1
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
2
|
Hao ZW, Zhang ZY, Wang ZP, Wang Y, Chen JY, Chen TH, Shi G, Li HK, Wang JW, Dong MC, Hong L, Li JF. Bioactive peptides and proteins for tissue repair: microenvironment modulation, rational delivery, and clinical potential. Mil Med Res 2024; 11:75. [PMID: 39639374 PMCID: PMC11619216 DOI: 10.1186/s40779-024-00576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 10/25/2024] [Indexed: 12/07/2024] Open
Abstract
Bioactive peptides and proteins (BAPPs) are promising therapeutic agents for tissue repair with considerable advantages, including multifunctionality, specificity, biocompatibility, and biodegradability. However, the high complexity of tissue microenvironments and their inherent deficiencies such as short half-live and susceptibility to enzymatic degradation, adversely affect their therapeutic efficacy and clinical applications. Investigating the fundamental mechanisms by which BAPPs modulate the microenvironment and developing rational delivery strategies are essential for optimizing their administration in distinct tissue repairs and facilitating clinical translation. This review initially focuses on the mechanisms through which BAPPs influence the microenvironment for tissue repair via reactive oxygen species, blood and lymphatic vessels, immune cells, and repair cells. Then, a variety of delivery platforms, including scaffolds and hydrogels, electrospun fibers, surface coatings, assisted particles, nanotubes, two-dimensional nanomaterials, and nanoparticles engineered cells, are summarized to incorporate BAPPs for effective tissue repair, modification strategies aimed at enhancing loading efficiencies and release kinetics are also reviewed. Additionally, the delivery of BAPPs can be precisely regulated by endogenous stimuli (glucose, reactive oxygen species, enzymes, pH) or exogenous stimuli (ultrasound, heat, light, magnetic field, and electric field) to achieve on-demand release tailored for specific tissue repair needs. Furthermore, this review focuses on the clinical potential of BAPPs in facilitating tissue repair across various types, including bone, cartilage, intervertebral discs, muscle, tendons, periodontal tissues, skin, myocardium, nervous system (encompassing brain, spinal cord, and peripheral nerve), endometrium, as well as ear and ocular tissue. Finally, current challenges and prospects are discussed.
Collapse
Affiliation(s)
- Zhuo-Wen Hao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe-Yuan Zhang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ze-Pu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jia-Yao Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Tian-Hong Chen
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Guang Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Han-Ke Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jun-Wu Wang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Min-Chao Dong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Jing-Feng Li
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
3
|
Huanbutta K, Puri V, Sharma A, Singh I, Sriamornsak P, Sangnim T. Rise of implantable drugs: A chronicle of breakthroughs in drug delivery systems. Saudi Pharm J 2024; 32:102193. [PMID: 39564378 PMCID: PMC11570717 DOI: 10.1016/j.jsps.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, implantable drug delivery systems (IDDSs) have undergone significant advancements because they offer many advantages to patients and health care professionals. Miniaturization has reduced the size of these devices, making them less invasive and easier to implant. Remote control provides more precise medication delivery and dosage. Biodegradable implants are an additional advancement in implantable drug delivery systems that eliminate the need for surgical removal. Smart implants can monitor a patient's condition and adjust their drug doses. Long-acting implants also provide sustained drug delivery for months or even years, eliminating the need for regular medication dosing, and wireless power and data transmission technology enables the use of devices that are more comfortable and less invasive. These innovations have enhanced patient outcomes by enabling more precise administration, sustained drug delivery, and improved health care monitoring. With continued research and development, it is anticipated that IDDSs will become more effective and provide patients with improved health outcomes. This review categorizes and discusses the benefits and limitations of recent novel IDDSs for their potential therapeutic use.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
4
|
Zhang Y, Li Z, Guo H, Wang Q, Guo B, Jiang X, Liu Y, Cui S, Wu Z, Yu M, Zhu L, Chen L, Du N, Luo D, Lin Y, Di P, Liu Y. A Biomimetic Multifunctional Scaffold for Infectious Vertical Bone Augmentation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310292. [PMID: 38704674 PMCID: PMC11234421 DOI: 10.1002/advs.202310292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/04/2024] [Indexed: 05/06/2024]
Abstract
The regenerative treatment of infectious vertical bone defects remains difficult and challenging today. Current clinical treatments are limited in their ability to control bacteria and infection, which is unfavorable for new bone formation and calls for a new type of material with excellent osteogenic and antibacterial properties. Here a multifunctional scaffold is synthesized that mimics natural bone nanostructures by incorporating silver nanowires into a hierarchical, intrafibrillar mineralized collagen matrix (IMC/AgNWs), to achieve the therapeutic goals of inhibiting bacterial activity and promoting infectious alveolar bone augmentation in rats and beagle dogs. An appropriate concentration of 0.5 mg mL-1 AgNWs is selected to balance biocompatibility and antibacterial properties. The achieved IMC/AgNWs exhibit a broad spectrum of antimicrobial properties against Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans. When the IMC/AgNWs are cocultured with periodontal ligament stem cells, it possesses excellent osteoinductive activities under both non-inflammatory and inflammatory conditions. By constructing a rat mandibular infected periodontal defect model, the IMC/AgNWs achieve a near-complete healing through the canonical BMP/Smad signaling. Moreover, the IMC/AgNWs enhance vertical bone height and osseointegration in peri-implantitis in beagle dogs, indicating the clinical translational potential of IMC/AgNWs for infectious vertical bone augmentation.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Oral ImplantologyNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital StomatologyTranslational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Zixin Li
- Department of StomatologyPeking University People's HospitalBeijing100044PR China
| | - Houzuo Guo
- Department of Oral ImplantologyNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital StomatologyTranslational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Qibo Wang
- Department of Oral ImplantologyNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital StomatologyTranslational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Bowen Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Xi Jiang
- Department of Oral ImplantologyNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital StomatologyTranslational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Yishu Liu
- Department of StomatologyBeijing Chao‐Yang Hospital of Capital Medical UniversityBeijing100020China
| | - Shengjie Cui
- Department of General DentistryLaboratory of Biomimetic NanomaterialsPeking University School and Hospital of StomatologyBeijing100081China
| | - Zhengda Wu
- Department of Oral ImplantologyNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital StomatologyTranslational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Min Yu
- Central LaboratoryDepartment of Orthodontics, National Center for Stomatology,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology,Translational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Lisha Zhu
- Central LaboratoryDepartment of Orthodontics, National Center for Stomatology,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology,Translational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Liyuan Chen
- Central LaboratoryDepartment of Orthodontics, National Center for Stomatology,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology,Translational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Ning Du
- Central LaboratoryDepartment of Orthodontics, National Center for Stomatology,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology,Translational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Dan Luo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
| | - Ye Lin
- Department of Oral ImplantologyNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital StomatologyTranslational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Ping Di
- Department of Oral ImplantologyNational Center for StomatologyNational Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital StomatologyTranslational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| | - Yan Liu
- Central LaboratoryDepartment of Orthodontics, National Center for Stomatology,National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology,Translational Research Center for Oro‐craniofacial Stem Cells and Systemic HealthPeking University School and Hospital of StomatologyBeijing100081China
| |
Collapse
|
5
|
Wu Y, Wang Y, Chen F, Wang B. Loading rutin on surfaces by the layer-by-layer assembly technique to improve the oxidation resistance and osteogenesis of titanium implants in osteoporotic rats. Biomed Mater 2024; 19:045011. [PMID: 38740037 DOI: 10.1088/1748-605x/ad4aa8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The purpose of this study was to construct a rutin-controlled release system on the surface of Ti substrates and investigate its effects on osteogenesis and osseointegration on the surface of implants. The base layer, polyethylenimine (PEI), was immobilised on a titanium substrate. Then, hyaluronic acid (HA)/chitosan (CS)-rutin (RT) multilayer films were assembled on the PEI using layer-by-layer (LBL) assembly technology. We used scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and contact angle measurements to examine all Ti samples. The drug release test of rutin was also carried out to detect the slow-release performance. The osteogenic abilities of the samples were evaluated by experiments on an osteoporosis rat model and MC3T3-E1 cells. The results (SEM, FTIR and contact angle measurements) all confirmed that the PEI substrate layer and HA/CS-RT multilayer film were effectively immobilised on titanium. The drug release test revealed that a rutin controlled release mechanism had been successfully established. Furthermore, thein vitrodata revealed that osteoblasts on the coated titanium matrix had greater adhesion, proliferation, and differentiation capacity than the osteoblasts on the pure titanium surface. When MC3T3-E1 cells were exposed to H2O2-induced oxidative stressin vitro, cell-based tests revealed great tolerance and increased osteogenic potential on HA/CS-RT substrates. We also found that the HA/CS-RT coating significantly increased the new bone mass around the implant. The LBL-deposited HA/CS-RT multilayer coating on the titanium base surface established an excellent rutin-controlled release system, which significantly improved osseointegration and promoted osteogenesis under oxidative stress conditions, suggesting a new implant therapy strategy for patients with osteoporosis.
Collapse
Affiliation(s)
- Yinsheng Wu
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Yong Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Fengyan Chen
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| | - Bingzhang Wang
- Department of Orthopedics, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, No. 75, JinXiu Road, Lucheng District, Wenzhou 325000, Zhejiang Province, People's Republic of China
| |
Collapse
|
6
|
Saxena A, Malviya R. 3D Printable Drug Delivery Systems: Next-generation Healthcare Technology and Regulatory Aspects. Curr Pharm Des 2023; 29:2814-2826. [PMID: 38018197 DOI: 10.2174/0113816128275872231105183036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
A revolutionary shift in healthcare has been sparked by the development of 3D printing, propelling us into an era replete with boundless opportunities for personalized DDS (Drug Delivery Systems). Precise control of the kinetics of drug release can be achieved through 3D printing, improving treatment efficacy and patient compliance. Additionally, 3D printing facilitates the co-administration of multiple drugs, simplifying treatment regimens. The technology offers rapid prototyping and manufacturing capabilities, reducing development timelines and costs. The seamless integration of advanced algorithms and artificial neural networks (ANN) augments the precision and efficacy of 3D printing, propelling us toward the forefront of personalized medicine. This comprehensive review delves into the regulatory frontiers governing 3D printable drug delivery systems, with an emphasis on adhering to rigorous safety protocols to ensure the well-being of patients by leveraging the latest advancements in 3D printing technologies powered by artificial intelligence. The paradigm promises superior therapeutic outcomes and optimized medication experiences and sets the stage for an immersive future within the Metaverse, wherein healthcare seamlessly converges with virtual environments to unlock unparalleled possibilities for personalized treatments.
Collapse
Affiliation(s)
- Anmol Saxena
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
8
|
Maher S, Linklater D, Rastin H, Liao STY, Martins de Sousa K, Lima-Marques L, Kingshott P, Thissen H, Ivanova EP, Losic D. Advancing of 3D-Printed Titanium Implants with Combined Antibacterial Protection Using Ultrasharp Nanostructured Surface and Gallium-Releasing Agents. ACS Biomater Sci Eng 2021; 8:314-327. [PMID: 34963288 DOI: 10.1021/acsbiomaterials.1c01030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This paper presents the development of advanced Ti implants with enhanced antibacterial activity. The implants were engineered using additive manufacturing three-dimensional (3D) printing technology followed by surface modification with electrochemical anodization and hydrothermal etching, to create unique hierarchical micro/nanosurface topographies of microspheres covered with sharp nanopillars that can mechanically kill bacteria in contact with the surface. To achieve enhanced antibacterial performance, fabricated Ti implant models were loaded with gallium nitrate as an antibacterial agent. The antibacterial efficacy of the fabricated substrates with the combined action of sharp nanopillars and locally releasing gallium ions (Ga3+) was evaluated toward Staphylococcus aureus and Pseudomonas aeruginosa. Results confirm the significant antibacterial performance of Ga3+-loaded substrates with a 100% eradication of bacteria. The nanopillars significantly reduced bacterial attachment and prevented biofilm formation while also killing any bacteria remaining on the surface. Furthermore, 3D-printed surfaces with microspheres of diameter 5-30 μm and interspaces of 12-35 μm favored the attachment of osteoblast-like MG-63 cells, as confirmed via the assessment of their attachment, proliferation, and viability. This study provides important progress toward engineering of next-generation 3D-printed implants, that combine surface chemistry and structure to achieve a highly efficacious antibacterial surface with dual cytocompatibility to overcome the limitations of conventional Ti implants.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Denver Linklater
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Sandy Tzu-Ying Liao
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia.,Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, VIC 3022, Australia.,Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | - Luis Lima-Marques
- The Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, VIC 3022, Australia.,Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Helmut Thissen
- Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia.,CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Elena P Ivanova
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia.,Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
9
|
Ma X, Gao Y, Zhao D, Zhang W, Zhao W, Wu M, Cui Y, Li Q, Zhang Z, Ma C. Titanium Implants and Local Drug Delivery Systems Become Mutual Promoters in Orthopedic Clinics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:47. [PMID: 35009997 PMCID: PMC8746425 DOI: 10.3390/nano12010047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Titanium implants have always been regarded as one of the gold standard treatments for orthopedic applications, but they still face challenges such as pain, bacterial infections, insufficient osseointegration, immune rejection, and difficulty in personalizing treatment in the clinic. These challenges may lead to the patients having to undergo a painful second operation, along with increased economic burden, but the use of drugs is actively solving these problems. The use of systemic drug delivery systems through oral, intravenous, and intramuscular injection of various drugs with different pharmacological properties has effectively reduced the levels of inflammation, lowered the risk of endophytic bacterial infection, and regulated the progress of bone tumor cells, processing and regulating the balance of bone metabolism around the titanium implants. However, due to the limitations of systemic drug delivery systems-such as pharmacokinetics, and the characteristics of bone tissue in the event of different forms of trauma or disease-sometimes the expected effect cannot be achieved. Meanwhile, titanium implants loaded with drugs for local administration have gradually attracted the attention of many researchers. This article reviews the latest developments in local drug delivery systems in recent years, detailing how various types of drugs cooperate with titanium implants to enhance antibacterial, antitumor, and osseointegration effects. Additionally, we summarize the improved technology of titanium implants for drug loading and the control of drug release, along with molecular mechanisms of bone regeneration and vascularization. Finally, we lay out some future prospects in this field.
Collapse
|
10
|
Łosiewicz B, Stróż A, Osak P, Maszybrocka J, Gerle A, Dudek K, Balin K, Łukowiec D, Gawlikowski M, Bogunia S. Production, Characterization and Application of Oxide Nanotubes on Ti-6Al-7Nb Alloy as a Potential Drug Carrier. MATERIALS 2021; 14:ma14206142. [PMID: 34683734 PMCID: PMC8538941 DOI: 10.3390/ma14206142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/25/2023]
Abstract
This work concerns the development of a method of functionalization of the surface of the biomedical Ti–6Al–7Nb alloy by producing oxide nanotubes (ONTs) with drug-eluting properties. Shaping of the morphology, microstructure, and thickness of the oxide layer was carried out by anodization in an aqueous solution of 1 M ethylene glycol with the addition of 0.2 M NH4F in the voltage range 5–100 V for 15–60 min at room temperature. The characterization of the physicochemical properties of the obtained ONTs was performed using SEM, XPS, and EDAX methods. ONTs have been shown to be composed mainly of TiO2, Al2O3, and Nb2O5. Single-walled ONTs with the largest specific surface area of 600 cm2 cm−2 can be obtained by anodization at 50 V for 60 min. The mechanism of ONT formation on the Ti–6Al–7Nb alloy was studied in detail. Gentamicin sulfate loaded into ONTs was studied using FTIR, TG, DTA, and DTG methods. Drug release kinetics was determined by UV–Vis spectrophotometry. The obtained ONTs can be proposed for use in modern implantology as carriers for drugs delivered locally in inflammatory conditions.
Collapse
Affiliation(s)
- Bożena Łosiewicz
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (A.S.); (P.O.); (J.M.)
- Correspondence: ; Tel.: +48-32-3497-527
| | - Agnieszka Stróż
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (A.S.); (P.O.); (J.M.)
| | - Patrycja Osak
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (A.S.); (P.O.); (J.M.)
| | - Joanna Maszybrocka
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland; (A.S.); (P.O.); (J.M.)
| | - Anna Gerle
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Refractory Materials Division, Toszecka 99, 44-100 Gliwice, Poland; (A.G.); (K.D.)
| | - Karolina Dudek
- Łukasiewicz Research Network, Institute of Ceramics and Building Materials, Refractory Materials Division, Toszecka 99, 44-100 Gliwice, Poland; (A.G.); (K.D.)
| | - Katarzyna Balin
- The August Chełkowski Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland;
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland;
| | - Maciej Gawlikowski
- Foundation of Cardiac Surgery Development, Artificial Heart Laboratory, Wolności 345a, 41-800 Zabrze, Poland;
| | - Sylwia Bogunia
- Old Machar Medical Practice, 526-528 King Street, Aberdeen AB24 5RS, UK;
| |
Collapse
|
11
|
Maher S, Linklater D, Rastin H, Le Yap P, Ivanova EP, Losic D. Tailoring Additively Manufactured Titanium Implants for Short-Time Pediatric Implantations with Enhanced Bactericidal Activity. ChemMedChem 2021; 17:e202100580. [PMID: 34606176 DOI: 10.1002/cmdc.202100580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Indexed: 01/01/2023]
Abstract
Paediatric titanium (Ti) implants are used for the short-term fixation of fractures, after which they are removed. However, bone overgrowth on the implant surface can complicate their removal. The current Ti implants research focuses on improving their osseointegration and antibacterial properties for long-term use while overlooking the requirements of temporary implants. This paper presents the engineering of additively manufactured Ti implants with antibacterial properties and prevention of bone cell overgrowth. 3D-printed implants were fabricated followed by electrochemical anodization to generate vertically aligned titania nanotubes (TNTs) on the surface with specific diameters (∼100 nm) to reduce cell attachment and proliferation. To achieve enhanced antibacterial performance, TNTs were coated with gallium nitrate as antibacterial agent. The physicochemical characteristics of these implants assessed by the attachment, growth and viability of osteoblastic MG-63 cells showed significantly reduced cell attachment and proliferation, confirming the ability of TNTs surface to avoid cell overgrowth. Gallium coated TNTs showed strong antibacterial activity against S. aureus and P. aeruginosa with reduced bacterial attachment and high rates of bacterial death. Thus a new approach for the engineering of temporary Ti implants with enhanced bactericidal properties with reduced bone cell attachment is demonstrated as a new strategy toward a new generation of short-term implants in paediatrics.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.,Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Denver Linklater
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Pei Le Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Elena P Ivanova
- College of STEM, School of Science, RMIT University, Melbourne, VIC 3000, Australia.,Australian Research Council (ARC) Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
12
|
Study on the Mechanism of Salvia miltiorrhiza in the Treatment of Traumatic Bone Defects. J CHEM-NY 2021. [DOI: 10.1155/2021/8646394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Traumatic bone defect is one of the major orthopedic diseases in clinics, and its incidence is increasing year by year. And repairing traumatic bone defects is a very difficult problem in clinics at present. The surface of medical titanium-based alloy has good biological properties, and its implant has a certain role in promoting bone in bone tissue. However, titanium-based materials are biologically inert and have no biological activity. As a traditional Chinese medicine, Salvia miltiorrhiza has the efficacy of treating bone diseases and promoting bone healing. The curative effect can be better exerted by loading the traditional Chinese medicine active compound Salvia miltiorrhiza on the surface of the titanium implant in a certain way. At present, due to the complex chemical composition of Salvia miltiorrhiza, the mechanism of its use for the treatment of traumatic bone defects is still unclear. Therefore, in this study, we mainly discussed the potential target and mechanism of Salvia miltiorrhiza in the treatment of traumatic bone defects through network pharmacology, which may provide a scientific basis for the treatment of traumatic bone defects with Salvia miltiorrhiza loaded on the surface of medical titanium-based alloy. We screened out effective compounds and targets of Salvia miltiorrhiza and targets related to traumatic bone defects with the help of relevant databases. The targets of Salvia miltiorrhiza for traumatic bone defects were analyzed by STRING and GeneCards databases, and the results were visualized by constructing a compound-target network, protein-protein interaction network, and compound-target-disease network with Cytoscape 3.7.1 analysis software. Finally, the selected core targets carried out GO and KEGG enrichment. The results showed that 60 main active components were screened from Salvia miltiorrhiza Bunge, which could act on 149 targets. There were 33 active components and 70 targets related to traumatic bone defects, respectively. The core targets of Salvia miltiorrhiza in the treatment of traumatic bone defects were MAPK1, MAPK10, MAPK14, TGFB1, and TNF. The results of enrichment analysis showed that Salvia miltiorrhiza might treat traumatic bone defects through an osteogenic differentiation pathway.
Collapse
|
13
|
Abdelkader H, Fathalla Z, Seyfoddin A, Farahani M, Thrimawithana T, Allahham A, Alani AWG, Al-Kinani AA, Alany RG. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv Drug Deliv Rev 2021; 177:113957. [PMID: 34481032 DOI: 10.1016/j.addr.2021.113957] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 08/29/2021] [Indexed: 02/07/2023]
Abstract
Non-oral long-acting drug delivery systems (LADDS) encompass a range of technologies for precisely delivering drug molecules into target tissues either through the systemic circulation or via localized injections for treating chronic diseases like diabetes, cancer, and brain disorders as well as for age-related eye diseases. LADDS have been shown to prolong drug release from 24 h up to 3 years depending on characteristics of the drug and delivery system. LADDS can offer potentially safer, more effective, and patient friendly treatment options compared to more invasive modes of drug administration such as repeated injections or minor surgical intervention. Whilst there is no single technology or definition that can comprehensively embrace LADDS; for the purposes of this review, these systems include solid implants, inserts, transdermal patches, wafers and in situ forming delivery systems. This review covers common chronic illnesses, where candidate drugs have been incorporated into LADDS, examples of marketed long-acting pharmaceuticals, as well as newly emerging technologies, used in the fabrication of LADDS.
Collapse
Affiliation(s)
- Hamdy Abdelkader
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Deraya University, New Minia City, Minia, Egypt
| | - Zeinab Fathalla
- Pharmaceutics Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Ali Seyfoddin
- Drug Delivery Research Group, Faculty of Health and Environmental Sciences, School of Science, Auckland University of Technology, New Zealand
| | - Mojtaba Farahani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Thilini Thrimawithana
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ayman Allahham
- Discipline of Pharmacy, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Moody Avenue, RLSB, Portland, OR, United States; Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States; Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, OR, United States
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK.
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care Theme (DDDPC), Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames, UK; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
14
|
Wang B, Wu Z, Wang S, Wang S, Niu Q, Wu Y, Jia F, Bian A, Xie L, Qiao H, Chang X, Lin H, Zhang H, Huang Y. Mg/Cu-doped TiO 2 nanotube array: A novel dual-function system with self-antibacterial activity and excellent cell compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 128:112322. [PMID: 34474873 DOI: 10.1016/j.msec.2021.112322] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/28/2021] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
Many studies were conducted to change the surface morphology and chemical composition of Ti implants for the improvement of antibacterial ability and osseointegration between medical Ti and surrounding bone tissue. In this study, we successfully prepared a novel dual-function coating on pure Ti surface, i.e. Cu and Mg-co-doped TiO2 nanotube (TN) coating, by combining anodisation and hydrothermal treatment (HT), which could act as a delivery platform for the sustained release of Cu and Mg ions. Results showed that the amounts of Cu and Mg were about 5.43 wt%-6.55 wt% and 0.69 wt%-0.73 wt%, respectively. In addition, the surface morphology of Cu and Mg-co-doped TN (CuMTN) coatings transformed into nanoneedles after HT for 1 h. Compared with TN, CuMTN had no change in roughness and remarkable improved hydrophilicity. Antibacterial tests revealed that CuMTN had an antibacterial rate of more than 93% against Escherichia coli and Staphylococcus aureus, thereby showing excellent antibacterial properties. In addition, CuMTN could induce the formation of apatite well after being immersed in simulated body fluid, showing good biological activity. Preosteoblasts (MC3T3-E1) cultured on CuMTN-coated Ti demonstrated better proliferation and osteogenic differentiation than pristine and as-anodised specimens. To the best of our best knowledge, this study had successfully attempted to combine anodisation and HT, introduce Cu/Mg elements and functionalise Ti-based implant surfaces with enhanced hydrophilicity, osteogenesis and antimicrobial properties that can meet clinical needs for the first time.
Collapse
Affiliation(s)
- Bingbing Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Zongze Wu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Shuo Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Saisai Wang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Qimeng Niu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Yuwei Wu
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Fenghuan Jia
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Anqi Bian
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Lei Xie
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haixia Qiao
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - Xiaotong Chang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China
| | - He Lin
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Hui Zhang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Key Laboratory of Biomedical Materials of Zhangjiakou, Zhangjiakou 075000, China.
| |
Collapse
|
15
|
Mazinani A, Rastin H, Nine MJ, Lee J, Tikhomirova A, Tung TT, Ghomashchi R, Kidd S, Vreugde S, Losic D. Comparative antibacterial activity of 2D materials coated on porous-titania. J Mater Chem B 2021; 9:6412-6424. [PMID: 34323241 DOI: 10.1039/d1tb01122g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plasma electrolytic oxidation (PEO) is a well-established technique for the treatment of titanium-based materials. The formed titania-PEO surface can improve the osseointegration properties of titanium implants. Nevertheless, it can not address bacterial infection problems associated with bone implants. Recently, 2-dimensional (2D) materials such as graphene oxide (GO), MXene, and hexagonal boron nitride (hBN) have received considerable attention for surface modifications showing their antibacterial properties. In this paper, a comparative study on the effect of partial deposition of these three materials over PEO titania substrates on the antibacterial efficiency and bioactivity is presented. Their partial deposition through drop-casting instead of continuous film coating is propsed to simultaneously address both antibacterial and osseointegration abilities. Our results demonstrate the dose-dependent nature of the deposited antibacterial agent on the PEO substrate. GO-PEO and MXene-PEO samples showed the highest antibacterial activity with 70 (±2) % and 97 (±0.5) % inactivation of S. aureus colonies in the low concentration group, respectively. Furthermore, only samples in the higher concentration group were effective against E. coli bacteria with 18 (±2) % and 17 (±4) % decrease in numbers of colonies for hBN-PEO and GO-PEO samples, respectively. Moreover, all antibacterial samples demonstrated acceptable bioactivity and good biocompatibility, making them a considerable candidates for the next generation of antibacterial titanium implants.
Collapse
Affiliation(s)
- Arash Mazinani
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Implant-associated infections (IAIs) are among the most intractable and costly complications in implant surgery. They can lead to surgery failure, a high economic burden, and a decrease in patient quality of life. This manuscript is devoted to introducing current antimicrobial strategies for additively manufactured (AM) titanium (Ti) implants and fostering a better understanding in order to pave the way for potential modern high-throughput technologies. Most bactericidal strategies rely on implant structure design and surface modification. By means of rational structural design, the performance of AM Ti implants can be improved by maintaining a favorable balance between the mechanical, osteogenic, and antibacterial properties. This subject becomes even more important when working with complex geometries; therefore, it is necessary to select appropriate surface modification techniques, including both topological and chemical modification. Antibacterial active metal and antibiotic coatings are among the most commonly used chemical modifications in AM Ti implants. These surface modifications can successfully inhibit bacterial adhesion and biofilm formation, and bacterial apoptosis, leading to improved antibacterial properties. As a result of certain issues such as drug resistance and cytotoxicity, the development of novel and alternative antimicrobial strategies is urgently required. In this regard, the present review paper provides insights into the enhancement of bactericidal properties in AM Ti implants.
Collapse
|
17
|
Losic D. Advancing of titanium medical implants by surface engineering: recent progress and challenges. Expert Opin Drug Deliv 2021; 18:1355-1378. [PMID: 33985402 DOI: 10.1080/17425247.2021.1928071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Titanium (Ti) and their alloys are used as main implant materials in orthopedics and dentistry for decades having superior mechanical properties, chemical stability and biocompatibility. Their rejections due lack of biointegration and bacterial infection are concerning with considerable healthcare costs and impacts on patients. To address these limitations, conventional Ti implants need improvements where the use of surface nanoengineering approaches and the development of a new generation of implants are recognized as promising strategies.Areas covered:This review presents an overview of recent progress on the application of surface engineering methods to advance Ti implants enable to address their key limitations. Several promising surface engineering strategies are presented and critically discussed to generate advanced surface properties and nano-topographies (tubular, porous, pillars) able not only to improve their biointegration, antibacterial performances, but also to provide multiple functions such as drug delivery, therapy, sensing, communication and health monitoring underpinning the development of new generation and smart medical implants.Expert opinion:Recent advances in cell biology, materials science, nanotechnology and additive manufacturing has progressively influencing improvements of conventional Ti implants toward the development of the next generation of implants with improved performances and multifunctionality. Current research and development are in early stage, but progressing with promising results and examples of moving into in-vivo studies an translation into real applications.
Collapse
Affiliation(s)
- Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia.,ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia
| |
Collapse
|
18
|
Bose S, Sarkar N, Banerjee D. Natural medicine delivery from biomedical devices to treat bone disorders: A review. Acta Biomater 2021; 126:63-91. [PMID: 33657451 PMCID: PMC8247456 DOI: 10.1016/j.actbio.2021.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/28/2022]
Abstract
With an increasing life expectancy and aging population, orthopedic defects and bone graft surgeries are increasing in global prevalence. Research to date has advanced the understanding of bone biology and defect repair mechanism, leading to a marked success in the development of synthetic bone substitutes. Yet, the quest for functionalized bone grafts prompted the researchers to find a viable alternative that regulates cellular activity and supports bone regeneration and healing process without causing serious side-effects. Recently, researchers have introduced natural medicinal compounds (NMCs) in bone scaffold that enables them to release at a desirable rate, maintains a sustained release allowing sufficient time for tissue in-growth, and guides bone regeneration process with minimized risk of tissue toxicity. According to World Health Organization (WHO), NMCs are gaining popularity in western countries for the last two decades and are being used by 80% of the population worldwide. Compared to synthetic drugs, NMCs have a broader range of safety window and thus suitable for prolonged localized delivery for bone regeneration. There is limited literature focusing on the integration of bone grafts and natural medicines that provides detailed scientific evidences on NMCs, their toxic limits and particular application in bone tissue engineering, which could guide the researchers to develop functionalized implants for various bone disorders. This review will discuss the emerging trend of NMC delivery from bone grafts, including 3D-printed structures and surface-modified implants, highlighting the significance and potential of NMCs for bone health, guiding future paths toward the development of an ideal bone tissue engineering scaffold. STATEMENT OF SIGNIFICANCE: To date, additive manufacturing technology provids us with many advanced patient specific or defect specific bone constructs exhibiting three-dimensional, well-defined microstructure with interconnected porous networks for defect-repair applications. However, an ideal scaffold should also be able to supply biological signals that actively guide tissue regeneration while simultaneously preventing post-implantation complications. Natural biomolecules are gaining popularity in tissue engineering since they possess a safer, effective approach compared to synthetic drugs. The integration of bone scaffolds and natural biomolecules exploits the advantages of customized, multi-functional bone implants to provide localized delivery of biochemical signals in a controlled manner. This review presents an overview of bone scaffolds as delivery systems for natural biomolecules, which may provide prominent advancement in bone development and improve defect-healing caused by various musculoskeletal disorders.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States.
| | - Naboneeta Sarkar
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| | - Dishary Banerjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
19
|
Maher S, Wijenayaka AR, Lima-Marques L, Yang D, Atkins GJ, Losic D. Advancing of Additive-Manufactured Titanium Implants with Bioinspired Micro- to Nanotopographies. ACS Biomater Sci Eng 2021; 7:441-450. [PMID: 33492936 DOI: 10.1021/acsbiomaterials.0c01210] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
There is an increasing demand for low-cost and more efficient titanium (Ti) medical implants that will provide improved osseointegration and at the same time reduce the likelihood of infection. In the past decade, additive manufacturing (AM) using metal selective laser melting (SLM) or three-dimensional (3D) printing techniques has emerged to enable novel implant geometries or properties to overcome such potential challenges. This study presents a new surface engineering approach to create bioinspired multistructured surfaces on SLM-printed Ti alloy (Ti6Al4V) implants by combining SLM technology, electrochemical anodization, and hydrothermal (HT) processes. The resulting implants display unique surfaces with a distinctive dual micro- to nano-topography composed of micron-sized spherical features, fabricated by SLM and vertically aligned nanoscale pillar structures as a result of combining anodization and HT treatment. The fabricated implants enhanced hydroxyapatite-like mineral deposition from simulated body fluid (SBF) compared to control. In addition, normal human osteoblast-like cells (NHBCs) showed strong adhesion to the nano-/microstructures and displayed greater propensity to mineralize compared to control surfaces. This engineering approach and the resulting nature-inspired multiscale-structured surface offers desired features for improving osseointegration and antibacterial performance toward the development of next-generation orthopedic and dental implants.
Collapse
Affiliation(s)
- Shaheer Maher
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Asiri R Wijenayaka
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Luis Lima-Marques
- The Institute for Photonics and Advanced Sensing, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dongqing Yang
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Adelaide Medical School, Discipline of Orthopaedics and Trauma, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
20
|
Xu N, Fu J, Zhao L, Chu PK, Huo K. Biofunctional Elements Incorporated Nano/Microstructured Coatings on Titanium Implants with Enhanced Osteogenic and Antibacterial Performance. Adv Healthc Mater 2020; 9:e2000681. [PMID: 32875743 DOI: 10.1002/adhm.202000681] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Indexed: 12/20/2022]
Abstract
Bone fracture is prevalent among athletes and senior citizens and may require surgical insertion of bone implants. Titanium (Ti) and its alloys are widely used in orthopedics due to its high corrosion resistance, good biocompatibility, and modulus compatible with natural bone tissues. However, bone repair and regrowth are impeded by the insufficient intrinsic osteogenetic capability of Ti and Ti alloys and potential bacterial infection. The physicochemical properties of the materials and nano/microstructures on the implant surface are crucial for clinical success and loading with biofunctional elements such as Sr, Zn, Cu, Si, and Ag into nano/microstructured TiO2 coating has been demonstrated to enhance bone repair/regeneration and bacterial resistance of Ti implants. In this review, recent advances in biofunctional element-incorporated nano/microstructured coatings on Ti and Ti alloy implants are described and the prospects and limitations are discussed.
Collapse
Affiliation(s)
- Na Xu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Kaifu Huo
- The State Key Laboratory of Refractories and Metallurgy, Institute of Advanced Materials and Nanotechnology, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, 430081, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
21
|
Zhao Q, Shi M, Yin C, Zhao Z, Zhang J, Wang J, Shen K, Zhang L, Tang H, Xiao Y, Zhang Y. Dual-Wavelength Photosensitive Nano-in-Micro Scaffold Regulates Innate and Adaptive Immune Responses for Osteogenesis. NANO-MICRO LETTERS 2020; 13:28. [PMID: 34138183 PMCID: PMC8187671 DOI: 10.1007/s40820-020-00540-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/28/2020] [Indexed: 05/17/2023]
Abstract
The immune response of a biomaterial determines its osteoinductive effect. Although the mechanisms by which some immune cells promote regeneration have been revealed, the biomaterial-induced immune response is a dynamic process involving multiple cells. Currently, it is challenging to accurately regulate the innate and adaptive immune responses to promote osteoinduction in biomaterials. Herein, we investigated the roles of macrophages and dendritic cells (DCs) during the osteoinduction of biphasic calcium phosphate (BCP) scaffolds. We found that osteoinductive BCP directed M2 macrophage polarization and inhibited DC maturation, resulting in low T cell response and efficient osteogenesis. Accordingly, a dual-targeting nano-in-micro scaffold (BCP loaded with gold nanocage, BCP-GNC) was designed to regulate the immune responses of macrophages and DCs. Through a dual-wavelength photosensitive switch, BCP-GNC releases interleukin-4 in the early stage of osteoinduction to target M2 macrophages and then releases dexamethasone in the later stage to target immature DCs, creating a desirable inflammatory environment for osteogenesis. This study demonstrates that biomaterials developed to have specific regulatory capacities for immune cells can be used to control the early inflammatory responses of implanted materials and induce osteogenesis.
Collapse
Affiliation(s)
- Qin Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Miusi Shi
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Chengcheng Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Zifan Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Jinglun Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Jinyang Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Kailun Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | - Lingling Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Hua Tang
- Institute of Immunology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, People's Republic of China
| | - Yin Xiao
- Institute of Health and Biomedical Innovation & Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Kelvin Grove, 4059, QLD, Australia
| | - Yufeng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China.
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
22
|
Nanostructured Anodic Copper Oxides as Catalysts in Electrochemical and Photoelectrochemical Reactions. Catalysts 2020. [DOI: 10.3390/catal10111338] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Recently, nanostructured copper oxides formed via anodizing have been intensively researched due to their potential catalytic applications in emerging issues. The anodic Cu2O and CuO nanowires or nanoneedles are attractive photo- and electrocatalysts since they show wide array of desired electronic and morphological features, such as highly-developed surface area. In CO2 electrochemical reduction reaction (CO2RR) copper and copper-based nanostructures indicate unique adsorption properties to crucial reaction intermediates. Furthermore, anodized copper-based materials enable formation of C2+ hydrocarbons and alcohols with enhanced selectivity. Moreover, anodic copper oxides provide outstanding turnover frequencies in electrochemical methanol oxidation at lowered overpotentials. Therefore, they can be considered as precious metals electrodes substituents in direct methanol fuel cells. Additionally, due to the presence of Cu(III)/Cu(II) redox couple, these materials find application as electrodes for non-enzymatic glucose sensors. In photoelectrochemistry, Cu2O-CuO heterostructures of anodic copper oxides with highly-developed surface area are attractive for water splitting. All the above-mentioned aspects of anodic copper oxides derived catalysts with state-of-the-art background have been reviewed within this paper.
Collapse
|
23
|
Shen X, Hu W, Ping L, Liu C, Yao L, Deng Z, Wu G. Antibacterial and Osteogenic Functionalization of Titanium With Silicon/Copper-Doped High-Energy Shot Peening-Assisted Micro-Arc Oxidation Technique. Front Bioeng Biotechnol 2020; 8:573464. [PMID: 33163479 PMCID: PMC7580868 DOI: 10.3389/fbioe.2020.573464] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Antibacterial and osteogenic functionalization of titanium (Ti) implants will greatly expand their clinical indications in immediate implant therapy, accelerate osteointegration, and enhance long-term prognosis. We had recently shown that the high-energy shot peening (HESP)-assisted micro-arc oxidation (MAO) significantly improved the bioactivity and coating stability of Ti-based substrates. In this study, we further functionalized Ti with antibacterial and osteogenic properties by doping silicon (Si) and/or copper (Cu) ions into HESP/MAO-treated coatings. Physicochemical characterization displayed that the doping of Si and Cu in HESP/MAO-treated coatings (Si/Cu-MAO) did not significantly change their surface topography, roughness, crystal structure, coating thickness, bonding strength, and wettability. The results of X-ray photoelectron spectroscopy (XPS) showed that Si and Cu in the Si/Cu-MAO coating was in the form of silicate radical (SiO3 2-) and bivalent copper (Cu2+), respectively. The total amounts of Si and Cu were about 13.5 and 5.8 μg/cm2, which released about 33.2 and 31.3% within 14 day, respectively. Compared with the control group (MAO), Si doping samples (MAO-Si) significantly increased the cell viability, alkaline phosphatase (ALP) activity, mineralization and osteogenic genes (ALP, collagen I and osteocalcin) expression of MC3T3-E1 cells. Furthermore, the addition of Cu presented good bactericidal property against both Staphylococcus aureus and Streptococcus mutans (even under the co-culture condition of bacteria and MC3T3-E1 cells): the bacteriostatic rate of both bacteria was over 95%. In conclusion, the novel bioactive Si/Cu-MAO coating with antibacterial and osteogenic properties is a promising functionalization method for orthopedic and dental implants, especially in the immediate implant treatment with an infected socket.
Collapse
Affiliation(s)
- Xinkun Shen
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Wenjia Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Linchao Ping
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Chongxing Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lili Yao
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhennan Deng
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam Movement Science, University of Amsterdam and Vrije University Amsterdam, Amsterdam, Netherland.,Department of Oral and Maxillofacial Surgary/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universitetit Amsterdam, Amsterdam Movement Science, Amsterdam, Netherlands
| |
Collapse
|
24
|
Balakin S, Yun YS, Lee J, Kang EH, Spohn J, Yun IS, Opitz J, Cuniberti G, Yeo JS. In vitro characterization of osteoblast cells on polyelectrolyte multilayers containing detonation nanodiamonds. ACTA ACUST UNITED AC 2020; 15:055026. [PMID: 32526712 DOI: 10.1088/1748-605x/ab9baf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Nanoparticle-enhanced coatings of bone implants are a promising method to facilitate sustainable wound healing, leading to an increase in patient well-being. This article describes the in vitro characterization of osteoblast cells interacting with polyelectrolyte multilayers, which contain detonation nanodiamonds (NDs), as a novel class of carbon-based coating material, which presents a unique combination of photoluminescence and drug-binding properties. The cationic polyelectrolyte, namely polydiallyldimethylammonium chloride (PDDA), has been used to immobilize NDs on silica glass. The height of ND-PDDA multilayers varies from a minimum of 10 nm for one bilayer to a maximum of 90 nm for five bilayers of NDs and PDDA. Human fetal osteoblasts (hFOBs) cultured on ND-PDDA multilayers show a large number of focal adhesions, which were studied via quantitative fluorescence imaging analysis. The influence of the surface roughness on the filopodia formation was assessed via scanning electron microscopy and atomic force microscopy. The nano-rough surface of five bilayers constrained the filopodia formation. The hFOBs grown on NDs tend to show not only a similar cell morphology compared to cells cultured on extracellular matrix protein-coated silica glass substrates, but also increased cell viability by about 40%. The high biocompatibility of the ND-PDDA multilayers, indicated via high cell proliferation and sound cell adhesion, shows their potential for biomedical applications such as drug-eluting coatings and biomaterials in general.
Collapse
Affiliation(s)
- Sascha Balakin
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, Dresden, Germany. Bio- and Nanotechnology, Fraunhofer Institute for Ceramic Technologies and Systems IKTS Material Diagnostics, Dresden, Germany. Both authors contributed equally to this manuscript
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Icariin/Aspirin Composite Coating on TiO2 Nanotubes Surface Induce Immunomodulatory Effect of Macrophage and Improve Osteoblast Activity. COATINGS 2020. [DOI: 10.3390/coatings10040427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Surface coating modification of titanium-based alloys is an efficient way to accelerate early osseointegration in dental implant fields. Icariin (ICA) is a traditional Chinese medicine that has bone activating functions, while aspirin (ASP) is a classical non-steroidal anti-inflammatory drug with good antipyretic and analgesic capabilities. Moreover, poly(lactic–co–glycolic acid) (PLGA) has attracted great attention due to its excellent biocompatibility and biodegradability. We superimposed an ASP/PLGA coating onto ICA loaded TiO2 nanotubes structure so as to establish an icariin/aspirin composite coating on TiO2 nanotubes surface. Scanning electron microscopy, X-ray photoelectron spectroscopy, a contact angle test and a drug release test confirmed the successful preparation of the NT–ICA–ASP/PLGA substrate, with a sustained release pattern of both ICA and ASP. Compared to those cultured on the Ti surface, macrophage cells on the NT-ICA-ASP/PLGA substrate displayed decreased M1 proinflammatory and enhanced M2 proregenerative genes and proteins expression, which implied activated immunomodulatory effect. Moreover, when cultured with conditioned medium from macrophages, osteoblast cells on the NT-ICA-ASP/PLGA substrate revealed improved cell proliferation, adhesion and osteogenic genes and proteins expression, compared with those on the Ti surface. The abovementioned results suggest that the established NT-ICA-ASP/PLGA substrate is a promising candidate for functionalized coating material in Ti implant surface modification.
Collapse
|
26
|
He P, Zhang H, Li Y, Ren M, Xiang J, Zhang Z, Ji P, Yang S. 1α,25-Dihydroxyvitamin D3-loaded hierarchical titanium scaffold enhanced early osseointegration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110551. [DOI: 10.1016/j.msec.2019.110551] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/29/2019] [Accepted: 12/11/2019] [Indexed: 11/30/2022]
|
27
|
Micheletti C, Lee BEJ, Deering J, Binkley DM, Coulson S, Hussanain A, Zurob H, Grandfield K. Ti-5Al-5Mo-5V-3Cr bone implants with dual-scale topography: a promising alternative to Ti-6Al-4V. NANOTECHNOLOGY 2020; 31:235101. [PMID: 32097900 DOI: 10.1088/1361-6528/ab79ac] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Modifications to the compositional, topographical and morphological aspects of bone implants can lead to improved osseointegration, thus increasing the success of bone implant procedures. This study investigates the creation of dual-scale topography on Ti-5Al-5Mo-5V-3Cr (Ti5553), an alloy not presently used in the biomedical field, and compares it to Ti-6Al-4V (Ti64), the most used Ti alloy for bone implants. Dual-scale surface topography was obtained by combining selective laser melting (SLM) and electrochemical anodization, which resulted in micro- and nanoscale surface features, respectively. Ti5553 and Ti64 samples were manufactured by SLM and showed comparable surface topography. Subsequent electrochemical anodization succeeded in forming titania nanotubes (TNTs) on both alloys, with larger nanotubes obtained with Ti5553 at all investigated anodization voltages. At an anodization voltage of 40 V, a minimum time of 20 min was necessary to have nanotube formation on the surface of either alloy, while only nanopores were evident for shorter times. Seeded Saos-2 cells showed ideal interactions with surface-modified structures, with filopodia extending to both surface microparticles characteristic of SLM and to the interior of TNTs. Attractiveness of Ti5553 lies in its lower elastic modulus (E = 72 GPa) compared to Ti64, which should mitigate stress-shielding phenomena in vivo. This, combined with the analogous results obtained in terms of dual-scale surface topography and cell-substrate interaction, could indicate Ti5553 as a promising alternative to the widely-employed Ti64 for bone implant device manufacturing.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada. Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|