1
|
Sharma R, Kumar S, Komal K, Ghosh R, Thakur S, Pal RR, Kumar M. Comprehensive insights into pancreatic cancer treatment approaches and cutting-edge nanocarrier solutions: from pathology to nanomedicine. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04094-y. [PMID: 40202672 DOI: 10.1007/s00210-025-04094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. It is characterized by poor prognosis, high mortality, and recurrence rates. Various modifiable and non-modifiable risk factors are associated with pancreatic cancer incidence. Available treatments for pancreatic cancer include surgery, chemotherapy, radiotherapy, photodynamic therapy, supportive care, targeted therapy, and immunotherapy. However, the survival rates for PC are very low. Regrettably, despite efforts to enhance prognosis, the survival rate of pancreatic cancer remains relatively low. Therefore, it is essential to investigate new approaches to improve pancreatic cancer treatment. By synthesizing current knowledge and identifying existing gaps, this article provides a comprehensive overview of risk factors, pathology, conventional treatments, targeted therapies, and recent advancements in nanocarriers for its treatment, along with various clinical trials and patents that justify the safety and efficacy of innovative carriers for drug delivery systems. Ultimately, this review underscores the potential of these innovative formulations to improve outcomes and contribute significantly to the advancement of Pancreatic Cancer treatment. Together, these insights highlight nano-formulations as a promising frontier for effectively treating Pancreatic Cancer.
Collapse
Affiliation(s)
- Rohit Sharma
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Sourabh Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kumari Komal
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Rashmi Ghosh
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Ravi Raj Pal
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Manish Kumar
- Department of Pharmaceutics, ISF College Pharmacy, GT Road, Moga, 142001, Punjab, India.
| |
Collapse
|
2
|
Chudzińska-Skorupinska J, Wawrzyńczak A, Feliczak-Guzik A. Carbohydrate-based polymer nanocarriers for environmentally friendly applications. Adv Colloid Interface Sci 2025; 338:103415. [PMID: 39884112 DOI: 10.1016/j.cis.2025.103415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Effective delivery of active substances and drugs is an important part of treatment. In order for a drug to work at the right place in the body, it must be transported there in the right way. For this reason, new carriers are being sought for active substances and drugs that can effectively deliver drugs to the target site without causing additional side effects. These include nanoparticles, microneedles, cubosomes and nanogels, among others. Recently, carriers based on biodegradable polymers such as hyaluronic acid or chitosan are becoming popular. In addition, modern carriers are designed to release the active ingredient in response to a specific agent. This paper reviews the literature from the past 5 years on novel delivery systems with medical, agricultural, food and cosmetic applications, with a special emphasis on the use of carbohydrate-based nanocarriers.
Collapse
Affiliation(s)
| | - Agata Wawrzyńczak
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Agnieszka Feliczak-Guzik
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
3
|
Prajapati SK, Jain A, Bajpai M. Lipid-based nanoformulations in onychomycosis therapy: addressing challenges of current therapies and advancing treatment. RSC Adv 2025; 15:7799-7825. [PMID: 40070389 PMCID: PMC11895809 DOI: 10.1039/d5ra00387c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Onychomycosis significantly impacts approximately 20% of the global population. The physical barriers of the nail structure make fungal infections a persistent therapeutic challenge. Traditional approaches, including topical and oral antifungal agents, have limitations such as toxicities, low nail permeability, adverse effects, and high recurrence rates. Consequently, emerging lipid-based delivery systems have gained interest because of their potential to address these drawbacks. Nanostructured lipid carriers (NLCs), solid lipid nanoparticles (SLNs), liposomes, and transferosomes are innovative formulations that offer enhanced drug solubility, sustained release, and targeted delivery to the nail matrix. These lipid-mediated approaches have shown promise in overcoming the hurdles associated with conventional therapies, thereby improving treatment outcomes, patient compliance, and the overall quality of life. A comprehensive review focusing on the potential of lipid-based drug delivery systems in treating onychomycosis is lacking in the existing literature. This review explores various aspects of the clinical presentation of onychomycosis, available treatments, challenges associated with treatment, formulation science related to lipid-based vehicles and their applications, highlighted by the promising aspects of these novel formulations, and provides insights into clinical developments. In addition, the regulatory perspective is critical to such development, and approval is discussed, particularly in managing regulatory compliance complexities to ensure successful implementation. The holistic approach provides a comprehensive basis for determining lipid-based drug delivery systems' state-of-the-art and future scope.
Collapse
Affiliation(s)
| | - Ankit Jain
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani Pilani Campus Pilani India
| | - Meenakshi Bajpai
- Institute of Pharmaceutical Research, GLA University Mathura India
| |
Collapse
|
4
|
Lopez-Vidal L, Juskaite K, Ramöller IK, Real DA, McKenna PE, Priotti J, Donnelly RF, Paredes AJ. Advanced drug delivery systems for the management of local conditions. Ther Deliv 2025; 16:285-303. [PMID: 40020739 PMCID: PMC11875478 DOI: 10.1080/20415990.2024.2437978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025] Open
Abstract
Localized disorders, even though originally confined to a specific body part, can progress into potentially life-threatening systemic disorders if treated inappropriately. Local treatment is often highly challenging due to poor penetration of therapeutic agents from their vehicles into the affected body site. Systemic treatment on the other hand often comes with unspecific side effects. The skin is the largest organ of the body, and conditions such as wounds and bacterial or fungal infections disrupt its natural barrier properties, important for the homeostasis of the human body. Advanced drug delivery systems for treating these conditions could greatly improve the treatment outcome and patient compliance. Other parts of the body that are of interest regarding localized treatment are, for example, the eyes along with mucosal tissues which are present in the vagina and lungs. Rather than focusing on specific diseases or parts of the body, this review provides an overview of the different drug delivery platforms that have been employed for enhanced local treatment. The following systems will be discussed: nanoparticle-based systems, such as nanocrystals, polymeric, lipidic, and inorganic nanoparticles, and nanogels; cyclodextrin inclusion complexes; and several devices like microarray patches, wound dressings, and films.
Collapse
Affiliation(s)
- Lucía Lopez-Vidal
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Kornelija Juskaite
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Inken K. Ramöller
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Daniel A. Real
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica, Consejo Nacional de investigaciones Científicas y Tecnológicas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre y Medina Allende, Córdoba, Argentina
- Pill.AR Apotheke Revolution S.A, Córdoba, Argentina
| | - Peter E. McKenna
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Josefina Priotti
- Área Técnica Farmacéutica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| | - Alejandro J. Paredes
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, Belfast, Northern Ireland, UK
| |
Collapse
|
5
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Veg E, Hashmi K, Raza S, Joshi S, Rahman Khan A, Khan T. The Role of Nanomaterials in Diagnosis and Targeted Drug Delivery. Chem Biodivers 2025; 22:e202401581. [PMID: 39313849 DOI: 10.1002/cbdv.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Nanomaterials have evolved into the most useful resources in all spheres of life. Their small size imparts them with unique properties and they can also be designed and engineered according to the specific need. The use of nanoparticles (NPs) in medicine is particularly quite revolutionary as it has opened new therapeutic avenues to diagnose, treat and manage diseases in an efficient and timely manner. The review article presents the biomedical applications of nanomaterials including bioimaging, magnetic hypothermia and photoablation therapy, with a particular focus on disease diagnosis and targeted drug delivery. Nanobiosensors are highly specific and can be delivered into cells to investigate important biomarkers. They are also used for targeted drug delivery and deliver theranostic agents to specific sites of interest. Other than these factors, the review also explores the role of nano-based drug delivery systems for the management and treatment of nervous system disorders, tuberculosis and orthopaedics. The nano-capsulated drugs can be transported by blood to the targeted site for a sustained release over a prolonged period. Some other applications like their role in invasive surgery, photodynamic therapy and quantum dot imaging have also been explored. Despite that, the safety concerns related to nanomedicine are also pertinent to comprehend as well as the biodistribution of NPs in the body and the mechanistic insight.
Collapse
Affiliation(s)
- Ekhlakh Veg
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Kulsum Hashmi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Saman Raza
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Seema Joshi
- Department of Chemistry, Isabella Thoburn College, Lucknow, 226007, U.P., India
| | - Abdul Rahman Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| | - Tahmeena Khan
- Department of Chemistry, Integral University, Lucknow, 226026, U.P., India
| |
Collapse
|
7
|
Mu S, Zhang B, Huang R, Li M. Preparation and evaluation of novel oral tacrolimus nanocochleates for organ transplantation to reduce individual differences and improve drug safety. Int J Pharm 2024; 666:124811. [PMID: 39384027 DOI: 10.1016/j.ijpharm.2024.124811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
After organ transplantation, patients require treatment with immunosuppressive drugs to prevent immune rejection and transplantation failure. Tacrolimus (FK506) is a widely used immunosuppressant known for its potent immunosuppressive effect and narrow therapeutic range. Monitoring of FK506 blood concentrations is essential to avoid nephrotoxicity. In this study, a novel FK506 nanomedicine (FK506 cochleates) was developed using a microfluidic method to reduce variability among individuals and improve drug safety. The particle size of FK506 cochleates was (183.3 ± 1.4) nm, the zeta potential was -(39.28 ± 2.12) mV, and the encapsulation efficiency was more than 85 %. Particle size of FK506 cochleates could be maintained for up to 12 weeks in freeze-dried powder form. Small-angle X-ray scattering (SAXS) experiment confirmed the formation of cochleates by adding calcium solution. In vitro release studies demonstrated a sustained-release profile of FK506 from the cochleates carrier. Furthermore, the cochleates carrier could protect FK506 from the influence of stomach acid and slowly release the drug in the intestine. After oral administration, FK506 cochleates exhibited sustained-release properties in rats, accumulating in the spleen and lymph nodes - key anatomical sites for FK506's pharmacological action. Importantly, FK506 cochleates significantly prolonged the survival time in the rabbit heart transplantation model while maintaining good safety profiles. In conclusion, the FK506 cochleates showed promising potential for enhancing drug safety in therapeutic organ transplantation.
Collapse
Affiliation(s)
- Shengjun Mu
- Department of Pharmacy, Yantai Yuhuangding Hospital, Shandong Province 264000, China
| | - Bei Zhang
- Department of Pharmacy, Yantai Yuhuangding Hospital, Shandong Province 264000, China
| | - Ruiqin Huang
- Department of Pharmacy, Yantai Yuhuangding Hospital, Shandong Province 264000, China.
| | - Min Li
- Department of Pharmacy, Yantai Yuhuangding Hospital, Shandong Province 264000, China.
| |
Collapse
|
8
|
Soe HMSH, Loftsson T, Jansook P. The application of cyclodextrins in drug solubilization and stabilization of nanoparticles for drug delivery and biomedical applications. Int J Pharm 2024; 666:124787. [PMID: 39362296 DOI: 10.1016/j.ijpharm.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles (NPs) have gained significant attention in recent years due to their potential applications in pharmaceutical formulations, drug delivery systems, and various biomedical fields. The versatility of colloidal NPs, including their ability to be tailored with various components and synthesis methods, enables drug delivery systems to achieve controlled release patterns, improved solubility, and increased bioavailability. The review discusses various types of NPs, such as nanocrystals, lipid-based NPs, and inorganic NPs (i.e., gold, silver, magnetic NPs), each offering unique advantages for drug delivery. Despite the promising potential of NPs, challenges such as physical instability and the need for surface stabilization remain. Strategies to overcome these challenges include the use of surfactants, polymers, and cyclodextrins (CDs). This review highlights the role of CDs in stabilizing colloidal NPs and enhancing drug solubility. The combination of CDs with NPs presents a synergistic approach that enhances drug delivery and broadens the range of biomedical applications. Additionally, the potential of CDs to enhance the stability and therapeutic efficacy of colloidal NPs, making them promising candidates for advanced drug delivery systems, is comprehensively reviewed.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Martin BA, Dalmolin LF, Lemos CN, de Menezes Vaidergorn M, da Silva Emery F, Vargas-Rechia CG, Ramos AP, Lopez RFV. Electrostimulable polymeric films with hyaluronic acid and lipid nanoparticles for simultaneous topical delivery of macromolecules and lipophilic drugs. Drug Deliv Transl Res 2024; 14:2499-2519. [PMID: 38381316 DOI: 10.1007/s13346-024-01526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
This study focused on developing electrically stimulable hyaluronic acid (HA) films incorporating lipid nanoparticles (NPs) designed for the topical administration of lipophilic drugs and macromolecules. Based on beeswax and medium-chain triglycerides, NPs were successfully integrated into silk fibroin/chitosan films containing HA (NP-HA films) at a density of approximately 1011 NP/cm2, ensuring a uniform distribution. This integration resulted in a 40% increase in film roughness, a twofold decrease in Young's modulus, and enhanced film flexibility and bioadhesion work. The NP-HA films, featuring Ag/AgCl electrodes, demonstrated the capability to conduct a constant electrical current of 0.2 mA/cm2 without inducing toxicity in keratinocytes and fibroblasts during a 15-min application. Moreover, the NPs facilitated the homogeneous distribution of lipophilic drugs within the film, effectively transporting them to the skin and uniformly distributing them in the stratum corneum upon film administration. The sustained release of HA from the films, following Higuchi kinetics, did not alter the macroscopic characteristics of the film. Although anodic iontophoresis did not noticeably affect the release of HA, it did enhance its penetration into the skin. This enhancement facilitated the permeation of HA with a molecular weight (MW) of up to 2 × 105 through intercellular and transcellular routes. Confocal Raman spectroscopy provided evidence of an approximate 100% increase in the presence of HA with a MW in the range of 1.5-1.8 × 106 in the viable epidermis of human skin after only 15 min of iontophoresis applied to the films. Combining iontophoresis with NP-HA films exhibits substantial potential for noninvasive treatments focused on skin rejuvenation and wound healing.
Collapse
Affiliation(s)
- Bianca Aparecida Martin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Luciana Facco Dalmolin
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Camila Nunes Lemos
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Miguel de Menezes Vaidergorn
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Flavio da Silva Emery
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Carem Gledes Vargas-Rechia
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil
| | - Ana Paula Ramos
- Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, 14040-901, Brazil
| | - Renata F V Lopez
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida Professor Doutor Zeferino Vaz, s/n, Ribeirão Preto, São Paulo, 14040-903, Brazil.
| |
Collapse
|
10
|
Buddhiraju HS, Yadav DN, Dey S, Eswar K, Padmakumar A, Rengan AK. Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies. ACS APPLIED BIO MATERIALS 2024; 7:4879-4893. [PMID: 37996391 DOI: 10.1021/acsabm.3c00711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Peptides are ideal biologicals for targeted drug delivery and have also been increasingly employed as theranostic tools in treating various diseases, including cancer, with minimal or no side effects. Owing to their receptor-specificity, peptide-mediated drug delivery aids in targeted drug delivery with better pharmacological biodistribution. Nanostructured self-assembled peptides and peptide-drug conjugates demonstrate enhanced stability and performance and captivating biological effects in comparison with conventional peptides. Moreover, they serve as valuable tools for establishing interfaces between drug carriers and biological systems, enabling the traversal of multiple biological barriers encountered by peptide-drug conjugates on their journeys to their intended targets. Peptide-based drugs play a pivotal role in the field of medicine and hold great promise for addressing a wide range of complex diseases such as cancer and autoimmune disorders. Nanotechnology has revolutionized the fields of medicine, biomedical engineering, biotechnology, and engineering sciences over the past two decades. With the help of nanotechnology, better delivery of peptides to the target site could be achieved by exploiting the small size, increased surface area, and passive targeting ability of the nanocarrier. Furthermore, nanocarriers also ensure safe delivery of the peptide moieties to the target site, protecting them from degradation. Nanobased peptide delivery systems would be of significant importance in the near future for the successful targeted and efficient delivery of peptides. This review focuses on peptide-drug conjugates and nanoparticle-mediated self-assembled peptide delivery systems in cancer therapeutics.
Collapse
Affiliation(s)
- Hima Sree Buddhiraju
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Sreenath Dey
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Kalyani Eswar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Ananya Padmakumar
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad, Kandi 502 284, India
| |
Collapse
|
11
|
Nag S, Bhunia A, Mohanto S, Ahmed MG, Subramaniyan V. Rising potentials of epigallocatechin gallate (EGCG) loaded lipid-based delivery platforms for breast cancer. DISCOVER APPLIED SCIENCES 2024; 6:426. [DOI: 10.1007/s42452-024-05878-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/08/2024] [Indexed: 11/04/2024]
Abstract
AbstractBreast cancer is a major global health concern that requires the development of innovative treatment strategies. Epigallocatechin gallate (EGCG), a polyphenolic phytocompound found abundantly in green tea, has exhibited potential anti-cancer properties, including anti-inflammatory, anti-oxidant, anti-angiogenic, and anti-proliferative effects. However, the clinical translation of EGCG is hindered by its poor bioavailability and stability. Lipid-based nanocarriers have materialized as an optimistic platform for encapsulating various therapeutics due to their high drug-loading capacity, stability, biocompatibility, and versatility. The rationale for encapsulating EGCG-loaded lipid nanoparticles is to enhance the therapeutic efficacy, bioavailability, and targeted delivery of EGCG for breast cancer treatment. This targeted delivery minimizes off-target effects and enhances the accumulation of EGCG within tumors or diseased tissues in a controlled or sustained manner, reducing systemic toxicity. In addition, co-delivery of EGCG with synergistic agents can enhance therapeutic efficacy through complementary mechanisms of action, overcome biological barriers, and can be combined with other treatment modalities, i.e., radiation therapy, immunotherapy, chemotherapy, etc., to achieve synergistic effectiveness and overcome resistance mechanisms. The advancement of EGCG-loaded lipid nanoparticles exhibits the potential effectiveness of EGCG-based treatments, can overcome the challenges of administering EGCG, and can transform cancer therapy and other biomedical applications.
Graphical abstract
Understanding the potential role of Epigallocatechin gallate (EGCG) in breast cancer treatment through various signaling pathways and further loaded into the lipid-based delivery system for the improvement of mechanical and biological characteristics of the EGCG.
Collapse
|
12
|
Khan MQ, Alvi MA, Nawaz HH, Umar M. Cancer Treatment Using Nanofibers: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1305. [PMID: 39120410 PMCID: PMC11314412 DOI: 10.3390/nano14151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Currently, the number of patients with cancer is expanding consistently because of a low quality of life. For this reason, the therapies used to treat cancer have received a lot of consideration from specialists. Numerous anticancer medications have been utilized to treat patients with cancer. However, the immediate utilization of anticancer medicines leads to unpleasant side effects for patients and there are many restrictions to applying these treatments. A number of polymers like cellulose, chitosan, Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), peptides and Poly (hydroxy alkanoate) have good properties for the treatment of cancer, but the nanofibers-based target and controlled drug delivery system produced by the co-axial electrospinning technique have extraordinary properties like favorable mechanical characteristics, an excellent release profile, a high surface area, and a high sponginess and are harmless, bio-renewable, biofriendly, highly degradable, and can be produced very conveniently on an industrial scale. Thus, nanofibers produced through coaxial electrospinning can be designed to target specific cancer cells or tissues. By modifying the composition and properties of the nanofibers, researchers can control the release kinetics of the therapeutic agent and enhance its accumulation at the tumor site while minimizing systemic toxicity. The core-shell structure of coaxial electrospun nanofibers allows for a controlled and sustained release of therapeutic agents over time. This controlled release profile can improve the efficacy of cancer treatment by maintaining therapeutic drug concentrations within the tumor microenvironment for an extended period.
Collapse
Affiliation(s)
- Muhammad Qamar Khan
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Abbas Alvi
- Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hafiza Hifza Nawaz
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| | - Muhammad Umar
- Department of Materials, The University of Manchester, Manchester M13 9PL, UK;
| |
Collapse
|
13
|
Kakebaraei S, Gholami M, Nasta TZ, Arkan E, Bahrehmand F, Fakhri S, Jalili C. Oral administration of crocin-loaded solid lipid nanoparticles inhibits neuroinflammation in a rat model of epileptic seizures by activating SIRT1 expression. Res Pharm Sci 2024; 19:397-414. [PMID: 39399725 PMCID: PMC11468164 DOI: 10.4103/rps.rps_68_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/27/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Epilepsy is a group of chronic neurological diseases caused by a complex set of neuronal hyper electrical activities and oxidative stress of neurons. Crocin is a natural bioactive agent of saffron with different pharmacological properties and low bioavailability. This study aimed to evaluate crocin-loaded solid lipid nanoparticles (SLNC) for neuroprotection activity and efficacy against pentylenetetrazol (PTZ)- induced epilepsy. Experimental approach The rats were pretreated with SLNC and pure-crocin (PC; 25 and 50 mg/kg/day; P.O.) for 28 days before PTZ induction. Behavioral functions were evaluated by passive avoidance learning (PAL) tasks. Then, total antioxidant capacity (TAC), malondialdehyde (MDA), and pro-inflammatory factors were measured in the brain tissue using ELISA kits. Gene expression levels were analyzed with real-time polymerase chain reaction and immunohistochemical assay was used to assess the protein expression of sirtuin1 SIRT 1). Findings/Results SLNC was prepared with an average particle size of 98.25 nm and 98.33% encapsulation efficiency. Memory deficit improved in rats treated with SLNC. Administering SLNC at 25 and 50 mg/kg significantly reduced MDA and proinflammatory cytokines while increasing TAC. Additionally, administering SLNC before treatment increased the levels of SIRT1, peroxisome proliferator-activated receptor coactivator 1α, cAMP-regulated enhancer binding protein, and brain-derived neurotrophic factor. Furthermore, SLNC administration resulted in the downregulation of caspase-3 and inflammation factor expression. Conclusion and implications Overall, the obtained results showed that SLNC has better protective effects on oxidative stress in neurons, neurocognitive function, and anti-apoptotic and neuromodulatory activity than PC, suggesting that it is a promising therapeutic strategy for inhibiting seizures.
Collapse
Affiliation(s)
- Seyran Kakebaraei
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahrehmand
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Patil K, Gujarathi N, Sharma C, Ojha S, Goyal S, Agrawal Y. Quality-by-Design-Driven Nanostructured Lipid Scaffold of Apixaban: Optimization, Characterization, and Pharmacokinetic Evaluation. Pharmaceutics 2024; 16:910. [PMID: 39065607 PMCID: PMC11280014 DOI: 10.3390/pharmaceutics16070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Apixaban, an anticoagulant, is limited in its efficacy due to poor solubility, low bioavailability, and extensive metabolism. This study investigates the application of nanostructured lipid carriers (NLCs) to enhance the bioavailability of Apixaban. NLCs were prepared using the high-pressure homogenization method. The influence of independent variables, viz., the amount of Tween 80, HPH pressure, and the number of HPH cycles, were studied using a 23 factorial design. The average particle size, PDI, zeta potential, and entrapment efficiency of the optimized NLCs were found to be 232 ± 23 nm, with 0.514 ± 0.13 PDI and zeta potential of about -21.9 ± 2.1 mV, respectively. Additionally, concerning the thermal and crystallographic properties of the drug, the NLCs showed drug entrapment without altering its potency. The in-vitro drug release studies revealed an immediate release pattern, followed by sustained release for up to 48 h. In-vivo pharmacokinetic experiments demonstrated that Apixaban-loaded NLCs exhibited higher values of t1/2 (27.76 ± 1.18 h), AUC0-∞ (19,568.7 ± 1067.6 ng·h/mL), and Cmax (585.3 ± 87.6 ng/mL) compared to free drugs, indicating improved bioavailability. Moreover, a decrease in the elimination rate constant (Kel) reflected the sustained effect of Apixaban with NLCs. NLCs offer improved oral absorption rates and enhanced therapeutic impact compared to free drugs, potentially reducing dose frequency and improving patient outcomes.
Collapse
Affiliation(s)
- Kiran Patil
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Nayan Gujarathi
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain P.O. Box 15551, United Arab Emirates;
| | - Sameer Goyal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| | - Yogeeta Agrawal
- Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (K.P.); (N.G.); (S.G.)
| |
Collapse
|
15
|
Salla M, Karaki N, El Kaderi B, Ayoub AJ, Younes S, Abou Chahla MN, Baksh S, El Khatib S. Enhancing the Bioavailability of Resveratrol: Combine It, Derivatize It, or Encapsulate It? Pharmaceutics 2024; 16:569. [PMID: 38675230 PMCID: PMC11053528 DOI: 10.3390/pharmaceutics16040569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Overcoming the limited bioavailability and extensive metabolism of effective in vitro drugs remains a challenge that limits the translation of promising drugs into clinical trials. Resveratrol, despite its well-reported therapeutic benefits, is not metabolically stable and thus has not been utilized as an effective clinical drug. This is because it needs to be consumed in large amounts to overcome the burdens of bioavailability and conversion into less effective metabolites. Herein, we summarize the more relevant approaches to modify resveratrol, aiming to increase its biological and therapeutic efficacy. We discuss combination therapies, derivatization, and the use of resveratrol nanoparticles. Interestingly, the combination of resveratrol with established chemotherapeutic drugs has shown promising therapeutic effects on colon cancer (with oxaliplatin), liver cancer (with cisplatin, 5-FU), and gastric cancer (with doxorubicin). On the other hand, derivatizing resveratrol, including hydroxylation, amination, amidation, imidation, methoxylation, prenylation, halogenation, glycosylation, and oligomerization, differentially modifies its bioavailability and could be used for preferential therapeutic outcomes. Moreover, the encapsulation of resveratrol allows its trapping within different forms of shells for targeted therapy. Depending on the nanoparticle used, it can enhance its solubility and absorption, increasing its bioavailability and efficacy. These include polymers, metals, solid lipids, and other nanoparticles that have shown promising preclinical results, adding more "hype" to the research on resveratrol. This review provides a platform to compare the different approaches to allow directed research into better treatment options with resveratrol.
Collapse
Affiliation(s)
- Mohamed Salla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
| | - Nadine Karaki
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Chemistry and Biochemistry, Faculty of Arts and Sciences, Lebanese University, Zahlé 1801, Lebanon
| | - Belal El Kaderi
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Abeer J. Ayoub
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon;
- INSPECT-LB (National Institute of Public Health, Clinical Epidemiology and Toxicology-Lebanon (INSPECT-LB)), Beirut 1103, Lebanon
| | - Maya N. Abou Chahla
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
| | - Shairaz Baksh
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada;
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| | - Sami El Khatib
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon; (N.K.); (B.E.K.); (A.J.A.); (M.N.A.C.); (S.E.K.)
- Department of Biomedical Sciences, School of Arts and Sciences, Lebanese International University, Khiyara—West Bekaa, Bayrut P.O. Box 146404, Lebanon
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Mubarak Al-Abdullah 32093, Kuwait
| |
Collapse
|
16
|
Ashique S, Mishra N, Mohanto S, Gowda BJ, Kumar S, Raikar AS, Masand P, Garg A, Goswami P, Kahwa I. Overview of processed excipients in ocular drug delivery: Opportunities so far and bottlenecks. Heliyon 2024; 10:e23810. [PMID: 38226207 PMCID: PMC10788286 DOI: 10.1016/j.heliyon.2023.e23810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/17/2024] Open
Abstract
Ocular drug delivery presents a unique set of challenges owing to the complex anatomy and physiology of the eye. Processed excipients have emerged as crucial components in overcoming these challenges and improving the efficacy and safety of ocular drug delivery systems. This comprehensive overview examines the opportunities that processed excipients offer in enhancing drug delivery to the eye. By analyzing the current landscape, this review highlights the successful applications of processed excipients, such as micro- and nano-formulations, sustained-release systems, and targeted delivery strategies. Furthermore, this article delves into the bottlenecks that have impeded the widespread adoption of these excipients, including formulation stability, biocompatibility, regulatory constraints, and cost-effectiveness. Through a critical evaluation of existing research and industry practices, this review aims to provide insights into the potential avenues for innovation and development in ocular drug delivery, with a focus on addressing the existing challenges associated with processed excipients. This synthesis contributes to a deeper understanding of the promising role of processed excipients in improving ocular drug delivery systems and encourages further research and development in this rapidly evolving field.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh, Gwalior, 474005, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, India
| | - B.H. Jaswanth Gowda
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, Belfast BT9 7BL, UK
| | - Shubneesh Kumar
- Department of Pharmaceutics, Bharat Institute of Technology, School of Pharmacy, Meerut 250103, UP, India
| | - Amisha S. Raikar
- Department of Pharmaceutics, PES Rajaram and Tarabai Bandekar College of Pharmacy, Ponda, Goa 403401, India
| | - Priya Masand
- Department of Pharmaceutical Technology, Meerut Institute of Engineering & Technology, (MIET), NH-58, Delhi-Roorkee Highway, Meerut, Uttar Pradesh 250005, India
| | - Ashish Garg
- Department of Pharmaceutics, Guru Ramdas Khalsa Institute of Science and Technology (Pharmacy), Jabalpur, Madhya Pradesh, India
| | - Priyanka Goswami
- Department of Pharmacognosy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, Gujarat, India
- Maharashtra Educational Society's H.K. College of Pharmacy, Mumbai: 400102.India
| | - Ivan Kahwa
- Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, P.O Box 1410, Mbarara, Uganda
- Pharm-Bio Technology and Traditional Medicine Centre, Mbarara University of Science and Technology, P. O Box 1410, Mbarara, Uganda
| |
Collapse
|
17
|
Zhang F, Zhang J, Zhang W. Recent advances in nanotechnology for the treatment of fungal keratitis. Eur J Ophthalmol 2024; 34:18-29. [PMID: 37198915 DOI: 10.1177/11206721231174653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Fungal keratitis (FK) is a serious pathogenic disease usually associated with serious ocular complications. The current mainstay of treatment for FK is topical eye drops; however, poor corneal penetration, low bioavailability of the drug and the need to administer high and frequent doses due to the presence of an effective clearance mechanism in the eye result in poor patient compliance. Nanocarriers can extend the duration of drug action through sustained and controlled release of the drug, protect the drug from ocular enzymes and help overcome ocular barriers. In this review, we discussed the mechanisms of action of antifungal drugs, the theoretical basis for the treatment of FK, and recent advances in the clinical treatment of FK. We have summarized the results of research into the most promising nanocarriers for ocular drug delivery and highlight their efficacy and safety in the therapy.
Collapse
Affiliation(s)
- Fang Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, Shandong, PR China
| | - Jingjing Zhang
- College of Basic Medical, Qingdao Binhai University, Qingdao, P.R. China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, PR China
- Shandong Engineering Researh Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, Shandong, PR China
| |
Collapse
|
18
|
Weaver E, Sommonte F, Hooker A, Denora N, Uddin S, Lamprou DA. Microfluidic encapsulation of enzymes and steroids within solid lipid nanoparticles. Drug Deliv Transl Res 2024; 14:266-279. [PMID: 37505373 PMCID: PMC10746583 DOI: 10.1007/s13346-023-01398-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2023] [Indexed: 07/29/2023]
Abstract
The production of solid lipid nanoparticles (SLNs) is challenging, especially when considering the incorporation of biologics. A novel in-house method of microfluidic production of biologic-encapsulated SLNs is proposed, using a variety of base materials for formulation to help overcome the barriers presented during manufacture and administration. Trypsin is used as a model drug for hydrophilic encapsulation whilst testosterone is employed as a positive non-biologic lipophilic control active pharmaceutical ingredient. Particle sizes obtained ranged from 160 to 320 nm, and a lead formulation has been identified from the combinations assayed, allowing for high encapsulation efficiencies (47-90%, respectively) of both the large hydrophilic and the small hydrophobic active pharmaceutical ingredients (APIs). Drug release profiles were analysed in vitro to provide useful insight into sustained kinetics, providing data towards future in vivo studies, which displayed a slow prolonged release for testosterone and a quicker burst release for trypsin. The study represents a large leap forward in the field of SLN production, especially in the field of difficult-to-encapsulate molecules, and the technique also benefits from being more environmentally sustainable due to the use of microfluidics.
Collapse
Affiliation(s)
- Edward Weaver
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Federica Sommonte
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., Bari, 70125, Italy
| | - Andrew Hooker
- Immunocore Ltd., 92 Park Dr, Milton, Abingdon, OX14 4RY, UK
| | - Nunzio Denora
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 4 Orabona St., Bari, 70125, Italy
| | - Shahid Uddin
- Immunocore Ltd., 92 Park Dr, Milton, Abingdon, OX14 4RY, UK
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
| |
Collapse
|
19
|
Jadhav PV, Prasath NJ, Gajbhiye SG, Rane UA, Agnihotri TG, Gomte SS, Jain A. Empowering the Battle: Bioenhancers as Allies Against Cancer Drug Resistance. Curr Pharm Biotechnol 2024; 25:1552-1563. [PMID: 37957922 DOI: 10.2174/0113892010192038231107051715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Drug resistance has been a great hindrance in the path of counteracting diseases like cancer and is driven by drugs misuse and overuse. In terms of cancer, resistance has been developed due to cellular changes, altered growth activation pathways, increased expression of efflux proteins, and changes in the local physiology of cancer (blood supply, tissue hydrodynamics, increased mutation rate/epigenetics, tumor cell heterogeneity). One of the approaches to address these challenges is the use of bioenhancers, which can overcome drug resistance, thereby improving bioavailability (BA). CONCLUSION Bioenhancers when combined with drugs can elicit pharmacological activity. They are generally combined with therapeutic agents at low doses, which increase the BA or therapeutic activity of active pharmaceutical ingredient (API). This review sheds light on the synthesis and classification of bio-enhancers. It also discusses different applications of bio-enhancers like piperine, ginger, quercetin, curcumin, etc. in the treatment of cancer. The review also presents some of the recent advancements in terms of nanocarriers for delivering API combined with bioenhancers.
Collapse
Affiliation(s)
- Pratiksha Vasant Jadhav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Naga Jothi Prasath
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Saurabh Ghannil Gajbhiye
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Utkarsha Arun Rane
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Tejas Girish Agnihotri
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Shyam Sudhakar Gomte
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| | - Aakanchha Jain
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research- Ahmedabad, Palaj, Opposite to Air Force Station, Gandhinagar-382355, Gujarat, India
| |
Collapse
|
20
|
Li Y, Jia G, Li T, Zhou X, Zhao H, Cao J, Guan Z, Zhao R. Preparation Optimization and Immunological Activity Studies of Portulaca oleracea L. Polysaccharides Liposomes. Curr Pharm Des 2024; 30:786-797. [PMID: 38385493 DOI: 10.2174/0113816128279071231204071210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 02/23/2024]
Abstract
AIMS This study combines traditional Chinese medicine polysaccharides with nanomaterials to enhance drug bioavailability and immunological activity. BACKGROUND The study of polysaccharide preparation, structure identification, pharmacological activity, and mechanism of action is deepening, but the research combined with the new drug delivery system is relatively weak, so the application of polysaccharides is still facing great limitations. In order to prolong the action time of polysaccharides and improve their bioavailability, liposome has become the most promising delivery carrier. OBJECTIVES The purpose of this study was to optimize the preparation process of Portulaca oleracea L. polysaccharides liposomes (POL-PL) and evaluate the immunoactivity in vitro. METHODS POL-PL was prepared by reverse evaporation, and the preparation process was optimized using the response surface methodology. The characteristic analysis of POL-PL was detected by the indicators including morphology, particle size, zeta potential, encapsulation efficiency, release, and stability. The effects of POL-PL on the proliferation and immunological activity of mouse spleen lymphocytes and RAW264.7 cells were evaluated in vitro. RESULTS POL-PL is highly homogeneous in morphology and particle size, and its sustained release improves the bioavailability of Portulaca oleracea L. polysaccharides (POL-P). Moreover, POL-PL treatment significantly enhanced the proliferation and phagocytic activity of RAW264.7 cells and increased the secretion of IL-6, TNF-α, IL-1β, and NO. CONCLUSION This study suggested that POL-PL were prepared successfully by reverse evaporation method, and POL-PL had immunoenhancing activity in vitro. The results provided a theoretical basis for further application of POL-PL.
Collapse
Affiliation(s)
- Yan Li
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319, P.R. China
| | - Guiyan Jia
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319, P.R. China
| | - Tao Li
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319, P.R. China
| | - Xiechen Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319, P.R. China
| | - Hui Zhao
- Centers for Disease Control and Prevention, Daqing City People's Hospital, Daqing, Heilongjiang Province 163319, P.R. China
| | - Junyang Cao
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319, P.R. China
| | - Zijan Guan
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319, P.R. China
| | - Rui Zhao
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319, P.R. China
| |
Collapse
|
21
|
Joma N, Zhang I, Righetto GL, McKay L, Gran ER, Kakkar A, Maysinger D. Flavonoids Regulate Redox-Responsive Transcription Factors in Glioblastoma and Microglia. Cells 2023; 12:2821. [PMID: 38132142 PMCID: PMC10871111 DOI: 10.3390/cells12242821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The tumor microenvironment (TME) has emerged as a valuable therapeutic target in glioblastoma (GBM), as it promotes tumorigenesis via an increased production of reactive oxygen species (ROS). Immune cells such as microglia accumulate near the tumor and its hypoxic core, fostering tumor proliferation and angiogenesis. In this study, we explored the therapeutic potential of natural polyphenols with antioxidant and anti-inflammatory properties. Notably, flavonoids, including fisetin and quercetin, can protect non-cancerous cells while eliminating transformed cells (2D cultures and 3D tumoroids). We tested the hypothesis that fisetin and quercetin are modulators of redox-responsive transcription factors, for which subcellular location plays a critical role. To investigate the sites of interaction between natural compounds and stress-responsive transcription factors, we combined molecular docking with experimental methods employing proximity ligation assays. Our findings reveal that fisetin decreased cytosolic acetylated high mobility group box 1 (acHMGB1) and increased transcription factor EB (TFEB) abundance in microglia but not in GBM. Moreover, our results suggest that the most powerful modulator of the Nrf2-KEAP1 complex is fisetin. This finding is in line with molecular modeling and calculated binding properties between fisetin and Nrf2-KEAP1, which indicated more sites of interactions and stronger binding affinities than quercetin.
Collapse
Affiliation(s)
- Natali Joma
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
| | - Germanna L. Righetto
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
- Structural Genomics Consortium, University of Toronto, 101 College St, Toronto, ON M5G 1L7, Canada
| | - Laura McKay
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC H3A 0B8, Canada; (L.M.); (A.K.)
| | - Evan Rizzel Gran
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke St W, Montreal, QC H3A 0B8, Canada; (L.M.); (A.K.)
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada; (N.J.); (I.Z.); (G.L.R.); (E.R.G.)
| |
Collapse
|
22
|
Zhu X, Chen Y, Yu D, Fang W, Liao W, Pan W. Progress in the application of nanoparticles for the treatment of fungal infections: A review. Mycology 2023; 15:1-16. [PMID: 38558835 PMCID: PMC10977003 DOI: 10.1080/21501203.2023.2285764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/28/2023] [Indexed: 04/04/2024] Open
Abstract
The burden of fungal infections on human health is increasing worldwide. Aspergillus, Candida, and Cryptococcus are the top three human pathogenic fungi that are responsible for over 90% of infection-related deaths. Moreover, effective antifungal therapeutics are lacking, primarily due to host toxicity, pathogen resistance, and immunodeficiency. In recent years, nanomaterials have proved not only to be more efficient antifungal therapeutic agents but also to overcome resistance against fungal medication. This review will examine the limitations of standard antifungal therapy as well as focus on the development of nanomaterials.
Collapse
Affiliation(s)
- Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Youming Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dan Yu
- Department of General Practice, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
23
|
Yaghmur A, Østergaard J, Mu H. Lipid nanoparticles for targeted delivery of anticancer therapeutics: Recent advances in development of siRNA and lipoprotein-mimicking nanocarriers. Adv Drug Deliv Rev 2023; 203:115136. [PMID: 37944644 DOI: 10.1016/j.addr.2023.115136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
The limitations inherent in conventional cancer treatment methods have stimulated recent efforts towards the design of safe nanomedicines with high efficacy for combating cancer through various promising approaches. A plethora of nanoparticles has been introduced in the development of cancer nanomedicines. Among them, different lipid nanoparticles are attractive for use due to numerous advantages and unique opportunities, including biocompatibility and targeted drug delivery. However, a comprehensive understanding of nano-bio interactions is imperative to facilitate the translation of recent advancements in the development of cancer nanomedicines into clinical practice. In this contribution, we focus on lipoprotein-mimicking nanoparticles, which possess unique features and compositions facilitating drug transport through receptor binding mechanisms. Additionally, we describe potential applications of siRNA lipid nanoparticles in the future design of anticancer nanomedicines. Thus, this review highlights recent progress, challenges, and opportunities of lipid-based lipoprotein-mimicking nanoparticles and siRNA nanocarriers designed for the targeted delivery of anticancer therapeutic agents.
Collapse
Affiliation(s)
- Anan Yaghmur
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Jesper Østergaard
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Huiling Mu
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
24
|
Sguizzato M, Ferrara F, Baraldo N, Bondi A, Guarino A, Drechsler M, Valacchi G, Cortesi R. Bilosomes and Biloparticles for the Delivery of Lipophilic Drugs: A Preliminary Study. Antioxidants (Basel) 2023; 12:2025. [PMID: 38136145 PMCID: PMC10741235 DOI: 10.3390/antiox12122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, bile acid-based vesicles and nanoparticles (i.e., bilosomes and biloparticles) are studied to improve the water solubility of lipophilic drugs. Ursodeoxycholic acid, sodium cholate, sodium taurocholate and budesonide were used as bile acids and model drugs, respectively. Bilosomes and biloparticles were prepared following standard protocols with minor changes, after a preformulation study. The obtained systems showed good encapsulation efficiency and dimensional stability. Particularly, for biloparticles, the increase in encapsulation efficiency followed the order ursodeoxycholic acid < sodium cholate < sodium taurocholate. The in vitro release of budesonide from both bilosytems was performed by means of dialysis using either a nylon membrane or a portion of Wistar rat small intestine and two receiving solutions (i.e., simulated gastric and intestinal fluids). Both in gastric and intestinal fluid, budesonide was released from bilosystems more slowly than the reference solution, while biloparticles showed a significant improvement in the passage of budesonide into aqueous solution. Immunofluorescence experiments indicated that ursodeoxycholic acid bilosomes containing budesonide are effective in reducing the inflammatory response induced by glucose oxidase stimuli and counteract ox-inflammatory damage within intestinal cells.
Collapse
Affiliation(s)
- Maddalena Sguizzato
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Francesca Ferrara
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Nada Baraldo
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
| | - Annunziata Guarino
- Department of Neurosciences and Rehabilitation, University of Ferrara, I-44121 Ferrara, Italy;
| | - Markus Drechsler
- Bavarian Polymer Institute (BPI), Keylab “Electron and Optical Microscopy”, University of Bayreuth, D-95440 Bayreuth, Germany;
| | - Giuseppe Valacchi
- Department of Environmental Sciences and Prevention, University of Ferrara, I-44121 Ferrara, Italy;
- Animal Science Department NC Research Campus, Plants for Human Health Institute, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul S02447, Republic of Korea
| | - Rita Cortesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DoCPAS), University of Ferrara, I-44121 Ferrara, Italy; (M.S.); (F.F.); (N.B.); (A.B.)
- Biotechnology Interuniversity Consortium (C.I.B.), Ferrara Section, University of Ferrara, I-44121 Ferrara, Italy
| |
Collapse
|
25
|
Sahandi Zangabad P, Abousalman Rezvani Z, Tong Z, Esser L, Vasani RB, Voelcker NH. Recent Advances in Formulations for Long-Acting Delivery of Therapeutic Peptides. ACS APPLIED BIO MATERIALS 2023; 6:3532-3554. [PMID: 37294445 DOI: 10.1021/acsabm.3c00193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent preclinical and clinical studies have focused on the active area of therapeutic peptides due to their high potency, selectivity, and specificity in treating a broad range of diseases. However, therapeutic peptides suffer from multiple disadvantages, such as limited oral bioavailability, short half-life, rapid clearance from the body, and susceptibility to physiological conditions (e.g., acidic pH and enzymolysis). Therefore, high peptide dosages and dose frequencies are required for effective patient treatment. Recent innovations in pharmaceutical formulations have substantially improved therapeutic peptide administration by providing the following advantages: long-acting delivery, precise dose administration, retention of biological activity, and improvement of patient compliance. This review discusses therapeutic peptides and challenges in their delivery and explores recent peptide delivery formulations, including micro/nanoparticles (based on lipids, polymers, porous silicon, silica, and stimuli-responsive materials), (stimuli-responsive) hydrogels, particle/hydrogel composites, and (natural or synthetic) scaffolds. This review further covers the applications of these formulations for prolonged delivery and sustained release of therapeutic peptides and their impact on peptide bioactivity, loading efficiency, and (in vitro/in vivo) release parameters.
Collapse
Affiliation(s)
- Parham Sahandi Zangabad
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Zahra Abousalman Rezvani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Ziqiu Tong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Lars Esser
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3168, Australia
| | - Roshan B Vasani
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutics Science, Monash University, Parkville Campus, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
26
|
Zhang H, Yang J, Sun R, Han S, Yang Z, Teng L. Microfluidics for nano-drug delivery systems: From fundamentals to industrialization. Acta Pharm Sin B 2023; 13:3277-3299. [PMID: 37655333 PMCID: PMC10466004 DOI: 10.1016/j.apsb.2023.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity. The success of lipid nanoparticles encapsulated mRNA vaccines against coronavirus disease 2019 by microfluidics also confirmed its feasibility for scaling up the preparation of NDDSs via parallelization or numbering-up. In this review, we provide a comprehensive summary of microfluidics-based NDDSs, including the fundamentals of microfluidics, microfluidic synthesis of NDDSs, and their industrialization. The challenges of microfluidics-based NDDSs in the current status and the prospects for future development are also discussed. We believe that this review will provide good guidance for microfluidics-based NDDSs.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rongze Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songren Han
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
27
|
Hashemi P, Mahmoodi S, Ghasemian A. An updated review on oral protein-based antigen vaccines efficiency and delivery approaches: a special attention to infectious diseases. Arch Microbiol 2023; 205:289. [PMID: 37468763 DOI: 10.1007/s00203-023-03629-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/04/2023] [Accepted: 07/09/2023] [Indexed: 07/21/2023]
Abstract
Various infectious agents affect human health via the oral entrance. The majority of pathogens lack approved vaccines. Oral vaccination is a convenient, safe and cost-effective approach with the potential of provoking mucosal and systemic immunity and maintaining individual satisfaction. However, vaccines should overcome the intricate environment of the gastrointestinal tract (GIT). Oral protein-based antigen vaccines (OPAVs) are easier to administer than injectable vaccines and do not require trained healthcare professionals. Additionally, the risk of needle-related injuries, pain, and discomfort is eliminated. However, OPAVs stability at environmental and GIT conditions should be considered to enhance their stability and facilitate their transport and storage. These vaccines elicit the local immunity, protecting GIT, genital tract and respiratory epithelial surfaces, where numerous pathogens penetrate the body. OPAVs can also be manipulated (such as using specific incorporated ligand and receptors) to elicit targeted immune response. However, low bioavailability of OPAVs necessitates development of proper protein carriers and formulations to enhance their stability and efficacy. There are several strategies to improve their efficacy or protective effects, such as incorporation of adjuvants, enzyme inhibitors, mucoadhesive or penetrating devices and permeation enhancers. Hence, efficient delivery of OPAVs into GIT require proper delivery systems mainly including smart target systems, probiotics, muco-adhesive carriers, lipid- and plant-based delivery systems and nano- and microparticles.
Collapse
Affiliation(s)
- Parisa Hashemi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
28
|
Zahra M, Chota A, Abrahamse H, George BP. Efficacy of Green Synthesized Nanoparticles in Photodynamic Therapy: A Therapeutic Approach. Int J Mol Sci 2023; 24:10931. [PMID: 37446109 DOI: 10.3390/ijms241310931] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer is a complex and diverse disease characterized by the uncontrolled growth of abnormal cells in the body. It poses a significant global public health challenge and remains a leading cause of death. The rise in cancer cases and deaths is a significant worry, emphasizing the immediate need for increased awareness, prevention, and treatment measures. Photodynamic therapy (PDT) has emerged as a potential treatment for various types of cancer, including skin, lung, bladder, and oesophageal cancer. A key advantage of PDT is its ability to selectively target cancer cells while sparing normal cells. This is achieved by preferentially accumulating photosensitizing agents (PS) in cancer cells and precisely directing light activation to the tumour site. Consequently, PDT reduces the risk of harming surrounding healthy cells, which is a common drawback of conventional therapies such as chemotherapy and radiation therapy. The use of medicinal plants for therapeutic purposes has a long history dating back thousands of years and continues to be an integral part of healthcare in many cultures worldwide. Plant extracts and phytochemicals have demonstrated the ability to enhance the effectiveness of PDT by increasing the production of reactive oxygen species (ROS) and promoting apoptosis (cell death) in cancer cells. This natural approach capitalizes on the eco-friendly nature of plant-based photoactive compounds, offering valuable insights for future research. Nanotechnology has also played a pivotal role in medical advancements, particularly in the development of targeted drug delivery systems. Therefore, this review explores the potential of utilizing photosensitizing phytochemicals derived from medicinal plants as a viable source for PDT in the treatment of cancer. The integration of green photodynamic therapy with plant-based compounds holds promise for novel treatment alternatives for various chronic illnesses. By harnessing the scientific potential of plant-based compounds for PDT, we can pave the way for innovative and sustainable treatment strategies.
Collapse
Affiliation(s)
- Mehak Zahra
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 1711, Doornfontein 2028, South Africa
| |
Collapse
|
29
|
De Gaetano F, Celesti C, Paladini G, Venuti V, Cristiano MC, Paolino D, Iannazzo D, Strano V, Gueli AM, Tommasini S, Ventura CA, Stancanelli R. Solid Lipid Nanoparticles Containing Morin: Preparation, Characterization, and Ex Vivo Permeation Studies. Pharmaceutics 2023; 15:1605. [PMID: 37376054 DOI: 10.3390/pharmaceutics15061605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, bioactive compounds have been the focus of much interest in scientific research, due to their low toxicity and extraordinary properties. However, they possess poor solubility, low chemical stability, and unsustainable bioavailability. New drug delivery systems, and among them solid lipid nanoparticles (SLNs), could minimize these drawbacks. In this work, morin (MRN)-loaded SLNs (MRN-SLNs) were prepared using a solvent emulsification/diffusion method, using two different lipids, Compritol® 888 ATO (COM) or Phospholipon® 80H (PHO). SLNs were investigated for their physical-chemical, morphological, and technological (encapsulation parameters and in vitro release) properties. We obtained spherical and non-aggregated nanoparticles with hydrodynamic radii ranging from 60 to 70 nm and negative zeta potentials (about -30 mV and -22 mV for MRN-SLNs-COM and MRN-SLNs-PHO, respectively). The interaction of MRN with the lipids was demonstrated via μ-Raman spectroscopy, X-ray diffraction, and DSC analysis. High encapsulation efficiency was obtained for all formulations (about 99%, w/w), particularly for the SLNs prepared starting from a 10% (w/w) theoretical MRN amount. In vitro release studies showed that about 60% of MRN was released within 24 h and there was a subsequent sustained release within 10 days. Finally, ex vivo permeation studies with excised bovine nasal mucosa demonstrated the ability of SLNs to act as a penetration enhancer for MRN due to the intimate contact and interaction of the carrier with the mucosa.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Consuelo Celesti
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Giuseppe Paladini
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, V.le Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", V.le Europa s.n.c., 88100 Catanzaro, Italy
| | - Daniela Iannazzo
- Department of Engineering, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Vincenza Strano
- National Council of Research, Institute of Microelectronics and Microsystems (CNR-IMM), University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Anna M Gueli
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Silvana Tommasini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosanna Stancanelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, V.le Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
30
|
Gandhi S, Roy I. Lipid-Based Inhalable Micro- and Nanocarriers of Active Agents for Treating Non-Small-Cell Lung Cancer. Pharmaceutics 2023; 15:pharmaceutics15051457. [PMID: 37242697 DOI: 10.3390/pharmaceutics15051457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) afflicts about 2 million people worldwide, with both genetic (familial) and environmental factors contributing to its development and spread. The inadequacy of currently available therapeutic techniques, such as surgery, chemotherapy, and radiation therapy, in addressing NSCLC is reflected in the very low survival rate of this disease. Therefore, newer approaches and combination therapy regimens are required to reverse this dismal scenario. Direct administration of inhalable nanotherapeutic agents to the cancer sites can potentially lead to optimal drug use, negligible side effects, and high therapeutic gain. Lipid-based nanoparticles are ideal agents for inhalable delivery owing to their high drug loading, ideal physical traits, sustained drug release, and biocompatibility. Drugs loaded within several lipid-based nanoformulations, such as liposomes, solid-lipid nanoparticles, lipid-based micelles, etc., have been developed as both aqueous dispersed formulations as well as dry-powder formulations for inhalable delivery in NSCLC models in vitro and in vivo. This review chronicles such developments and charts the future prospects of such nanoformulations in the treatment of NSCLC.
Collapse
Affiliation(s)
- Sona Gandhi
- Department of Chemistry, School of Basic & Applied Sciences, Galgotias University, Greater Noida 203201, India
| | - Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
31
|
López KL, Ravasio A, González-Aramundiz JV, Zacconi FC. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) Prepared by Microwave and Ultrasound-Assisted Synthesis: Promising Green Strategies for the Nanoworld. Pharmaceutics 2023; 15:1333. [PMID: 37242575 PMCID: PMC10221859 DOI: 10.3390/pharmaceutics15051333] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Many pharmaceutically active molecules are highly lipophilic, which renders their administration and adsorption in patients extremely challenging. Among the countless strategies to overcome this problem, synthetic nanocarriers have demonstrated superb efficiency as drug delivery systems, since encapsulation can effectively prevent a molecules' degradation, thus ensuring increased biodistribution. However, metallic and polymeric nanoparticles have been frequently associated with possible cytotoxic side effects. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), which are prepared with physiologically inert lipids, therefore emerged as an ideal strategy to bypass toxicities issues and avoid the use of organic solvents in their formulations. Different approaches to preparation, using only moderate amounts of external energy to facilitate a homogeneous formation, have been proposed. Greener synthesis strategies have the potential to provide faster reactions, more efficient nucleation, better particle size distribution, lower polydispersities, and furnish products with higher solubility. Particularly microwave-assisted synthesis (MAS) and ultrasound-assisted synthesis (UAS) have been utilized in the manufacturing of nanocarrier systems. This narrative review addresses the chemical aspects of those synthesis strategies and their positive influence on the characteristics of SLNs and NLCs. Furthermore, we discuss the limitations and future challenges for the manufacturing processes of both types of nanoparticles.
Collapse
Affiliation(s)
- Karla L. López
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - José Vicente González-Aramundiz
- Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia, CIEN-UC, Universidad Católica de Chile, Santiago 7820436, Chile
| | - Flavia C. Zacconi
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia, CIEN-UC, Universidad Católica de Chile, Santiago 7820436, Chile
- Center for Nanomedicine, Diagnostic & Drug Development (ND3), Universidad de Talca, Talca 3460000, Chile
| |
Collapse
|
32
|
Novel Anti-Acanthamoebic Activities of Irosustat and STX140 and Their Nanoformulations. Antibiotics (Basel) 2023; 12:antibiotics12030561. [PMID: 36978428 PMCID: PMC10044433 DOI: 10.3390/antibiotics12030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Pathogenic Acanthamoeba produce keratitis and fatal granulomatous amoebic encephalitis. Treatment remains problematic and often ineffective, suggesting the need for the discovery of novel compounds. For the first time, here we evaluated the effects of the anticancer drugs Irosustat and STX140 alone, as well as their nanoformulations, against A. castellanii via amoebicidal, excystment, cytopathogenicity, and cytotoxicity assays. Nanoformulations of the compounds were successfully synthesized with high encapsulation efficiency of 94% and 82% for Irosustat and STX140, respectively. Nanoparticles formed were spherical in shape and had a unimodal narrow particle size distribution, mean of 145 and 244 nm with a polydispersity index of 0.3, and surface charge of −14 and −15 mV, respectively. Irosustat and STX140 exhibited a biphasic release profile with almost 100% drug released after 48 h. Notably, Irosustat significantly inhibited A. castellanii viability and amoebae-mediated cytopathogenicity and inhibited the phenotypic transformation of amoebae cysts into the trophozoite form, however their nanoformulations depicted limited effects against amoebae but exhibited minimal cytotoxicity when tested against human cells using lactate dehydrogenase release assays. Accordingly, both compounds have potential for further studies, with the hope of discovering novel anti-Acanthamoeba compounds, and potentially developing targeted therapy against infections of the central nervous system.
Collapse
|
33
|
Patil P, Nene S, Shah S, Singh SB, Srivastava S. Exploration of novel drug delivery systems in topical management of osteoarthritis. Drug Deliv Transl Res 2023; 13:531-546. [PMID: 36031671 DOI: 10.1007/s13346-022-01229-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 12/30/2022]
Abstract
Osteoarthritis is one of the foremost disabling disorders in the world. There is no definitive treatment to prevent the progression of osteoarthritis. Hence, palliative treatment aims at minimizing pain, disability and improving function, performance and quality of life. Oral administration of nonsteroidal anti-inflammatory drug is associated with number of adverse effects and reduced therapeutic efficacy. Intra-articular injection has been the preferred route of drug administration. However, the clearance of drug from the arthritic site, risk of infections, cost and the pain associated with frequent injections make this route highly non-compliant to patients. Since osteoarthritis is a chronic condition which requires treatment for prolonged duration, there is an urgent need for another administration route which circumvents the hindrances linked with intra-articular route. Transdermal route across the skin locally at the osteoarthritis site could help in surpassing the disadvantages associated with intra-articular route. However, traversing skin barrier and reaching the chondrocytes with sufficient amount of the drug is extremely difficult. Nanocarrier-based approaches could hold an answer to the said shortcomings owing to their reduced size, targeting tunability and site specificity. In this article, we discuss the pathophysiology of osteoarthritis, molecular targets, and utilization of nanocarrier-based approaches to strategize the treatment of osteoarthritis in a new direction, i.e. topical delivery of nanocarriers in osteoarthritis.
Collapse
Affiliation(s)
- Pratiksha Patil
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Shweta Nene
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Shashi Bala Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, Telangana, India.
| |
Collapse
|
34
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
35
|
Plant Exosome-like Nanoparticles as Biological Shuttles for Transdermal Drug Delivery. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010104. [PMID: 36671676 PMCID: PMC9854743 DOI: 10.3390/bioengineering10010104] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
Exosomes act as emerging transdermal drug delivery vehicles with high deformability and excellent permeability, which can be used to deliver various small-molecule drugs and macromolecular drugs and increase the transdermal and dermal retention of drugs, improving the local efficacy and drug delivery compliance. At present, there are many studies on the use of plant exosome-like nanoparticles (PELNVs) as drug carriers. In this review, the source, extraction, isolation, and chemical composition of plant exosomes are reviewed, and the research progress on PELNVs as drug delivery systems in transdermal drug delivery systems in recent years has elucidated the broad application prospect of PELNVs.
Collapse
|
36
|
Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater 2022; 10:rbac099. [PMID: 36683752 PMCID: PMC9845529 DOI: 10.1093/rb/rbac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Inhalation-administrated drugs remain an interesting possibility of addressing pulmonary diseases. Direct drug delivery to the lungs allows one to obtain high concentration in the site of action with limited systemic distribution, leading to a more effective therapy with reduced required doses and side effects. On the other hand, there are several difficulties in obtaining a formulation that would meet all the criteria related to physicochemical, aerodynamic and biological properties, which is the reason why only very few of the investigated systems can reach the clinical trial phase and proceed to everyday use as a result. Therefore, we focused on powders consisting of polysaccharides, lipids, proteins or natural and synthetic polymers in the form of microparticles that are delivered by inhalation to the lungs as drug carriers. We summarized the most common trends in research today to provide the best dry powders in the right fraction for inhalation that would be able to release the drug before being removed by natural mechanisms. This review article addresses the most common manufacturing methods with novel modifications, pros and cons of different materials, drug loading capacities with release profiles, and biological properties such as cytocompatibility, bactericidal or anticancer properties.
Collapse
Affiliation(s)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | |
Collapse
|
37
|
S/O/W microparticles prepared with hydroxyethyl starch-based emulsifier showed reduced macrophage affinity. Colloids Surf B Biointerfaces 2022; 220:112917. [DOI: 10.1016/j.colsurfb.2022.112917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
|
38
|
Li H, Dai W, Liu Z, He L. Renal Proximal Tubular Cells: A New Site for Targeted Delivery Therapy of Diabetic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:ph15121494. [PMID: 36558944 PMCID: PMC9786989 DOI: 10.3390/ph15121494] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and the leading cause of end-stage kidney disease (ESKD) worldwide. A significant number of drugs have been clinically investigated for the treatment of DKD. However, a large proportion of patients still develop end-stage kidney disease unstoppably. As a result, new effective therapies are urgently needed to slow down the progression of DKD. Recently, there is increasing evidence that targeted drug delivery strategies such as large molecule carriers, small molecule prodrugs, and nanoparticles can improve drug efficacy and reduce adverse side effects. There is no doubt that targeted drug delivery strategies have epoch-making significance and great application prospects for the treatment of DKD. In addition, the proximal tubule plays a very critical role in the progression of DKD. Consequently, the purpose of this paper is to summarize the current understanding of proximal tubule cell-targeted therapy, screen for optimal targeting strategies, and find new therapeutic approaches for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | - Liyu He
- Correspondence: ; Tel.: +86-731-8529-2064
| |
Collapse
|
39
|
Qin L, Cui Z, Wu Y, Wang H, Zhang X, Guan J, Mao S. Challenges and Strategies to Enhance the Systemic Absorption of Inhaled Peptides and Proteins. Pharm Res 2022; 40:1037-1055. [DOI: 10.1007/s11095-022-03435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/07/2022] [Indexed: 11/17/2022]
|
40
|
Penetration study of p-methoxycinnamic acid (PMCA) in nanostructured lipid carrier, solid lipid nanoparticles, and simple cream into the rat skin. Sci Rep 2022; 12:19365. [PMID: 36371457 PMCID: PMC9653389 DOI: 10.1038/s41598-022-23514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
This study compared the ability of Nanostructured Lipid Carrier (NLC), Solid Lipid Nanoparticles (SLN), and Cream systems in delivering para Methoxycinnamic Acid (PMCA) to the dermis layer of the skin. Wistar rats were used as research subjects. NLC and SLN were made by applying the high shear homogenization method. Nile red was used as a penetration indicator based on its fluorescence. The interaction between fluorescence labeled NLC, SLN, or Cream and rat skin was visualized by fluorescence microscopy. Observations were made after 2 and 4.5 h of smearing the test sample. From the observations, it was known that the system/lipid base could penetrate the stratum corneum for delivering drugs. Penetration speed differs among systems as does the number of PMCAs that can be delivered. In this study, it can be concluded that the NLC system is able to deliver PMCA more quickly and in greater quantities to the dermis than SLN and Cream.
Collapse
|
41
|
Enhanced skin localization of metronidazole using solid lipid microparticles incorporated into polymeric hydrogels for potential improved of rosacea treatment: An ex vivo proof of concept investigation. Int J Pharm 2022; 628:122327. [DOI: 10.1016/j.ijpharm.2022.122327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022]
|
42
|
Chen Y, Wang Z, Wang X, Su M, Xu F, Yang L, Jia L, Zhang Z. Advances in Antitumor Nano-Drug Delivery Systems of 10-Hydroxycamptothecin. Int J Nanomedicine 2022; 17:4227-4259. [PMID: 36134205 PMCID: PMC9482956 DOI: 10.2147/ijn.s377149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/25/2022] [Indexed: 01/10/2023] Open
Abstract
10-Hydroxycamptothecin (HCPT) is a natural plant alkaloid from Camptotheca that shows potent antitumor activity by targeting intracellular topoisomerase I. However, factors such as instability of the lactone ring and insolubility in water have limited the clinical application of this drug. In recent years, unprecedented advances in biomedical nanotechnology have facilitated the development of nano drug delivery systems. It has been found that nanomedicine can significantly improve the stability and water solubility of HCPT. NanoMedicines with different diagnostic and therapeutic functions have been developed to significantly improve the anticancer effect of HCPT. In this paper, we collected reports on HCPT nanomedicines against tumors in the past decade. Based on current research advances, we dissected the current status and limitations of HCPT nanomedicines development and looked forward to future research directions.
Collapse
Affiliation(s)
- Yukun Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhenzhi Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, People's Republic of China
| | - Xiaofan Wang
- Department of Oncology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, People's Republic of China
| | - Mingliang Su
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Fan Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lian Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People's Republic of China
| |
Collapse
|
43
|
Keshavarz-Rezaei M, Hatamian-Zarmi A, Alvandi H, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB. The HbA1c and blood glucose response to selenium-rich polysaccharide from Fomes fomentarius loaded solid lipid nanoparticles as a potential antidiabetic agent in rats. BIOMATERIALS ADVANCES 2022; 140:213084. [PMID: 36027667 DOI: 10.1016/j.bioadv.2022.213084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Fomes fomentarius is a medicinal fungus used in traditional Chinese medicine to treat various illnesses. Antidiabetic effects of F. fomentarius extracts have been reported recently. In this study, F. fomentarius extracellular polysaccharide (PS) was prepared, and then to enhance its antidiabetic effects, Na2SeO3 was added to the culture medium, and selenium-polysaccharide (PS-Se) was obtained. Also, solid lipid nanoparticles containing PS (SLN-PS) and PS-Se (SLN-PS-Se) were synthesized by the microemulsion method to compare their effects with free polysaccharides in streptozotocin (STZ) diabetic rats. Optimized SLNs had a size of 170.5 nm and drug loading of 9.27 %. EDS analysis confirmed that Se presence in PS-Se. Characterization analyses such as FTIR, DSC, TGA, and XRD suggested that SLNs have good thermal stability and crystalline nature. Release of PS from SLNs demonstrated sustained profile, and MTT assay proved that PSs and SLNs have no cytotoxicity. Furthermore, oral administration of PS, PS-Se, SLN-PS, and SLN-PS-Se for 28 days to diabetic rats significantly declined blood glucose by 48.24 %, 49.96 %, 55.50 %, and 60.47 %, respectively. Also, insulin secretion and body weight improved, and HbA1c levels decreased. Treatment by PS, PS-Se, SLN-PS, and SLN-PS-Se alleviated lipid profiles, liver enzymes, and serum proteins. Liver anti-oxidant parameters and histopathological observation of the liver, pancreas, and kidney confirmed that F. fomentarius PSs and SLNs have antidiabetic impacts. Moreover, supplementation of PS with selenium improves its anti-hyperglycemic effects. Finally, SLN-PS and SLN-PS-Se showed a higher antidiabetic impact than free PS and PS-Se.
Collapse
Affiliation(s)
- Mohammad Keshavarz-Rezaei
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Hale Alvandi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zahra Beagom Mokhtari-Hosseini
- Chemical Engineering Group, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
44
|
Ozgenc E, Karpuz M, Arzuk E, Gonzalez-Alvarez M, Sanz MB, Gundogdu E, Gonzalez-Alvarez I. Radiolabeled Trastuzumab Solid Lipid Nanoparticles for Breast Cancer Cell: in Vitro and in Vivo Studies. ACS OMEGA 2022; 7:30015-30027. [PMID: 36061662 PMCID: PMC9435033 DOI: 10.1021/acsomega.2c03023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Radiolabeled trastuzumab (TRZ) loaded solid lipid nanoparticles (SLNs) were prepared by high shear homogenization and sonication techniques. The apoptosis mechanism of TRZ-SLNs was studied only with the MCF-7 cell line, while the cytotoxicity and cell binding capacity were investigated using breast cancer cells (MCF-7 and MDA-MB-231) and the human keratinocyte cell line (HaCaT). The particle sizes of TRZ-SLNs were found to be below 100 nm, and they possessed a negative charge. The high radiolabeling efficiency and good radiolabeling stability in saline and a cell culture medium were obtained in the results of radiolabeling studies. According to the in vitro studies, TRZ-SLNs were found to be biocompatible, and they effectively induced apoptosis in MCF-7 cells. After the parenteral injection of TRZ-SLNs into rats, a sustained release profile in blood circulation was achieved compared with free drug solution by the evaluation of pharmacokinetic parameters. As a conclusion, the study reveals that Technetium-99m (99mTc radiolabeled) TRZ loaded SLN formulations could be promising theranostic agents based on their characterization profiles, in vitro cellular uptake and apoptosis induction capacity, and in vivo pharmacokinetic profiles.
Collapse
Affiliation(s)
- Emre Ozgenc
- Department
of Radiopharmacy, Ege University, 35040, Izmir, Turkey
| | - Merve Karpuz
- Department
of Radiopharmacy, Izmir Katip Celebi University, 35620, Izmir, Turkey
| | - Ege Arzuk
- Department
of Toxicology, Faculty of Pharmacy, Ege
University, 35040, Izmir, Turkey
| | - Marta Gonzalez-Alvarez
- Department
of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Elche, Alicante, Spain
| | - Marival Bermejo Sanz
- Department
of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Elche, Alicante, Spain
| | - Evren Gundogdu
- Department
of Radiopharmacy, Ege University, 35040, Izmir, Turkey
| | - Isabel Gonzalez-Alvarez
- Department
of Pharmacokinetics and Pharmaceutical Technology, Miguel Hernandez University, San Juan de Alicante, 03550 Elche, Alicante, Spain
| |
Collapse
|
45
|
Elbrink K, Van Hees S, Roelant D, Loomans T, Holm R, Kiekens F. The influence on the oral bioavailability of solubilized and suspended drug in a lipid nanoparticle formulation: in vitro and in vivo evaluation. Eur J Pharm Biopharm 2022; 179:1-10. [PMID: 36031014 DOI: 10.1016/j.ejpb.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
The present study investigated the oral bioavailability of celecoxib when incorporated into solid lipid nanoparticles either dissolved or suspended. In vitro drug release in different media, in vivo performance, and in vitro-in vivo correlation were conducted. The results revealed that the compound was successfully encapsulated into the nanocarriers with good physicochemical properties for oral administration. The in vitro release profiles followed the Weibull model, with significant differences between the formulations containing the solubilized and the suspended compound. Furthermore, in vitro release data could be used to rank the observed in vivo bioavailability. The relative bioavailability of celecoxib from the solid lipid nanoparticles was 2.5- and 1.8-fold higher for the drug solubilized and suspended solid lipid nanoparticle formulation, respectively, when compared to the celecoxib reference. A significant difference was observed between the plasma concentration-time profiles and pharmacokinetic parameters for the three investigated formulations. Finally, this investigation displayed promising outcomes that both solubilized and suspended celecoxib in the lipid core of the solid lipid nanoparticles offers the potential to improve the compound's oral bioavailability and thereby reduce the dosing frequency.
Collapse
Affiliation(s)
- Kimberley Elbrink
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Sofie Van Hees
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Dirk Roelant
- Janssen Pharmaceutica, Discovery Sciences, DMPK, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - Tine Loomans
- Janssen Pharmaceutica, Discovery Sciences, DMPK, Turnhoutseweg 30, 2340 Beerse, Belgium.
| | - René Holm
- Janssen Pharmaceutica, Drug Product and Development, Parenterals and Liquids, Turnhoutseweg 30, 2340 Beerse, Belgium; University of Southern Denmark, Department of Physics, Chemistry, and Pharmacy, Campusvej 55, 5230 Odense, Denmark.
| | - Filip Kiekens
- University of Antwerp, Department of Pharmaceutical Technology and Biopharmacy, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
46
|
Cai L, Xu X, Chen W. The Current State of the Art in PARP Inhibitor-Based Delivery Nanosystems. Pharmaceutics 2022; 14:1647. [PMID: 36015275 PMCID: PMC9413625 DOI: 10.3390/pharmaceutics14081647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
Poly (adenosine diphosphate [ADP]-ribose) polymerases inhibitors (PARPi), the first clinically approved drug that exhibits synthetic lethality, are moving to the forefront of cancer treatments. Currently, the oral bioavailability of PARPi is quite low; thus, it is a major challenge to effectively and safely deliver PARPi during clinical cancer therapy. Nanotechnology has greatly advanced the development of drug delivery. Based on the basic characteristics and various forms of nanoparticles, drug delivery systems can prolong the time that drugs circulate, realize the controlled release of drugs, provide drugs with an active targeting ability, and spatiotemporally present combination treatment. Furthermore, nanosystems may not only enhance drug efficiency but also reduce adverse side effects. This review focuses on strategies involving nanoparticle-based delivery for PARPi, including single administration and codelivery with other agents. We believe that nanosystems have great potential in advancing PARPi efficacy for cancer therapy.
Collapse
Affiliation(s)
- Lisha Cai
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Key Laboratory of Cancer Prevention and Therapy Combining Traditional Chinese and Western Medicine of Zhejiang Province, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China
| |
Collapse
|
47
|
Knoll P, Hörmann N, Nguyen Le NM, Wibel R, Gust R, Bernkop-Schnürch A. Charge converting nanostructured lipid carriers containing a cell penetrating peptide for enhanced cellular uptake. J Colloid Interface Sci 2022; 628:463-475. [DOI: 10.1016/j.jcis.2022.07.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/11/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
|
48
|
Elsewedy HS, Shehata TM, Soliman WE. Shea Butter Potentiates the Anti-Bacterial Activity of Fusidic Acid Incorporated into Solid Lipid Nanoparticle. Polymers (Basel) 2022; 14:2436. [PMID: 35746012 PMCID: PMC9228747 DOI: 10.3390/polym14122436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Fusidic acid (FA) is an efficient anti-bacterial drug proven to be efficient against a wide range of bacteria. Nevertheless, the main restriction in its formulation is the limited solubility. To avoid such an obstacle, the drug is incorporated into the lipid core of the nanolipid formulation. Consequently, the present study was an attempt to formulate nanolipid preparation, mainly, solid lipid nanoparticle (SLN) integrating FA. FA-SLN was prepared using shea butter as a lipid phase owing to its reported anti-bacterial activity. Different FA-SLNs were fabricated using the central composite design (CCD) approach. The optimized formula was selected and integrated into a hydrogel base to be efficiently used topically. FA-SLN-hydrogel was evaluated for its character, morphology, in vitro release and stability. The formula was examined for irritation reaction and finally evaluated for its anti-bacterial performance. The optimized formula showed particle size 283.83 nm and entrapment 73.057%. The formulated FA-SLN-hydrogel displayed pH 6.2, viscosity 15,610 cP, spreadability 51.1 mm and in vitro release 64.6% following 180 min. FA-SLN-hydrogel showed good stability for three months at different conditions (room temperature and refrigerator). It exhibited no irritation reaction on the treated rats. Eventually, shea butter displayed a noteworthy effect against bacterial growth that improved the effect of FA. This would indicate prospective anti-bacterial activity of FA when combined with shea butter in SLN formulation as a promising nanocarrier.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
| | - Tamer M. Shehata
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Zagazig University, Ash Sharqiyah, Zagazig 44519, Egypt
| | - Wafaa E. Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf 36362, Al-Ahsa, Saudi Arabia;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Mansoura 11152, Egypt
| |
Collapse
|
49
|
Polat HK, Kurt N, Aytekin E, Akdağ Çaylı Y, Bozdağ Pehlivan S, Çalış S. Design of Besifloxacin HCl-Loaded Nanostructured Lipid Carriers: In Vitro and Ex Vivo Evaluation. J Ocul Pharmacol Ther 2022; 38:412-423. [PMID: 35675672 DOI: 10.1089/jop.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: In the treatment of severe cases of bacterial keratitis, conventional eye drops containing antibiotics should be applied daily and very frequently. The aim of this study is to develop low-dose high-effect formulations with the prepared nanostructured lipid carrier (NLC) formulations to reduce antibiotic resistance and increase patient compliance. Methods: NLC formulations were loaded with besifloxacin HCl (BHL) and the besifloxacin HCl: sulfobutyl ether beta-cyclodextrin (SBE-CD) complex. Positive charge was gained with chitosan, and corneal permeation and resolubility were increased with SBE-CD. In vitro characterization studies, permeability studies, and cytotoxicity and ex vivo transport studies were carried out. Results: In this study, it was found that SBE-CD increased BHL's solubility by 8-fold based on phase solubility studies. The optimized NLCs were small in size (13.63-16.09 nm) with a low polydispersity index (0.107-0.181) and adequate BHL drug loading efficiency. In vitro release studies showed that formulations were released approximately for 8 h and at levels over the minimum inhibitory concentration of Pseudomonas aeruginosa and Staphylococcus aureus. NLC formulations had a better corneal permeation rate than the marketed product during 6 h of ex vivo studies. Conclusions: According to in vitro and ex vivo data, it was determined that the most favorable NLC formulation was the formulation containing BHL/SBE-CD that was covered with chitosan. It has the highest drug loading capacity and one of the highest ex vivo corneal passage levels, along with desired drug release. The formulation containing BHL/SBE-CD and chitosan can be a potential alternative for the treatment of bacterial keratitis.
Collapse
Affiliation(s)
- Heybet Kerem Polat
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Nihat Kurt
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Eren Aytekin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Yagmur Akdağ Çaylı
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Sema Çalış
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
50
|
Jurczyk M, Kasperczyk J, Wrześniok D, Beberok A, Jelonek K. Nanoparticles Loaded with Docetaxel and Resveratrol as an Advanced Tool for Cancer Therapy. Biomedicines 2022; 10:biomedicines10051187. [PMID: 35625921 PMCID: PMC9138983 DOI: 10.3390/biomedicines10051187] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/01/2023] Open
Abstract
A growing interest in the use of a combination of chemosensitizers and cytostatics for overcoming cancer resistance to treatment and the development of their delivery systems has been observed. Resveratrol (Res) presents antioxidant, anti-inflammatory and chemopreventive properties but also limits multidrug resistance against docetaxel (Dtx), which is one of the main causes of failure in cancer therapy with this drug. However, the use of both drugs presents challenges, including poor bioavailability, the unfavourable pharmacokinetics and chemical instability of Res and the poor water solubility and dose-limiting toxicity of Dtx. In order to overcome these difficulties, attempts have been made to create different forms of delivery for both agents. This review is focused on the latest developments in nanoparticles for the delivery of Dtx, Res and for the combined delivery of those two drugs. The aim of this review was also to summarize the synergistic mechanism of action of Dtx and Res on cancer cells. According to recent reports, Dtx and Res loaded in a nano-delivery system exhibit better efficiency in cancer treatment compared to free drugs. Also, the co-delivery of Dtx and Res in one actively targeted delivery system providing the simultaneous release of both drugs in cancer cells has a chance to fulfil the requirements of effective anticancer therapy and reduce limitations in therapy caused by multidrug resistance (MDR).
Collapse
Affiliation(s)
- Magdalena Jurczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (D.W.); (A.B.)
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Curie-Skłodowska 34 St., 41-819 Zabrze, Poland; (M.J.); (J.K.)
- Correspondence: ; Tel.: +48-32-271-2969
| |
Collapse
|