEFY/MIMA), Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
32
|
Crauwels M, Massa S, Martin C, Betti C, Ballet S, Devoogdt N, Xavier C, Muyldermans S. Site-Specific Radioactive Labeling of Nanobodies. Methods Mol Biol 2019; 1827:505-540. [PMID: 30196514 DOI: 10.1007/978-1-4939-8648-4_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Single-domain antibody fragments, also called nanobodies (Nbs), are increasingly being used as targeting molecular tools for imaging and/or targeted radionuclide therapy. To translate these tools to the clinic, it is preferred to obtain a homogeneous, well-defined, and well-characterized product. It has been shown that Sortase A, a transpeptidase found in Staphylococcus aureus, catalyzes the site-specific conjugation between a recognition oligopeptide (LPXTG, known as sortag) and an oligoglycine functionalized probe. This versatile technique manages to couple various molecular reagents, such as biotin, fluorophores, bifunctional chelators, etc., to the target protein containing the sortag. This chapter focuses on the site-specific coupling of a bifunctional chelator (e.g., CHX-A"-DTPA) to a Nb equipped with a C-terminal sortag. The chelator conjugated to the Nb can be radiolabeled with 111In or 177Lu for SPECT imaging or targeted radionuclide therapy, respectively.
Collapse
Affiliation(s)
- Maxine Crauwels
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussel, Belgium.,In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sam Massa
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussel, Belgium.,In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cecilia Betti
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussel, Belgium.
| |
Collapse
|
33
|
Debie P, Devoogdt N, Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies (Basel) 2019; 8:E12. [PMID: 31544818 PMCID: PMC6640687 DOI: 10.3390/antib8010012] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging is paving the way towards noninvasive detection, staging, and treatment follow-up of diseases such as cancer and inflammation-related conditions. Monoclonal antibodies have long been one of the staples of molecular imaging tracer design, although their long blood circulation and high nonspecific background limits their applicability. Nanobodies, unique antibody-binding fragments derived from camelid heavy-chain antibodies, have excellent properties for molecular imaging as they are able to specifically find their target early after injection, with little to no nonspecific background. Nanobody-based tracers using either nuclear or fluorescent labels have been heavily investigated preclinically and are currently making their way into the clinic. In this review, we will discuss different important factors in nanobody-tracer design, as well as the current state of the art regarding their application for nuclear and fluorescent imaging purposes. Furthermore, we will discuss how nanobodies can also be exploited for molecular therapy applications such as targeted radionuclide therapy and photodynamic therapy.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Nick Devoogdt
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
34
|
Fu R, Carroll L, Yahioglu G, Aboagye EO, Miller PW. Antibody Fragment and Affibody ImmunoPET Imaging Agents: Radiolabelling Strategies and Applications. ChemMedChem 2018; 13:2466-2478. [PMID: 30246488 PMCID: PMC6587488 DOI: 10.1002/cmdc.201800624] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 12/12/2022]
Abstract
Antibodies have long been recognised as potent vectors for carrying diagnostic medical radionuclides, contrast agents and optical probes to diseased tissue for imaging. The area of ImmunoPET combines the use of positron emission tomography (PET) imaging with antibodies to improve the diagnosis, staging and monitoring of diseases. Recent developments in antibody engineering and PET radiochemistry have led to a new wave of experimental ImmunoPET imaging agents that are based on a range of antibody fragments and affibodies. In contrast to full antibodies, engineered affibody proteins and antibody fragments such as minibodies, diabodies, single-chain variable region fragments (scFvs), and nanobodies are much smaller but retain the essential specificities and affinities of full antibodies in addition to more desirable pharmacokinetics for imaging. Herein, recent key developments in the PET radiolabelling strategies of antibody fragments and related affibody molecules are highlighted, along with the main PET imaging applications of overexpressed antigen-associated tumours and immune cells.
Collapse
Affiliation(s)
- Ruisi Fu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Laurence Carroll
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Gokhan Yahioglu
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
- Antikor Biopharma Ltd.StevenageSG1 2FXUK
| | - Eric O. Aboagye
- Comprehensive Cancer Imaging Centre, Department of Surgery and CancerImperial College London, Hammersmith CampusDu Cane RoadLondonW12 0NNUK
| | - Philip W. Miller
- Department of ChemistryImperial College LondonExhibition RoadSouth Kensington, LondonSW7 2AZUK
| |
Collapse
|
35
|
Direct fluorine-18 labeling of heat-sensitive biomolecules for positron emission tomography imaging using the Al18F-RESCA method. Nat Protoc 2018; 13:2330-2347. [DOI: 10.1038/s41596-018-0040-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Abou-Elkacem L, Wang H, Chowdhury SM, Kimura RH, Bachawal SV, Gambhir SS, Tian L, Willmann JK. Thy1-Targeted Microbubbles for Ultrasound Molecular Imaging of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2018; 24:1574-1585. [PMID: 29301827 PMCID: PMC5884723 DOI: 10.1158/1078-0432.ccr-17-2057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/09/2017] [Accepted: 12/18/2017] [Indexed: 12/17/2022]
Abstract
Purpose: To engineer a dual human and murine Thy1-binding single-chain-antibody ligand (Thy1-scFv) for contrast microbubble-enhanced ultrasound molecular imaging of pancreatic ductal adenocarcinoma (PDAC).Experimental Design: Thy1-scFv were engineered using yeast-surface-display techniques. Binding to soluble human and murine Thy1 and to Thy1-expressing cells was assessed by flow cytometry. Thy1-scFv was then attached to gas-filled microbubbles to create MBThy1-scFv Thy1 binding of MBThy1-scFv to Thy1-expressing cells was evaluated under flow shear stress conditions in flow-chamber experiments. MBscFv-scrambled and MBNon-targeted were used as negative controls. All microbubble types were tested in both orthotopic human PDAC xenografts and transgenic PDAC mice in vivoResults: Thy1-scFv had a KD of 3.4 ± 0.36 nmol/L for human and 9.2 ± 1.7 nmol/L for murine Thy1 and showed binding to both soluble and cellularly expressed Thy1. MBThy1-scFv was attached to Thy1 with high affinity compared with negative control microbubbles (P < 0.01) as assessed by flow cytometry. Similarly, flow-chamber studies showed significantly (P < 0.01) higher binding of MBThy1-scFv (3.0 ± 0.81 MB/cell) to Thy1-expressing cells than MBscFv-scrambled (0.57 ± 0.53) and MBNon-targeted (0.43 ± 0.53). In vivo ultrasound molecular imaging using MBThy1-scFv demonstrated significantly higher signal (P < 0.01) in both orthotopic (5.32 ± 1.59 a.u.) and transgenic PDAC (5.68 ± 2.5 a.u.) mice compared with chronic pancreatitis (0.84 ± 0.6 a.u.) and normal pancreas (0.67 ± 0.71 a.u.). Ex vivo immunofluorescence confirmed significantly (P < 0.01) increased Thy1 expression in PDAC compared with chronic pancreatitis and normal pancreas tissue.Conclusions: A dual human and murine Thy1-binding scFv was designed to generate contrast microbubbles to allow PDAC detection with ultrasound. Clin Cancer Res; 24(7); 1574-85. ©2018 AACR.
Collapse
Affiliation(s)
- Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California.
| | - Huaijun Wang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Sayan M Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Richard H Kimura
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| | - Lu Tian
- Department of Health, Research and Policy, Stanford University, Stanford, California
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California
| |
Collapse
|
37
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications. Angew Chem Int Ed Engl 2018; 57:2314-2333. [PMID: 28913971 PMCID: PMC5838514 DOI: 10.1002/anie.201708459] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Indexed: 01/12/2023]
Abstract
Nanobodies can be seen as next-generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site-specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens.
Collapse
Affiliation(s)
- Dominik Schumacher
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Jonas Helma
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | - Anselm F. L. Schneider
- Chemical Biology, Leibniz-Forschungsinstitut für Molekulare, Pharmakologie and Department of ChemistryHumboldt-Universität zu BerlinBerlinGermany
| | - Heinrich Leonhardt
- Department of Biology IILudwig Maximilians Universität München und Center for Integrated Protein Science MunichMartinsriedGermany
| | | |
Collapse
|
38
|
Schumacher D, Helma J, Schneider AFL, Leonhardt H, Hackenberger CPR. Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201708459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dominik Schumacher
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Jonas Helma
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Anselm F. L. Schneider
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| | - Heinrich Leonhardt
- Department Biologie II; Ludwig Maximilians Universität München und Center for Integrated Protein Science Munich; Martinsried Deutschland
| | - Christian P. R. Hackenberger
- Chemische Biologie, Leibniz-Forschungsinstitut für Molekulare Pharmakologie; Institut für Chemie; Humboldt-Universität zu Berlin; Berlin Deutschland
| |
Collapse
|
39
|
Helma J, Leonhardt H, Hackenberger CPR, Schumacher D. Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids. Methods Mol Biol 2018; 1728:67-93. [PMID: 29404991 DOI: 10.1007/978-1-4939-7574-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tub-tag labeling is a chemoenzymatic method that enables the site-specific labeling of proteins. Here, the natural enzyme tubulin tyrosine ligase incorporates noncanonical tyrosine derivatives to the terminal carboxylic acid of proteins containing a 14-amino acid recognition sequence called Tub-tag. The tyrosine derivative carries a unique chemical reporter allowing for a subsequent bioorthogonal modification of proteins with a great variety of probes. Here, we describe the Tub-tag protein modification protocol in detail and explain its utilization to generate labeled proteins for advanced applications in cell biology, imaging, and diagnostics.
Collapse
Affiliation(s)
- Jonas Helma
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians Universität München, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Center for Integrated Protein Science Munich, Ludwig Maximilians Universität München, Planegg-Martinsried, Germany
| | - Christian P R Hackenberger
- Department of Chemical-Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Dominik Schumacher
- Department of Chemical-Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
- Department of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
40
|
Vandesquille M, Li T, Po C, Ganneau C, Lenormand P, Dudeffant C, Czech C, Grueninger F, Duyckaerts C, Delatour B, Dhenain M, Lafaye P, Bay S. Chemically-defined camelid antibody bioconjugate for the magnetic resonance imaging of Alzheimer's disease. MAbs 2017; 9:1016-1027. [PMID: 28657418 DOI: 10.1080/19420862.2017.1342914] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Today, molecular imaging of neurodegenerative diseases is mainly based on small molecule probes. Alternatively, antibodies are versatile tools that may be developed as new imaging agents. Indeed, they can be readily obtained to specifically target any antigen of interest and their scaffold can be functionalized. One of the critical issues involved in translating antibody-based probes to the clinic is the design and synthesis of perfectly-defined conjugates. Camelid single-domain antibody-fragments (VHHs) are very small and stable antibodies that are able to diffuse in tissues and potentially cross the blood brain barrier (BBB). Here, we selected a VHH (R3VQ) specifically targeting one of the main lesions of Alzheimer's disease (AD), namely the amyloid-beta (Aß) deposits. It was used as a scaffold for the design of imaging probes for magnetic resonance imaging (MRI) and labeled with the contrastophore gadolinium using either a random or site-specific approach. In contrast to the random strategy, the site-specific conjugation to a single reduced cysteine in the C-terminal part of the R3VQ generates a well-defined bioconjugate in a high yield process. This new imaging probe is able to cross the BBB and label Aß deposits after intravenous injection. Also, it displays improved r1 and r2 relaxivities, up to 30 times higher than a widely used clinical contrast agent, and it allows MRI detection of amyloid deposits in post mortem brain tissue of a mouse model of AD. The ability to produce chemically-defined VHH conjugates that cross the BBB opens the way for future development of tailored imaging probes targeting intracerebral antigens.
Collapse
Affiliation(s)
- Matthias Vandesquille
- a Institut Pasteur, Unité de Chimie des Biomolécules, Département Biologie Structurale et Chimie , Paris , France.,b CNRS UMR 3523, 75724 , France.,d French Alternative Energies and Atomic Energy Commission , Institute of Biomedical Imaging, Molecular Imaging Research Center , Fontenay-aux-Roses , France
| | - Tengfei Li
- c Institut Pasteur, CITECH, Plateforme d'Ingénierie des Anticorps , 75724 , Paris , France.,e Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, and Inserm, U 1127, and CNRS UMR 7225, and ICM, 75013, Paris , France.,f Université Paris Diderot-Paris 7, Paris , France
| | - Chrystelle Po
- a Institut Pasteur, Unité de Chimie des Biomolécules, Département Biologie Structurale et Chimie , Paris , France.,b CNRS UMR 3523, 75724 , France.,d French Alternative Energies and Atomic Energy Commission , Institute of Biomedical Imaging, Molecular Imaging Research Center , Fontenay-aux-Roses , France
| | - Christelle Ganneau
- a Institut Pasteur, Unité de Chimie des Biomolécules, Département Biologie Structurale et Chimie , Paris , France.,b CNRS UMR 3523, 75724 , France
| | - Pascal Lenormand
- c Institut Pasteur, CITECH, Plateforme d'Ingénierie des Anticorps , 75724 , Paris , France
| | - Clémence Dudeffant
- e Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, and Inserm, U 1127, and CNRS UMR 7225, and ICM, 75013, Paris , France
| | - Christian Czech
- g F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development, NORD DTA, Roche Innovation Center Basel , Basel , Switzerland
| | - Fiona Grueninger
- g F. Hoffmann-La Roche AG, Pharmaceutical Research and Early Development, NORD DTA, Roche Innovation Center Basel , Basel , Switzerland
| | - Charles Duyckaerts
- e Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, and Inserm, U 1127, and CNRS UMR 7225, and ICM, 75013, Paris , France
| | - Benoît Delatour
- e Sorbonne Universités, UPMC Univ. Paris 06 UMR S 1127, and Inserm, U 1127, and CNRS UMR 7225, and ICM, 75013, Paris , France
| | - Marc Dhenain
- d French Alternative Energies and Atomic Energy Commission , Institute of Biomedical Imaging, Molecular Imaging Research Center , Fontenay-aux-Roses , France
| | - Pierre Lafaye
- c Institut Pasteur, CITECH, Plateforme d'Ingénierie des Anticorps , 75724 , Paris , France
| | - Sylvie Bay
- a Institut Pasteur, Unité de Chimie des Biomolécules, Département Biologie Structurale et Chimie , Paris , France.,b CNRS UMR 3523, 75724 , France
| |
Collapse
|
41
|
Debie P, Van Quathem J, Hansen I, Bala G, Massa S, Devoogdt N, Xavier C, Hernot S. Effect of Dye and Conjugation Chemistry on the Biodistribution Profile of Near-Infrared-Labeled Nanobodies as Tracers for Image-Guided Surgery. Mol Pharm 2017; 14:1145-1153. [PMID: 28245129 DOI: 10.1021/acs.molpharmaceut.6b01053] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Advances in optical imaging technologies have stimulated the development of near-infrared (NIR) fluorescently labeled targeted probes for use in image-guided surgery. As nanobodies have already proven to be excellent candidates for molecular imaging, we aimed in this project to design NIR-conjugated nanobodies targeting the tumor biomarker HER2 for future applications in this field and to evaluate the effect of dye and dye conjugation chemistry on their pharmacokinetics during development. IRDye800CW or IRdye680RD were conjugated either randomly (via lysines) or site-specifically (via C-terminal cysteine) to the anti-HER2 nanobody 2Rs15d. After verification of purity and functionality, the biodistribution and tumor targeting of the NIR-nanobodies were assessed in HER2-positive and -negative xenografted mice. Site-specifically IRDye800CW- and IRdye680RD-labeled 2Rs15d as well as randomly labeled 2Rs15d-IRDye680RD showed rapid tumor accumulation and low nonspecific uptake, resulting in high tumor-to-muscle ratios at early time points (respectively 6.6 ± 1.0, 3.4 ± 1.6, and 3.5 ± 0.9 for HER2-postive tumors at 3 h p.i., while <1.0 for HER2-negative tumors at 3 h p.i., p < 0.05). Contrarily, using the randomly labeled 2Rs15d-IRDye800CW, HER2-positive and -negative tumors could only be distinguished after 24 h due to high nonspecific signals. Moreover, both randomly labeled 2Rs15d nanobodies were not only cleared via the kidneys but also partially via the hepatobiliary route. In conclusion, near-infrared fluorescent labeling of nanobodies allows rapid, specific, and high contrast in vivo tumor imaging. Nevertheless, the fluorescent dye as well as the chosen conjugation strategy can affect the nanobodies' properties and consequently have a major impact on their pharmacokinetics.
Collapse
Affiliation(s)
- Pieterjan Debie
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel , Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Jannah Van Quathem
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel , Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Inge Hansen
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel , Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Gezim Bala
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel , Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Sam Massa
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel , Laarbeeklaan 103, 1090 Brussels, Belgium.,Laboratory for Cellular and Molecular Imunology, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel , Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Catarina Xavier
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel , Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel , Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|