1
|
Sadraei A, Naghib SM, Rabiee N. 4D printing chemical stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 2. Expert Opin Drug Deliv 2025; 22:491-510. [PMID: 39953663 DOI: 10.1080/17425247.2025.2466768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
INTRODUCTION The incorporation of 4D printing alongside chemical stimuli-responsive hydrogels represents a significant advancement in the field of biomedical engineering, effectively overcoming the constraints associated with conventional static 3D-printed structures. Through the integration of time as the fourth dimension, 4D printing facilitates the development of dynamic and adaptable structures that can react to chemical alterations in their surroundings. This innovation presents considerable promise for sophisticated tissue engineering and targeted drug delivery applications. AREAS COVERED This review examines the function of chemical stimuli-responsive hydrogels within the context of 4D printing, highlighting their distinctive ability to undergo regulated transformations when exposed to particular chemical stimuli. An in-depth examination of contemporary research underscores the collaborative dynamics between these hydrogels and their surroundings, focusing specifically on their utilization in biomimetic scaffolds for tissue regeneration and the advancement of intelligent drug delivery systems. EXPERT OPINION The integration of 4D printing technology with chemically responsive hydrogels presents exceptional prospects for advancements in tissue engineering and targeted drug delivery, facilitating the development of personalized and adaptive medical solutions. Although the potential is promising, it is essential to address challenges such as material optimization, biocompatibility, and precise control over stimuli-responsive behavior to facilitate clinical translation and scalability.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
2
|
Sadraei A, Naghib SM, Rabiee N. 4D printing biological stimuli-responsive hydrogels for tissue engineering and localized drug delivery applications - part 1. Expert Opin Drug Deliv 2025; 22:471-490. [PMID: 39939161 DOI: 10.1080/17425247.2025.2466772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
INTRODUCTION The advent of 3D printing has revolutionized biomedical engineering, yet limitations in creating dynamic human tissues remain. The emergence of 4D printing, which introduces time as a fourth dimension, offers new possibilities by enabling the production of adaptable, stimuli-responsive structures. A thorough literature search was performed across various databases, including Google Scholar, PubMed, Scopus, and Web of Science, to identify pertinent studies published up to 2025. The search parameters were confined to articles published in English that concentrated on peer-reviewed clinical studies. AREAS COVERED This review explores the transition from 3D to 4D printing and focuses on stimuli-responsive materials, particularly hydrogels, which react to environmental changes. The literature search examined recent studies on the interaction of these materials with biological stimuli, emphasizing their application in tissue engineering and drug delivery applications. EXPERT OPINION 4D printing, combined with smart materials, holds immense promise for advancing biomedical treatments, including customized therapies and regenerative medicine. However, technological challenges must be addressed to realize its full potential.
Collapse
Affiliation(s)
- Alireza Sadraei
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Navid Rabiee
- Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Shanehband N, Naghib SM. Microfluidics-assisted Tumor Cell Separation Approaches for Clinical Applications: An Overview on Emerging Devices. Comb Chem High Throughput Screen 2025; 28:202-225. [PMID: 38275060 DOI: 10.2174/0113862073277130231110111933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 01/27/2024]
Abstract
Recent advances in science and technology have led to revolutions in many scientific and industrial fields. The term lab on a chip, or in other words, performing a variety of complex analyses in just a short time and a minimal space, is a term that has become very common in recent years, and what used to be a dream has now come to life in practice. In this paper, we tried to investigate a specific type of lab technology on a chip, which is, of course, one of the most common, namely the knowledge and technology of cell separation by using a microfluidic technique that can be separated based on size and deformation, adhesion and electrical properties. The tissue of the human body is degraded due to injury or aging. It is often tried to treat this tissue disorder by using drugs, but they are not always enough. Stem cell-based medicine is a novel form that promises the restoration or regeneration of tissues and functioning organs. Although many models of microfluidic systems have been designed for cell separation, choosing the appropriate device to achieve a reliable result is a challenge. Therefore, in this study, Fluorescence Activated Cell Sorting (FACS), Dielectrophoresis (DEP), Magnetic Activated Cell Sorting (MACS), and Acoustic microfluidic system are four distinct categories of active microfluidic systems explored. Also, the advantages, disadvantages, and the current status of the devices mentioned in these methods are reviewed.
Collapse
Affiliation(s)
- Nahid Shanehband
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
4
|
Salahuddin A, Ashraf A, Ahmad K, Hou H. Recent advances in chitosan-based smart hydrogel for drug delivery systems. Int J Biol Macromol 2024:135803. [PMID: 39419682 DOI: 10.1016/j.ijbiomac.2024.135803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Achieving sustainable and controllable drug delivery is a highly effective disease treatment approach. Chitosan hydrogels, with their unique three-dimensional (3D) porous structures, offer tunable capacity, controllable degradation, various stimuli sensitivities, and the ability to encapsulate therapeutic agents. These characteristics provide chitosan hydrogels with inherent advantages as vehicles for drug delivery systems. In recent years, there has been a notable shift toward embracing the "back-to-nature" ethos, with biomass materials emerging as promising candidates for constructing chitosan hydrogels used in controlled drug release applications. This trend is sustained by their biodegradability, biocompatibility, and non-toxic properties, emphasizing their unique benefits and innovative features. These hydrogels exhibit sensitivity to various factors such as temperature, pH, ion concentration, light, magnetic fields, redox, ultrasound, and multi-responsiveness, offering opportunities for finely tuned drug release mechanisms. This review comprehensively outlines fabrication methods, properties, and biocompatibility of chitosan hydrogel, as well as modification strategies and stimuli-responsive mechanisms. Furthermore, their potential applications in subcutaneous (wound dressing), parental (transdermal drug delivery), oral (gastrointestinal tract), and facial (ophthalmic and brain) drug delivery are briefly discussed. The challenges in clinical application and the future outlook of chitosan-based smart hydrogel are also highlighted.
Collapse
Affiliation(s)
- Aiman Salahuddin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Azqa Ashraf
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Khurshid Ahmad
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China
| | - Hu Hou
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, No.1299, Sansha Road, Qingdao, Shandong Province 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, Shandong Province 266237, PR China; Sanya Oceanographic Institution, Ocean University of China, Sanya, Hainan Province 572024, PR China; Qingdao Institute of Marine Bioresources for Nutrition & Health Innovation, Qingdao, Shandong Province 266000, PR China.
| |
Collapse
|
5
|
Rashedy AA, Abd El-Aziz ME, Abd-Allah ASE, Hamed HH, Emam HE, Abd El-Moniem EAA. Arabic gum/chitosan/Zn-NPs composite film maintains the quality of Hass avocado fruit by delaying ripening and activating enzymatic defense mechanisms. Sci Rep 2024; 14:401. [PMID: 38172333 PMCID: PMC10764304 DOI: 10.1038/s41598-023-50642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Avocado fruit is a climacteric fruit that has a short life after harvest. Chitosan (Ch) and Arabic gum (AG) have a pronounced effect on the storability of fruits. This investigation aimed to determine the effect of individual or combined use of Ch and AG as well as Ch/AG enriched with 2, 4, 8% Zn-NPs on physio-biochemical attributes and antioxidant capacity of Hass avocado fruit during cold storage (7 °C). The result showed that Ch or AG alone succeeded in maintaining fruit quality of Hass fruit during cold storage. Also, combined application of Ch/AG was more effective than individual application of Ch or AG in reducing fruit weight and polyphenol oxidase activity (PPO) as well as increasing total antioxidant capacity (TAC) and malondialdehyde (MDA). Moreover, Ch/AG coating enriched with 8% Zn-NPs recorded the lowest fruit weight loss, fruit decay %, TSS fruit content, fruit firmness and improved fruit skin and pulp color significantly compared to Ch/AG and control. Coating with Ch/AG/2%Zn NPs recorded the highest peroxidase (POD) activity, while Ch/AG/8% Zn-NPs recorded the highest TAC and the lowest PPO activity. Moreover, enriched Ch/GA with Zn-NPs recorded the highest CAT and POD activity compared to the control. This study shows the efficiency of Ch/AG enriched with Zn-NPs on preserving Hass avocado fruit quality during cold storage by delaying ripening process and activating enzymatic defense mechanisms.
Collapse
Affiliation(s)
- Ahmed A Rashedy
- Pomology Department, Faculty of Agriculture, Cairo University, P.O. 12613, Giza, Egypt.
| | - Mahmoud E Abd El-Aziz
- Polymers and Pigments Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Ahmed S E Abd-Allah
- Horticulture Crops Technology Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Hamed H Hamed
- Pomology Department, Faculty of Agriculture, Cairo University, P.O. 12613, Giza, Egypt
| | - Hala E Emam
- Horticulture Crops Technology Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Eman A A Abd El-Moniem
- Horticulture Crops Technology Department, National Research Centre, 33 El Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| |
Collapse
|
6
|
Praharaj R, Rautray TR. Polymer Composites for Biomedical Applications. ENGINEERING MATERIALS 2024:489-532. [DOI: 10.1007/978-981-97-2075-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Garshasbi HR, Soleymani S, Naghib SM, Mozafari MR. Multi-stimuli-responsive Hydrogels for Therapeutic Systems: An Overview on Emerging Materials, Devices, and Drugs. Curr Pharm Des 2024; 30:2027-2046. [PMID: 38877860 DOI: 10.2174/0113816128304924240527113111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 09/21/2024]
Abstract
The rising interest in hydrogels nowadays is due to their usefulness in physiological conditions as multi-stimuli-responsive hydrogels. To reply to the prearranged stimuli, including chemical triggers, light, magnetic field, electric field, ionic strength, temperature, pH, and glucose levels, dual/multi-stimuli-sensitive gels/hydrogels display controllable variations in mechanical characteristics and swelling. Recent attention has focused on injectable hydrogel-based drug delivery systems (DDS) because of its promise to offer regulated, controlled, and targeted medication release to the tumor site. These technologies have great potential to improve treatment outcomes and lessen side effects from prolonged chemotherapy exposure.
Collapse
Affiliation(s)
- Hamid Reza Garshasbi
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
8
|
Saranya M, da Silva AM, Karjalainen H, Klinkenberg G, Schmid R, McDonagh B, Molesworth PP, Sigfúsdóttir MS, Wågbø AM, Santos SG, Couto C, Karjalainen V, Gupta SD, Järvinen T, de Roy L, Seitz AM, Finnilä M, Saarakkala S, Haaparanta AM, Janssen L, Lorite GS. Magnetic-Responsive Carbon Nanotubes Composite Scaffolds for Chondrogenic Tissue Engineering. Adv Healthc Mater 2023; 12:e2301787. [PMID: 37660271 PMCID: PMC11468560 DOI: 10.1002/adhm.202301787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/10/2023] [Indexed: 09/04/2023]
Abstract
The demand for engineered scaffolds capable of delivering multiple cues to cells continues to grow as the interplay between cell fate with microenvironmental and external cues is revealed. Emphasis has been given to develop stimuli-responsive scaffolds. These scaffolds are designed to sense an external stimulus triggering a specific response (e.g., change in the microenvironment, release therapeutics, etc.) and then initiate/modulate a desired biofunction. Here, magnetic-responsive carboxylated multi-walled carbon nanotubes (cMWCNTs) are integrated into 3D collagen/polylactic acid (PLA) scaffold via a reproducible filtration-based method. The integrity and biomechanical performance of the collagen/PLA scaffolds are preserved after cMWCNT integration. In vitro safety assessment of cMWCNT/collagen/PLA scaffolds shows neither cytotoxicity effects nor macrophage pro-inflammatory response, supporting further in vitro studies. The cMWCNT/collagen/PLA scaffolds enhance chondrocytes metabolic activity while maintaining high cell viability and extracellular matrix (i.e., type II collagen and aggrecan) production. Comprehensive in vitro study applying static and pulsed magnetic field on seeded scaffolds shows no specific cell response in dependence with the applied field. This result is independent of the presence or absence of cMWCNT into the collagen/PLA scaffolds. Taken together, these findings provide additional evidence of the benefits to exploit the CNTs outstanding properties in the design of stimuli-responsive scaffolds.
Collapse
Affiliation(s)
| | | | - Hanna Karjalainen
- Research Unit of Health Science and TechnologyUniversity of OuluOulu90220Finland
| | - Geir Klinkenberg
- Department of Biotechnology and Nanomedicine SINTEF IndustryTrondheim7030Norway
| | - Ruth Schmid
- Department of Biotechnology and Nanomedicine SINTEF IndustryTrondheim7030Norway
| | - Birgitte McDonagh
- Department of Biotechnology and Nanomedicine SINTEF IndustryTrondheim7030Norway
| | - Peter P. Molesworth
- Department of Biotechnology and Nanomedicine SINTEF IndustryTrondheim7030Norway
| | | | - Ane Marit Wågbø
- Department of Biotechnology and Nanomedicine SINTEF IndustryTrondheim7030Norway
| | - Susana. G. Santos
- Instituto Nacional de Engenharia BiomédicaInstituto de Investigação e Inovação em SaúdeUniversidade do PortoPorto4200‐135Portugal
| | - Cristiana Couto
- Instituto Nacional de Engenharia BiomédicaInstituto de Investigação e Inovação em SaúdeUniversidade do PortoPorto4200‐135Portugal
| | | | - Shuvashis Das Gupta
- Research Unit of Health Science and TechnologyUniversity of OuluOulu90220Finland
| | - Topias Järvinen
- Microelectronic Research UnitUniversity of OuluOulu90570Finland
| | - Luisa de Roy
- Institute of Orthopedic Research and BiomechanicsCenter for Trauma ResearchUlm University Medical Center Ulm89081UlmGermany
| | - Andreas. M. Seitz
- Institute of Orthopedic Research and BiomechanicsCenter for Trauma ResearchUlm University Medical Center Ulm89081UlmGermany
| | - Mikko Finnilä
- Research Unit of Health Science and TechnologyUniversity of OuluOulu90220Finland
| | - Simo Saarakkala
- Research Unit of Health Science and TechnologyUniversity of OuluOulu90220Finland
| | | | | | | |
Collapse
|
9
|
Omrani Z, Pourmadadi M, Yazdian F, Rashedi H. Preparation and characterization of pH-sensitive chitosan/starch/MoS 2 nanocomposite for control release of curcumin macromolecules drug delivery; application in the breast cancer treatment. Int J Biol Macromol 2023; 250:125897. [PMID: 37481179 DOI: 10.1016/j.ijbiomac.2023.125897] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
In this work, chitosan (CS), Starch (S), and Molybdenum Disulfide (MoS2) were combined to create a nanocarrier that was utilized to treat breast cancer using the MCF-7 cell line. To analyze the features of the nanocarrier, Fourier-transform infrared spectroscopy (FTIR) and X-Ray diffraction (XRD) tests were performed, respectively, to discover physical interactions and chemical bonding. Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and zeta potential analyses were performed and reported to determine the structural characteristics and morphology of nanoparticles, size distribution, and surface charge of nanocarriers, respectively. The average size of the nanocomposite was measured at around 279 nm, and the surface charge of the nanocarrier was determined to be +86.31 mV. The entrapment and drug loading efficiency of nanocarriers were 87.25 % and 46.5 %, respectively, which is an acceptable value. The kinetics and release mode of the drug were investigated, and it was found that the synthesized nanocarrier was sensitive to pH and that its release was stable. The amount of the nanocarriers' toxicity and cell death were evaluated using MTT tests and flow cytometry, respectively. In the present study, the nanocarrier was wholly nontoxic and had anticancer properties against the MCF-7 cell line. This nanocarrier is very important due to its non-toxicity and sensitivity to pH and can be used in drug delivery and medical applications.
Collapse
Affiliation(s)
- Zahra Omrani
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|
10
|
Jasim LMM, Homayouni Tabrizi M, Darabi E, Jaseem MMM. The antioxidant, anti-angiogenic, and anticancer impact of chitosan-coated herniarin-graphene oxide nanoparticles (CHG-NPs). Heliyon 2023; 9:e20042. [PMID: 37809932 PMCID: PMC10559767 DOI: 10.1016/j.heliyon.2023.e20042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Background Herniarin, a simple coumarin found in chamomile leaf rosettes is known as the oxidative stress protector. In the current study, herniarin was captured into Graphene oxide nanoparticles and coated with chitosan poly-cationic polymer to be used as a novel bio-compatible nano-drug delivery system and investigate its antioxidant, anti-angiogenic and anti-cancer impacts on human lung A549 cancer cells. Method The Chitosan-coated Herniarin-Graphene oxide nanoparticles (CHG-NPs) were designed, produced, and characterized utilizing DLS, FESEM, FTIR, and Zeta-potential analysis. The CHG-NPs' antioxidant activity was analyzed by conducting ABTS and DPPH antioxidant assays. The CHG-NPs' anti-angiogenic activity was analyzed by CAM assay and verified by measuring VEGF and VEGFR gene expression levels following their increased treatment doses by applying Q-PCR technique. Finally, the CHG-NPs' cytotoxicity was studied in the human lung A549 cancer cells. Result The stable (+27.11 mV) 213.6-nm CHG-NPs significantly inhibited the ABTS/DPPH free radicals and exhibited antioxidant activity. The suppressed angiogenesis process in the CAM vessels was observed by detecting the decreased length/number of the vessels. Moreover, the down-regulated VEGF and VEGFR gene expression of the CAM blood vessels following the increased CHG-NPs treatment doses verified the nanoparticles' anti-angiogenic potential. Finally, the CHG-NPs significantly exhibited a selective cytotoxic impact on human A549 cancer cells compared with the normal HFF cell line. Conclusion The selective cytotoxicity, strong antioxidant activity, and significant anti-angiogenic property of the nano-scaled produced CHG-NPs make it an appropriate anticancer nano-drug delivery system. Therefore, the CHG-NPs have the potential to be used as a selective anti-lung cancer compound.
Collapse
Affiliation(s)
| | | | - Elham Darabi
- Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
11
|
Tian B, Liu J. Smart stimuli-responsive chitosan hydrogel for drug delivery: A review. Int J Biol Macromol 2023; 235:123902. [PMID: 36871689 DOI: 10.1016/j.ijbiomac.2023.123902] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Smart stimuli-responsive materials can respond to different signals (pH, temperature, light, electricity, etc.), and they have become a hot research topic for drug delivery. As a polysaccharide polymer with excellent biocompatibility, chitosan can be obtained from diverse natural sources. Chitosan hydrogels with different stimuli-response capabilities are widely applied in the drug delivery field. This review highlights and discusses the research progress on chitosan hydrogels concerning their stimuli-responsive capabilities. The feature of various stimuli-responsive kinds of hydrogels is outlined, and their potential use of drug delivery is summarized. Furthermore, the questions and future development chances of stimuli-responsive chitosan hydrogels are analyzed by comparing the current published literature, and the directions for the intelligent development of chitosan hydrogels are discussed.
Collapse
Affiliation(s)
- Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China; Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, Macau SAR, China.
| |
Collapse
|
12
|
Farasati Far B, Naimi-Jamal MR, Safaei M, Zarei K, Moradi M, Yazdani Nezhad H. A Review on Biomedical Application of Polysaccharide-Based Hydrogels with a Focus on Drug Delivery Systems. Polymers (Basel) 2022; 14:5432. [PMID: 36559799 PMCID: PMC9784417 DOI: 10.3390/polym14245432] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Over the last years of research on drug delivery systems (DDSs), natural polymer-based hydrogels have shown many scientific advances due to their intrinsic properties and a wide variety of potential applications. While drug efficacy and cytotoxicity play a key role, adopting a proper DDS is crucial to preserve the drug along the route of administration and possess desired therapeutic effect at the targeted site. Thus, drug delivery technology can be used to overcome the difficulties of maintaining drugs at a physiologically related serum concentration for prolonged periods. Due to their outstanding biocompatibility, polysaccharides have been thoroughly researched as a biological material for DDS advancement. To formulate a modified DDS, polysaccharides can cross-link with different molecules, resulting in hydrogels. According to our recent findings, targeted drug delivery at a certain spot occurs due to external stimulation such as temperature, pH, glucose, or light. As an adjustable biomedical device, the hydrogel has tremendous potential for nanotech applications in involved health areas such as pharmaceutical and biomedical engineering. An overview of hydrogel characteristics and functionalities is provided in this review. We focus on discussing the various kinds of hydrogel-based systems on their potential for effectively delivering drugs that are made of polysaccharides.
Collapse
Affiliation(s)
- Bahareh Farasati Far
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Department of Chemistry, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Maryam Safaei
- Department of Pharmacology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, Turkey
| | - Kimia Zarei
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Marzieh Moradi
- Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Hamed Yazdani Nezhad
- Department of Mechanical Engineering & Aeronautics, City University of London, London EC1V 0HB, UK
| |
Collapse
|
13
|
Abtahi NA, Naghib SM, Haghiralsadat F, Akbari Edgahi M. Development of highly efficient niosomal systems for co-delivery of drugs and genes to treat breast cancer in vitro and in vivo. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00135-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractIn this paper, we step forward in optimizing the efficiency of niosomal systems for carrying curcumin and miR-34a as single-/co-delivery to treat breast cancer. Curcumin, via regulation of p53 protein, affects the molecular signaling pathways and leads to cell death. Likewise, miRNAs, via alternation of the expression of genes, can suppress the development of tumor activities. To conquer and optimize the delivery limitation of curcumin and miRNA, niosomal systems with certain compositions (seven formulations) of Tween-80:Tween-60:cholesterol:DOTAP:PEG are introduced, which enhances the carrier size, surface charge, entrapment efficiency, transfection, and drug release. The results showed that Tween-60 has a significant influence on the entrapment efficiency of the composition. By including the PEG and DOTAP, high enhancements in the overall characteristics of the delivery system were observed. To assess the biological activity of samples, with/without the niosomal delivery system, cytotoxicity, apoptosis, in-vitro, and in-vivo cellular uptake were studied. The recorded data revealed better results from niosomal carriers than their free forms. The best result in single delivery was achieved by miRNA in F6, which had the highest apoptosis, uptake, and smallest tumor volumes under a controlled release. In conclusion, we successfully designed a nanoscale niosomal system to carry drugs and genes to the tumor site to treat cancer cells and provided remarkable data for the scientific society.
Collapse
|
14
|
Xiao Z, Sun P, Liu H, Zhao Q, Niu Y, Zhao D. Stimulus responsive microcapsules and their aromatic applications. J Control Release 2022; 351:198-214. [PMID: 36122896 DOI: 10.1016/j.jconrel.2022.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 10/31/2022]
Abstract
Fragrances and essential oils are promising for a wide range of applications due to their pleasant odors and diverse effects. However, direct addition to consumer products has the disadvantages of short retention time and easy deterioration of odor. At the same time, releasing a large amount of odor in a short time may be an unpleasant experience, which severely limits the practical application of aromatic substances. Microencapsulation perfectly solves these problems. Stimuli-responsive microcapsules, which combine environmental stimulation with microencapsulation, can not only effectively prevent the rapid decomposition and evaporation of aroma components, but also realize the "on-off" intelligent release of aroma substances to environmental changes, which have great promise in the field of fragrances. In this review, the application of stimuli-responsive microcapsules in fragrances is highlighted. Firstly, various encapsulation materials used to prepare stimuli-responsive aromatic microcapsules are described, mainly including some natural polymers, synthetic polymers, and inorganic materials. Subsequently, there is a detailed description of the common release mechanisms of stimuli-responsive aromatic microcapsules are described in detail. Finally, the application and future research directions are given for stimuli-responsive aromatic microcapsules in new textiles, food, paper, and leather.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiaotong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Pingli Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Huiqin Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Qixuan Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Yunwei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China
| | - Di Zhao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, No. 100 Haiquan Road, Shanghai 201418, China.
| |
Collapse
|
15
|
Sartipzadeh O, Naghib SM, Haghiralsadat F, Shokati F, Rahmanian M. Microfluidic-assisted synthesis and modeling of stimuli-responsive monodispersed chitosan microgels for drug delivery applications. Sci Rep 2022; 12:8382. [PMID: 35589742 PMCID: PMC9120176 DOI: 10.1038/s41598-022-12031-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
Droplet microfluidic has been established to synthesize and functionalize micro/nanoparticles for drug delivery and screening, biosensing, cell/tissue engineering, lab-on-a-chip, and organ-on-a-chip have attracted much attention in chemical and biomedical engineering. Chitosan (CS) has been suggested for different biomedical applications due to its unique characteristics, such as antibacterial bioactivities, immune-enhancing influences, and anticancer bioactivities. The simulation results exhibited an alternative for attaining visions in this complex method. In this regard, the role of the flow rate ratio on the CS droplet features, including the generation rate and droplet size, were thoroughly described. Based on the results, an appropriate protocol was advanced for controlling the CS droplet properties for comparing their properties, such as the rate and size of the CS droplets in the microchip. Also, a level set (LS) laminar two-phase flow system was utilized to study the CS droplet-breaking process in the Flow Focused-based microchip. The outcomes demonstrated that different sizes and geometries of CS droplets could be established via varying the several parameters that validated addressing the different challenges for several purposes like drug delivery (the droplets with smaller sizes), tissue engineering, and cell encapsulation (the droplets with larger sizes), lab-on-a-chip, organ-on-a-chip, biosensing and bioimaging (the droplets with different sizes). An experimental study was added to confirm the simulation results. A drug delivery application was established to verify the claim.
Collapse
Affiliation(s)
- Omid Sartipzadeh
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - Fatemeh Haghiralsadat
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farhad Shokati
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
16
|
Evaluation of folic acid-conjugated chitosan grafted Fe3O4/graphene oxide as a pH- and magnetic field-responsive system for adsorption and controlled release of gemcitabine. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1104-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Abstract
Chitosan (CS) and graphene oxide (GO) nanocomposites have received wide attention in biomedical fields due to the synergistic effect between CS which has excellent biological characteristics and GO which owns great physicochemical, mechanical, and optical properties. Nanocomposites based on CS and GO can be fabricated into a variety of forms, such as nanoparticles, hydrogels, scaffolds, films, and nanofibers. Thanks to the ease of functionalization, the performance of these nanocomposites in different forms can be further improved by introducing other functional polymers, nanoparticles, or growth factors. With this background, the current review summarizes the latest developments of CS-GO nanocomposites in different forms and compositions in biomedical applications including drug and biomacromolecules delivery, wound healing, bone tissue engineering, and biosensors. Future improving directions and challenges for clinical practice are proposed as well.
Collapse
Affiliation(s)
- Wenjun Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Maheshwari R, Gadeval A, Raval N, Kalia K, Tekade RK. Laser activatable nanographene colloids for chemo-photothermal combined gene therapy of triple-negative breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112605. [PMID: 35525767 DOI: 10.1016/j.msec.2021.112605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/01/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022]
Abstract
This investigation reports the green approach for developing laser activatable nanoscale-graphene colloids (nGC-CO-FA) for chemo-photothermal combined gene therapy of triple-negative breast cancer (TNBC). The nano colloid was found to be nanometric as characterized by SEM, AFM, and zeta sizer (68.2 ± 2.1 nm; 13.8 ± 1.2 mV). The doxorubicin (Dox) loaded employing hydrophobic interaction/π-π stacking showed >80% entrapment efficiency with a sustained pH-dependent drug release profile. It can efficiently incorporate siRNA and Dox and successfully co-localize them inside TNBC cells to obtain significant anticancer activity as evaluated using CCK-8 assay, apoptosis assay, cell cycle analysis, cellular uptake, fluorescence assay, endosomal escape study, DNA content analysis, and gene silencing efficacy studies. nGC-CO-FA/Dox/siRNA released the Dox in temperature- and a pH-responsive manner following NIR-808 laser irradiation. The synergistic photo-chemo-gene therapy using near infrared-808 nm laser (NIR-808) irradiation was found to be more effective as compared to without NIR-808 laser-treated counterparts (∆T: 37 ± 1.1 °C → to 49.2 ± 3.1 °C; 10 min; 0.5 W/cm2), suggesting the pivotal role of photothermal combined gene-therapy in the treatment of TNBC.
Collapse
Affiliation(s)
- Rahul Maheshwari
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air force station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
19
|
Liu F, Liu X, Chen F, Fu Q. Mussel-inspired chemistry: A promising strategy for natural polysaccharides in biomedical applications. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101472] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
20
|
Gharehdaghi Z, Rahimi R, Naghib SM, Molaabasi F. Cu (II)-porphyrin metal-organic framework/graphene oxide: synthesis, characterization, and application as a pH-responsive drug carrier for breast cancer treatment. J Biol Inorg Chem 2021; 26:689-704. [PMID: 34420089 DOI: 10.1007/s00775-021-01887-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 07/23/2021] [Indexed: 12/22/2022]
Abstract
A new multifunctional graphene oxide/Cu (II)-porphyrin MOF nanocomposite (CuG) comprised of Cu-TCPP MOF supported on graphene oxide (GO) nanosheets, has been fabricated by a solvothermal method at low temperature and one-pot process. Cu-TCPP MOF with universal advantages, such as high porosity, nontoxicity, large surface area, and safe biodegradation, combined with GO allows the achievement of an efficient doxorubicin loading (45.7%) and smart pH-responsive release for chemotherapy. More significantly, more than 97% of DOX was released by CuG at pH 5 which was more than that at pH 7.4 (~ 33.5%), while Cu-TCPP MOF displayed DOX release of 68.5% and 49% at pH 5 and 7.4, respectively, illustrating the effect of GO on the smart MOF construction for controllable releasing behavior in vitro. The results of in vitro anticancer experiments demonstrate that the developed nanocarrier exhibited slight or no cytotoxicity on normal cells, while the drug-loaded nanocarrier increased significant cancer cell-killing ability with higher therapeutic efficacy than free DOX, indicating the sustained release behavior of the CuG nanocarrier without any "burst effect". Moreover, the in vivo experiments demonstrated that the CuG-DOX exhibited significantly higher anticancer efficiency compared with free DOX. High anti-cancer therapeutic efficacy of this nanoscale carrier as an efficient pH sensitive agent, has the potential to enter further biomedical investigations. A new smart multifunctional graphene oxide-Cu (II)-porphyrin MOF nanocomposite (CuG) formed of Cu-TCPP MOF and graphene oxide (GO) has successfully fabricated and demonstrated an efficient pH-responsive drug release behavior in cancer therapy without using any targeting ligand.
Collapse
Affiliation(s)
- Zahra Gharehdaghi
- Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Rahmatollah Rahimi
- Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Fatemeh Molaabasi
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
21
|
Seifi T, Reza Kamali A. Antiviral performance of graphene-based materials with emphasis on COVID-19: A review. MEDICINE IN DRUG DISCOVERY 2021; 11:100099. [PMID: 34056572 PMCID: PMC8151376 DOI: 10.1016/j.medidd.2021.100099] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease-2019 has been one of the most challenging global epidemics of modern times with a large number of casualties combined with economic hardships across the world. Considering that there is still no definitive cure for the recent viral crisis, this article provides a review of nanomaterials with antiviral activity, with an emphasis on graphene and its derivatives, including graphene oxide, reduced graphene oxide and graphene quantum dots. The possible interactions between surfaces of such nanostructured materials with coronaviruses are discussed. The antiviral mechanisms of graphene materials can be related to events such as the inactivation of virus and/or the host cell receptor, electrostatic trapping and physico-chemical destruction of viral species. These effects can be enhanced by functionalization and/or decoration of carbons with species that enhances graphene-virus interactions. The low-cost and large-scale preparation of graphene materials with enhanced antiviral performances is an interesting research direction to be explored.
Collapse
Affiliation(s)
- Tahereh Seifi
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Ali Reza Kamali
- Energy and Environmental Materials Research Centre (E2MC), School of Metallurgy, Northeastern University, Shenyang 110819, China
| |
Collapse
|
22
|
Wang J, Qu J, Liu Y, Wang S, Liu X, Chen Y, Qi P, Miao G, Liu X. “Crocodile skin” ultra-tough, rapidly self-recoverable, anti-dry, anti-freezing, MoS2-based ionic organohydrogel as pressure sensors. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Gooneh-Farahani S, Naghib SM, Naimi-Jamal MR, Seyfoori A. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents. Sci Rep 2021; 11:17404. [PMID: 34465842 PMCID: PMC8408197 DOI: 10.1038/s41598-021-97081-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023] Open
Abstract
Smart nanomaterials with stimuli-responsive behavior are considered as promising platform for various drug delivery applications. Regarding their specific conditions, such as acidic pH, drug carriers to treatment of tumor microenvironment need some criteria to enhance drug delivery efficiency. In this study, for the first time, pH-sensitive BSA-stabilized graphene (BSG)/chitosan nanocomposites were synthesized through electrostatic interactions between the positively charged chitosan nanoparticles and negatively charged BSG and used for Doxorubicin (DOX) encapsulation as a general anticancer drug. Physicochemical characterization of the nanocomposites with different concentrations of BSG (0.5, 2, and 5wt%) showed effective decoration of chitosan nanoparticles on BSG. Comparing DOX release behavior from the nanocomposites and free BSG-chitosan nanoparticles were evaluated at two pHs of 7.4 and 4.5 in 28 days. It was shown that the presence of BSG significantly reduced the burst release observed in chitosan nanoparticles. The nanocomposite of 2wt% BSG was selected as the optimal nanocomposite with a release of 84% in 28 days and with the most uniform release in 24 h. Furthermore, the fitting of release data with four models including zero-order, first-order, Higuchi, and Korsmeyer-Peppas indicated that the addition of BSG changed the release mechanism of the drug, enabling uniform release for the optimal nanocomposite in first 24 h, compared to that for pure chitosan nanoparticles. This behavior was proved using metabolic activity assay of the SKBR-3 breast cancer cell spheroids exposed to DOX release supernatant at different time intervals. It was also demonstrated that DOX released from the nanocomposite had a significant effect on the suppression of cancer cell proliferation at acidic pH.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - M Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Amir Seyfoori
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
24
|
Doxorubicin-loaded biodegradable chitosan–graphene nanosheets for drug delivery applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Tian B, Liu Y, Liu J. Chitosan-based nanoscale and non-nanoscale delivery systems for anticancer drugs: A review. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110533] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
26
|
Bio-nanocomposite Polymer Hydrogels Containing Nanoparticles for Drug Delivery: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00207-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Cirillo G, Pantuso E, Curcio M, Vittorio O, Leggio A, Iemma F, De Filpo G, Nicoletta FP. Alginate Bioconjugate and Graphene Oxide in Multifunctional Hydrogels for Versatile Biomedical Applications. Molecules 2021; 26:1355. [PMID: 33802608 PMCID: PMC7961670 DOI: 10.3390/molecules26051355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/15/2022] Open
Abstract
In this work, we combined electrically-conductive graphene oxide and a sodium alginate-caffeic acid conjugate, acting as a functional element, in an acrylate hydrogel network to obtain multifunctional materials designed to perform multiple tasks in biomedical research. The hybrid material was found to be well tolerated by human fibroblast lung cells (MRC-5) (viability higher than 94%) and able to modify its swelling properties upon application of an external electric field. Release experiments performed using lysozyme as the model drug, showed a pH and electro-responsive behavior, with higher release amounts and rated in physiological vs. acidic pH. Finally, the retainment of the antioxidant properties of caffeic acid upon conjugation and polymerization processes (Trolox equivalent antioxidant capacity values of 1.77 and 1.48, respectively) was used to quench the effect of hydrogen peroxide in a hydrogel-assisted lysozyme crystallization procedure.
Collapse
Affiliation(s)
- Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| | - Elvira Pantuso
- National Research Council of Italy (CNR)—Institute on Membrane Technology (ITM), 87036 Rende (CS), Italy;
| | - Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| | - Orazio Vittorio
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW 2031, Australia;
- School of Women’s and Children’s Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Convergent BioNano Science and Technology, Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| | - Giovanni De Filpo
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy;
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (M.C.); (A.L.); (F.I.); (F.P.N.)
| |
Collapse
|
28
|
Ma Q, Zhao X, Shi A, Wu J. Bioresponsive Functional Phenylboronic Acid-Based Delivery System as an Emerging Platform for Diabetic Therapy. Int J Nanomedicine 2021; 16:297-314. [PMID: 33488074 PMCID: PMC7816047 DOI: 10.2147/ijn.s284357] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/30/2022] Open
Abstract
The glucose-sensitive self-adjusting drug delivery system simulates the physiological model of the human pancreas-secreting insulin and then precisely regulates the release of hypoglycemic drugs and controls the blood sugar. Thus, it has good application prospects in the treatment of diabetes. Presently, there are three glucose-sensitive drug systems: phenylboronic acid (PBA) and its derivatives, concanavalin A (Con A), and glucose oxidase (GOD). Among these, the glucose-sensitive polymer carrier based on PBA has the advantages of better stability, long-term storage, and reversible glucose response, and the loading of insulin in it can achieve the controlled release of drugs in the human environment. Therefore, it has become a research hotspot in recent years and has been developed very rapidly. In order to further carry out a follow-up study, we focused on the development process, performance, and application of PBA and its derivatives-based glucose-sensitive polymer drug carriers, and the prospects for the development of this field.
Collapse
Affiliation(s)
- Qiong Ma
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Xi Zhao
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Anhua Shi
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Education Department of Yunnan, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
- Department of Medical Biology, College of Basic Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan650500, People’s Republic of China
| |
Collapse
|
29
|
Jiang C, Zhao H, Xiao H, Wang Y, Liu L, Chen H, Shen C, Zhu H, Liu Q. Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opin Drug Deliv 2020; 18:119-138. [PMID: 32729733 DOI: 10.1080/17425247.2020.1798400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Owing to the unique properties of graphene, including large specific surface area, excellent thermal conductivity, and optical absorption, graphene-family nanomaterials (GFNs) have attracted extensive attention in biomedical applications, particularly in drug delivery and phototherapy. AREAS COVERED In this review, we point out several challenges involved in the clinical application of GFNs. Then, we provide an overview of the most recent publications about GFNs in biomedical applications, including diverse strategies for improving the biocompatibility, specific targeting and stimuli-responsiveness of GFNs for drug delivery, codelivery of drug and gene, photothermal therapy, photodynamic therapy, and multimodal combination therapy. EXPERT OPINION Although the application of GFNs is still in the preclinical stage, rational modification of GFNs with functional elements or making full use of GFNs-based multimodal combination therapy might show great potential in biomedicine for clinical application.
Collapse
Affiliation(s)
- Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyue Zhao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Haiyan Xiao
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Yuan Wang
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Huoji Chen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| | - Hongxia Zhu
- Combining Traditional Chinese and Western Medicine Hospital, Southern Medical University , 510315, Guangzhou, P. R. China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University , Guangzhou, China
| |
Collapse
|
30
|
Zare Y, Rhee KY. Electrical conductivity of interphase zone in polymer nanocomposites by carbon nanotubes properties and interphase depth. J Appl Polym Sci 2020. [DOI: 10.1002/app.50313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yasser Zare
- Biomaterials and Tissue Engineering Research Group, Department of Interdisciplinary Technologies, Breast Cancer Research Center Motamed Cancer Institute, ACECR Tehran Iran
| | - Kyong Yop Rhee
- Department of Mechanical Engineering College of Engineering, Kyung Hee University Yongin South Korea
| |
Collapse
|
31
|
Liu Y, Sun M, Wang T, Chen X, Wang H. Chitosan‐based self‐assembled nanomaterials: Their application in drug delivery. VIEW 2020. [DOI: 10.1002/viw.20200069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Ya Liu
- College of Marine Life Science Ocean University of China Qingdao China
| | - Mengjie Sun
- College of Marine Life Science Ocean University of China Qingdao China
| | - Ting Wang
- College of Marine Life Science Ocean University of China Qingdao China
| | - Xiguang Chen
- College of Marine Life Science Ocean University of China Qingdao China
| | - Hao Wang
- Laboratory for Biomedical Effects of Nanomaterials and Nanosafety National Center for Nanoscience and Technology (NCNST) Beijing China
| |
Collapse
|
32
|
Figueroa T, Carmona S, Guajardo S, Borges J, Aguayo C, Fernández K. Synthesis and characterization of graphene oxide chitosan aerogels reinforced with flavan-3-ols as hemostatic agents. Colloids Surf B Biointerfaces 2020; 197:111398. [PMID: 33035809 DOI: 10.1016/j.colsurfb.2020.111398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023]
Abstract
The natural mechanisms of the body cannot control massive hemorrhaging, resulting in a requirement for hemostatic intervention. In this study, Graphene oxide and Chitosan aerogels reinforced with grape seed (SD) and skin (SK) extracts were developed for use as hemostatic agents by evaluating the influence of pH on their synthesis, and the amount of grape extract added on the physical and chemical properties of the aerogels. The material was evaluated by FTIR, XRD, Raman spectroscopy, DLS, uniaxial compression tests and SEM. The capacity of the aerogels to absorb water, PBS and blood, as well as their coagulation capacity, were determined. In addition, the release profile for grape extracts in PBS and the material's cytotoxicity were determined. The aerogels that were synthesized under basic conditions and loaded with grape extracts were more rigid and negatively charged, and they presented smaller pores than the un-loaded acidic aerogels. For all aerogels, the hemoglobin absorption was greater than 90 % in the first 30 s. A higher density of adsorbed blood cells was observed on aerogels loaded with a higher amount of grape extract. The maximum release of extract from the aerogels occurred for those loaded with SK extracts at a basic pH; the aerogels that were prepared under acidic conditions dissolved in the media. Aerogels loaded with SK extracts under alkaline conditions were not cytotoxic toward human dermal fibroblasts and exhibited cell viabilities above 90 %. These findings suggest that these aerogels have the potential for use as hemostatic agents in wound management.
Collapse
Affiliation(s)
- Toribio Figueroa
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile.
| | - Satchary Carmona
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile.
| | - Sebastian Guajardo
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile
| | - Jessica Borges
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile.
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile.
| |
Collapse
|
33
|
Lo PY, Lee GY, Zheng JH, Huang JH, Cho EC, Lee KC. GFP Plasmid and Chemoreagent Conjugated with Graphene Quantum Dots as a Novel Gene Delivery Platform for Colon Cancer Inhibition In Vitro and In Vivo. ACS APPLIED BIO MATERIALS 2020; 3:5948-5956. [PMID: 35021823 DOI: 10.1021/acsabm.0c00631] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Scientists have studied intensively the gene delivery carriers for treating genetic diseases. However, there are challenges that impede the application of naked gene-based therapy at the clinical level, such as quick elimination of the circulation, lack of membrane penetrability, and poor endosome trapping. Herein, we develop graphene quantum dots (GQDs)-derivative nanocarriers and introduce polyethylenimine (PEI) to equip the system with enhanced biocompatibility and abundant functional groups for modification. In addition to carrying green fluorescent protein (GFP) as an example of gene delivery, this system covalently binds colon cancer cells targeted antibody and epidermal growth factor receptor (EGFR) to enhance cell membrane penetrability and cell uptake of nanocarriers. To achieve multistrategy cancer therapy, the anticancer drug doxorubicin (Dox) is noncovalently encapsulated to achieve pH-induced drug release at tumor sites and leaves space for further functional gene modification. This nanoparticle serves as a multifunctional gene delivery system, which facilitates improved cytotoxicity and longer-sustained inhibition capacity compared to free Dox treatments in colon cancer cells. Moreover, our GQD composites display compatible tumor suppression ability compared with the free Dox treatment group in xenograft mice experiment with significantly less toxicity. This GQD nanoplatform was demonstrated as a multifunctional gene delivery system that could contribute to treating other genetic diseases in the future.
Collapse
Affiliation(s)
- Pei-Ying Lo
- Department of Science Education, National Taipei University of Education, No.134, Section 2, Heping E. Road, Da'an District, Taipei City 106, Taiwan
| | - Guang-Yu Lee
- Department of Science Education, National Taipei University of Education, No.134, Section 2, Heping E. Road, Da'an District, Taipei City 106, Taiwan
| | - Jia-Huei Zheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City 110, Taiwan
| | - Jen-Hsien Huang
- Department of Green Material Technology, Green Technology Research Institute, CPC Corporation, Kaohsiung 81126, Taiwan
| | - Er-Chieh Cho
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City 110, Taiwan.,Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei City 110, Taiwan.,Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei City 110, Taiwan
| | - Kuen-Chan Lee
- Department of Science Education, National Taipei University of Education, No.134, Section 2, Heping E. Road, Da'an District, Taipei City 106, Taiwan.,Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei City 110, Taiwan
| |
Collapse
|
34
|
Yan T, Zhu S, Hui W, He J, Liu Z, Cheng J. Chitosan based pH-responsive polymeric prodrug vector for enhanced tumor targeted co-delivery of doxorubicin and siRNA. Carbohydr Polym 2020; 250:116781. [PMID: 33049806 DOI: 10.1016/j.carbpol.2020.116781] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
The co-delivery of chemotherapeutic drugs and siRNA has gained increasing attentions owing to the enhanced antitumor efficacy over single administration. In this work, a chitosan-based pH-responsive prodrug vector was developed for the co-delivery of doxorubicin (DOX) and Bcl-2 siRNA. The accumulation of fabricated nanoparticles in hepatoma cells was enhanced by glycyrrhetinic acid receptor-mediated endocytosis. The cumulative release amount of the encapsulated DOX and siRNA reached 90.2 % and 81.3 % in 10 h, respectively. More strikingly, this nanoplatform can efficiently integrate gene- and chemo-therapies with a dramatically enhanced tumor inhibitory rate (88.0 %) in vivo. This co-delivery system may provide the latest strategy to meet the needs of combination therapies for tumors, offering safe and efficient improvements to the synergistic antitumor efficacy of gene-chemotherapies.
Collapse
Affiliation(s)
- Tingsheng Yan
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Siyuan Zhu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Wenxue Hui
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinmei He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China
| | - Jinju Cheng
- Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China; Food Science College, Northeast Agricultural University, Harbin, Heilongjiang, 150030, China.
| |
Collapse
|
35
|
Askari E, Seyfoori A, Amereh M, Gharaie SS, Ghazali HS, Ghazali ZS, Khunjush B, Akbari M. Stimuli-Responsive Hydrogels for Local Post-Surgical Drug Delivery. Gels 2020; 6:E14. [PMID: 32397180 PMCID: PMC7345431 DOI: 10.3390/gels6020014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, surgical operations, followed by systemic drug delivery, are the prevailing treatment modality for most diseases, including cancers and trauma-based injuries. Although effective to some extent, the side effects of surgery include inflammation, pain, a lower rate of tissue regeneration, disease recurrence, and the non-specific toxicity of chemotherapies, which remain significant clinical challenges. The localized delivery of therapeutics has recently emerged as an alternative to systemic therapy, which not only allows the delivery of higher doses of therapeutic agents to the surgical site, but also enables overcoming post-surgical complications, such as infections, inflammations, and pain. Due to the limitations of the current drug delivery systems, and an increasing clinical need for disease-specific drug release systems, hydrogels have attracted considerable interest, due to their unique properties, including a high capacity for drug loading, as well as a sustained release profile. Hydrogels can be used as local drug performance carriers as a means for diminishing the side effects of current systemic drug delivery methods and are suitable for the majority of surgery-based injuries. This work summarizes recent advances in hydrogel-based drug delivery systems (DDSs), including formulations such as implantable, injectable, and sprayable hydrogels, with a particular emphasis on stimuli-responsive materials. Moreover, clinical applications and future opportunities for this type of post-surgery treatment are also highlighted.
Collapse
Affiliation(s)
- Esfandyar Askari
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran P.O. Box 1517964311, Iran;
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Sadaf Samimi Gharaie
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Hanieh Sadat Ghazali
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran P.O. Box 16846-13114, Iran;
| | - Zahra Sadat Ghazali
- Biomedical Engineering Department, Amirkabir University of Technology (AUT), Tehran P.O. Box 158754413, Iran;
| | - Bardia Khunjush
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
| | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; (A.S.); (M.A.); (S.S.G.); (B.K.)
- Center for Biomedical Research, University of Victoria, Victoria, BC V8P 5C2, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
36
|
Sartipzadeh O, Naghib SM, Seyfoori A, Rahmanian M, Fateminia FS. Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110606. [DOI: 10.1016/j.msec.2019.110606] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/25/2019] [Accepted: 12/26/2019] [Indexed: 01/23/2023]
|
37
|
Wei S, Ching YC, Chuah CH. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydr Polym 2020; 231:115744. [DOI: 10.1016/j.carbpol.2019.115744] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/10/2019] [Accepted: 12/14/2019] [Indexed: 12/12/2022]
|
38
|
Figueroa T, Aguayo C, Fernández K. Design and Characterization of Chitosan-Graphene Oxide Nanocomposites for the Delivery of Proanthocyanidins. Int J Nanomedicine 2020; 15:1229-1238. [PMID: 32110019 PMCID: PMC7039064 DOI: 10.2147/ijn.s240305] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/23/2020] [Indexed: 01/16/2023] Open
Abstract
Introduction In the last years, the utilization of phytomedicines has increased given their good therapeutic activity and fewer side effects compared to allopathic medicines. However, concerns associated with the biocompatibility and toxicity of natural compounds, limit the phytochemical therapeutic action, opening the opportunity to develop new systems that will be able to effectively deliver these substances. This study has developed a nanocomposite of chitosan (CS) functionalized with graphene oxide (GO) for the delivery of proanthocyanidins (PAs), obtained from a grape seed extract (Ext.). Methods The GO-CS nanocomposite was covalently bonded and was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), atomic force microscopy (AFM) and by dynamic light scattering (DLS). The loading and release of Ext. from the GO-CS nanocomposite were performed in simulated physiological, and the cytotoxicity of the raw materials (GO and Ext.) and nanocomposites (GO-CS and GO-CS-Ext.) was determined using a human kidney cell line (HEK 293). Results The chemical characterization indicated that the covalent union was successfully achieved between the GO and CS, with 44 wt. % CS in the nanocomposite. The GO-CS nanocomposite was thermostable and presented an average diameter of 480 nm (by DLS). The Ext. loading capacity was approximately 20 wt. %, and under simulated physiological conditions, 28.4 wt.% Ext. (g) was released per g of the nanocomposite. GO-CS-Ext. was noncytotoxic, presenting a 97% survival rate compared with 11% for the raw extract and 48% for the GO-CS nanocomposite at a concentration of 500 µg mL-1 after 24 hrs. Conclusion Due to π–π stacking and hydrophilic interactions, GO-CS was reasonably efficient in binding Ext., with high loading capacity and Ext. release from the nanocomposite. The GO-CS nanocomposite also increased the biocompatibility of PAs-rich Ext., representing a new platform for the sustained release of phytodrugs.
Collapse
Affiliation(s)
- Toribio Figueroa
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, University of Concepción, Concepción, Chile
| |
Collapse
|
39
|
Ghorbanzade S, Naghib SM. Nanoscaled Materials for Drug Delivery into Cells/Stem Cells. Methods Mol Biol 2020; 2125:181-192. [PMID: 31691926 DOI: 10.1007/7651_2019_268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The successful and efficient transport and delivery of drugs and biomolecules to cells/stem cells have revealed the main challenge in clinical therapy development. Special materials and systems are used in smart drug delivery to improve the effectiveness by controlling drug release and decreasing the side effects. Synthesized water-dispersible polymer-covalent organic framework nanocomposites are integrated via the assembly of PEG-modified monofunctional curcumin derivatives and amine-functionalized covalent organic frameworks for in vitro and in vivo drug delivery. The smart delivery system exhibits an efficient targeting strategy for cancer therapy and also demonstrates an important promise on the improvement of a smart system for cancer cell-/stem cell-targeted drug delivery.
Collapse
Affiliation(s)
- Sadegh Ghorbanzade
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| |
Collapse
|
40
|
Sabourian P, Tavakolian M, Yazdani H, Frounchi M, van de Ven TG, Maysinger D, Kakkar A. Stimuli-responsive chitosan as an advantageous platform for efficient delivery of bioactive agents. J Control Release 2020; 317:216-231. [DOI: 10.1016/j.jconrel.2019.11.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/31/2022]
|
41
|
Zhu Y, Li D, Belwal T, Li L, Chen H, Xu T, Luo Z. Effect of Nano-SiOx/Chitosan Complex Coating on the Physicochemical Characteristics and Preservation Performance of Green Tomato. Molecules 2019; 24:molecules24244552. [PMID: 31842429 PMCID: PMC6943560 DOI: 10.3390/molecules24244552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022] Open
Abstract
A novel nano-silicon oxides (SiOx)/chitosan complex film was prepared using ultrasonic assistant in the process of dissolving chitosan and silicon oxides (SiOx), and characterized by transmission electron microscopy. Its effect on quality preservation of tomatoes (Solanum lycopersicum L. cv. Zheza 205) was investigated under ambient temperature. The results revealed that the nano-SiOx/chitosan complex (NSCC) film retarded weight loss and softness, delayed the titratable acids and total soluble solids loss, and thus markedly extended shelf life of green tomatoes. The antimicrobial activity of tomatoes coated with NSCC film was also recorded higher compared to chitosan (Ch) films and control. In addition, the NSCC film-coated tomatoes prevent the increase of malondialdehyde content and total polyphenol content. Moreover, the peroxidase activity, phenylalanine ammonia-lyase activity, and polyphenoloxidase activity of tomatoes coated with NSCC film were found lower than that in other treatments. These data indicated that the beneficial effects of nano-SiOx/chitosan complex coating on postharvest quality were possibly associated with the lower rate of O2/CO2 transmission coefficient, limiting food-borne pathogenic bacterial growth, higher antioxidant activities, and also higher reactive oxygen species (ROS) scavenging and anti-browning activities of related enzymes in the tomatoes. Further, the results of the study could be used to successfully develop a novel nano-SiOx/chitosan complex film for improving the postharvested quality of tomatoes and thus effectively utilized by the food packaging industry.
Collapse
Affiliation(s)
- Yingjie Zhu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Dong Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Li Li
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Hangjun Chen
- Institute of Food Science, Zhejiang Academy of Agricultural Science, Hangzhou 310058, China;
| | - Tingqiao Xu
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory of Agro-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (D.L.); (T.B.); (L.L.); (T.X.)
- Correspondence: ; Tel.: +86-135-1581-3691
| |
Collapse
|
42
|
Askari E, Naghib SM, Seyfoori A, Maleki A, Rahmanian M. Ultrasonic-assisted synthesis and in vitro biological assessments of a novel herceptin-stabilized graphene using three dimensional cell spheroid. ULTRASONICS SONOCHEMISTRY 2019; 58:104615. [PMID: 31450294 DOI: 10.1016/j.ultsonch.2019.104615] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
In vivo assays of graphene and its derivatives are big challenges in biological evaluations because they require simultaneous long-term stability in aqueous dispersion and controllable systemic toxicity. Bifunctional graphene nanosheets which have key function in biomedical area are expected to address this challenge. Here, novel bifunctional graphene nanosheets were successfully synthesized in the presence of Herceptin, a natural antibody, using a facile ultrasonic-assisted method. Graphite layers were successfully exfoliated which resulted excellent stability of separated layers in herceptin solution. In aqueous solution, graphene concentration was effectively controlled by varying the herceptin content and sonication time. Furthermore, the toxicity of graphene was tested in both 2D and 3D spheroid cultures. The results showed that graphene toxicity were considerably reduced in spheroid culture compared to the 2D culture data. Moreover, the toxicity behavior of graphene was dependent on the exposed concentration of graphene that the mortality rate was significantly decreased when the concentration of graphene was below 1 µg/mL. This bifunctional graphene which possessed long-term stability in aqueous solutions and induced slight toxicity offers a promising nanostructure in tumor-targeted drug delivery, regenerative medicine and tissue engineering. This proof-of-concept study demonstrates the feasibility of ultrasonic assisted method in one-step synthesis of bifunctional nanomaterials and biostructures for clinical applications.
Collapse
Affiliation(s)
- Esfandyar Askari
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran.
| | - Amir Seyfoori
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Mehdi Rahmanian
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
43
|
Abstract
Synthetic polymers, biopolymers, and their nanocomposites are being studied, and some of them are already used in different medical areas. Among the synthetic ones that can be mentioned are polyolefins, fluorinated polymers, polyesters, silicones, and others. Biopolymers such as polysaccharides (chitosan, hyaluronic acid, starch, cellulose, alginates) and proteins (silk, fibroin) have also become widely used and investigated for applications in medicine. Besides synthetic polymers and biopolymers, their nanocomposites, which are hybrids formed by a macromolecular matrix and a nanofiller (mineral or organic), have attracted great attention in the last decades in medicine and in other fields due to their outstanding properties. This review covers studies done recently using the polymers, biopolymers, nanocomposites, polymer micelles, nanomicelles, polymer hydrogels, nanogels, polymersomes, and liposomes used in medicine as drugs or drug carriers for cancer therapy and underlines their responses to internal and external stimuli able to make them more active and efficient. They are able to replace conventional cancer drug carriers, with better results.
Collapse
|
44
|
Ahmed KK, Tamer MA, Ghareeb MM, Salem AK. Recent Advances in Polymeric Implants. AAPS PharmSciTech 2019; 20:300. [PMID: 31482251 DOI: 10.1208/s12249-019-1510-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Implantable drug delivery systems, such as drug pumps and polymeric drug depots, have emerged as means of providing predetermined drug release profiles at the desired site of action. While initial implants aimed at providing an enduring drug supply, developments in polymer chemistry and pharmaceutical technology and the growing need for refined drug delivery patterns have prompted the design of sophisticated drug delivery implants such as on-demand drug-eluting implants and personalized 3D printed implants. The types of cargo loaded into these implants range from small drug molecules to hormones and even therapeutic cells. This review will shed light upon recent advances in materials and composites used for polymeric implant fabrication, highlight select approaches employed in polymeric implant fabrication, feature medical applications where polymeric implants have a significant impact, and report recent advances made in these areas.
Collapse
|
45
|
Rahmanian M, seyfoori A, Dehghan MM, Eini L, Naghib SM, Gholami H, Farzad Mohajeri S, Mamaghani KR, Majidzadeh-A K. Multifunctional gelatin–tricalcium phosphate porous nanocomposite scaffolds for tissue engineering and local drug delivery: In vitro and in vivo studies. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Zare Y, Rhee KY. Prediction of loss factor (tan δ) for polymer nanocomposites as a function of yield tress, relaxation time and the width of transition region between Newtonian and power-law behaviors. J Mech Behav Biomed Mater 2019; 96:136-143. [DOI: 10.1016/j.jmbbm.2019.04.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 11/29/2022]
|
47
|
Natural biodegradable polymers based nano-formulations for drug delivery: A review. Int J Pharm 2019; 561:244-264. [PMID: 30851391 DOI: 10.1016/j.ijpharm.2019.03.011] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 12/11/2022]
Abstract
Nanomedicines are now considered as the new-generation medication in the current era mainly because of their features related to nano size. The efficacy of many drugs in their micro/macro formulations is shown to have poor bioavailability and pharmacokinetics after oral administration. To overcome this predicament, use of natural/synthetic biodegradable polymeric nanoparticles (NPs) have gained prominence in the field of nanomedicine for targeted drug delivery to improve biocompatibility, bioavailability, safety, enhanced permeability, better retention time and lower toxicity. For drug delivery, it is essential to have biodegradable nanoparticle formulations for safe and efficient transport and release of drug at the intended site. Moreover, depending on the target organ, a suitable biodegradable polymer can be selected as the drug-carrier for target specific as well as for sustained drug delivery. The aim of this review is to present the current status and scope of natural biodegradable polymers as well as some emerging polymers with special characteristics as suitable carriers for drug delivery applications. The most widely preferred preparation methods are discussed along with their characterization using different analytical techniques. Further, the review highlights significant features of methods developed using natural polymers for drug entrapment and release studies.
Collapse
|
48
|
Mu M, Li X, Tong A, Guo G. Multi-functional chitosan-based smart hydrogels mediated biomedical application. Expert Opin Drug Deliv 2019; 16:239-250. [PMID: 30753086 DOI: 10.1080/17425247.2019.1580691] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Xiaoling Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, R. P. China
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, R. P. China
- Collaborative Innovation Center for Biotherapy, Chengdu, R. P. China
| |
Collapse
|