1
|
Kaval Oğuz E, Oğuz AR, Özok N, Alkan Z, Ergöz Azizoğlu B, Örgi E, Erdemir AN, Yeşilbaş A. Investigation of the therapeutic effect of melatonin on deltamethrin applied mouse primary hepatocyte culture. Arch Physiol Biochem 2025; 131:63-70. [PMID: 39101831 DOI: 10.1080/13813455.2024.2387696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
OBJECTIVE In recent years, it has been known that the melatonin hormone, secreted from the pineal gland, possesses significant antioxidant activity. This study explores the therapeutic effect of melatonin on the deleterious effects of deltamethrin, a pyrethroid pesticide extensively used worldwide, including in Türkiye, on mouse liver cells. METHODS Hepatocytes from Balb/C mice were isolated using a two-stage perfusion method, resulting in over 85% live hepatocytes. The isolated cells were cultured with different doses of deltamethrin (1 and 10 µM) and melatonin (100 µM) for 24 and 48 hours. At the conclusion of the culture period, hepatocytes were extracted at the 24th and 48th hours, and Malondialdehyde (MDA), Total Antioxidant Capacity (TAC), Total Oxidation Status (TOS), and DNA damages (8-hydroxy-2'-deoxyguanosine (8-OHdG)) were examined. RESULTS While an increase in MDA, TOS, and DNA damage was observed in the deltamethrin-administered groups of hepatocytes, a decrease in TAC level was noted. It was determined that the applied deltamethrin had no effect on cell viability throughout the application period. CONCLUSION Furthermore, it was observed that melatonin, when administered concurrently with deltamethrin, reduced the toxic effect of deltamethrin. This study suggests that melatonin has a protective effect against deltamethrin-induced damage in mouse hepatocyte cells.
Collapse
Affiliation(s)
- Elif Kaval Oğuz
- Faculty of Education, Science Education, Van Yüzüncü Yıl University, Van, Türkiye
| | - Ahmet Regaib Oğuz
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Necati Özok
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Zehra Alkan
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Burcu Ergöz Azizoğlu
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Elif Örgi
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Ayşe Nur Erdemir
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| | - Ayşe Yeşilbaş
- Department of Biology, Faculty of Science, Van Yüzüncü Yıl University, Van, Türkiye
| |
Collapse
|
2
|
Zouaoui S, Rouabhi R. Lysosomal disruption, mitochondrial impairment, histopathological and oxidative stress in rat's nervous system after exposure to a neonicotinoid (imidacloprid). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59472-59489. [PMID: 39356435 DOI: 10.1007/s11356-024-35195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/03/2024]
Abstract
Imidacloprid (IMI), a neonicotinoid pesticide, has been widely used due to its high efficiency against insect pests. However, its prolonged exposure may pose significant risks to non-target organisms, including mammals. Recent studies have raised concerns about its potential neurotoxicity, yet the underlying mechanisms remain poorly understood. This study aimed to assess the neurotoxic effects of chronic Imidacloprid exposure in Wistar rats, focusing on oxidative stress, mitochondrial dysfunction, and lysosomal disruption. Wistar rats were orally administered two doses of Imidacloprid (5 mg/kg and 50 mg/kg body weight) for three months. Neurotoxic effects were assessed by measuring key biochemical markers such as the enzymatic activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), and glutathione S-transferase (GST). Non-enzymatic markers, including glutathione (GSH) levels and malondialdehyde (MDA) index, were also evaluated. Mitochondrial function was assessed by analyzing oxygen consumption, swelling, and membrane permeability and histopathological changes. Lysosomal stability was examined using the Neutral Red Retention Time (NRRT) assay. Neutral red is a dye that accumulates in the acidic environment of lysosomes. Healthy lysosomes retain the dye, while compromised lysosomes lose it, indicating destabilization. By measuring the amount of neutral red retained in lysosomes, the NRRT assay assesses lysosomal integrity. Lysosomal pH variations were also monitored to evaluate functional changes. Microscopic analysis provided insight into structural changes in lysosomes and other cell components. Lysosomal destabilization was further confirmed by morphological alterations observed through light microscopy, revealing a progressive, time-dependent degeneration of lysosomal structures, including lysosomal expansion, neutral red dye leakage, and cell rounding. These changes reflected a temporal evolution of lysosomal damage, progressing from minor structural disruptions to more severe alterations as exposure continued, observable at the microscopic level. During the study, clinical observations of intoxicated rats included symptoms such as lethargy, reduced activity levels, and impaired motor coordination. High-dose Imidacloprid exposure led to noticeable behavioral changes, including decreased exploratory behavior and altered grooming patterns. Additionally, signs of neurotoxic effects, such as tremors or ataxia, were observed in the rats exposed to the higher dose, reflecting the systemic impact of chronic pesticide exposure. The results revealed a significant decrease in the enzymatic activities of CAT, GPx, and SOD, accompanied by an increase in GST activity. A notable reduction in glutathione levels and a rise in MDA index were observed, indicating enhanced oxidative stress in the brain. Mitochondrial impairment was evidenced by disturbances in oxygen consumption, increased swelling, and altered membrane permeability. Lysosomal destabilization was confirmed by reduced retention of neutral red dye, structural changes in lysosomes, and a significant rise in lysosomal pH in the IMI-exposed groups. In addition, the histopathological features indicate that imidacloprid at the given dose and exposure duration may have caused notable neurotoxic effects in Wistar rat brain tissue. Chronic exposure to Imidacloprid induces oxidative stress, mitochondrial dysfunction, lysosomal disruption and histopathological alterations in the central nervous system of Wistar rats. These findings provide valuable insights into the neurotoxic mechanisms of neonicotinoid pesticides, highlighting the need for further research to understand the long-term effects of Imidacloprid exposure on mammalian health.
Collapse
Affiliation(s)
- Sarra Zouaoui
- Laboratory of Toxicology and Ecosystems Pathologies, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria
- Applied Biology Department, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria
| | - Rachid Rouabhi
- Laboratory of Toxicology and Ecosystems Pathologies, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria.
- Applied Biology Department, Echahid Cheikh Larbi Tebessi University, Tebessa, Algeria.
| |
Collapse
|
3
|
Muhammad I, Ahmad S, Shen W. Melatonin-Mediated Molecular Responses in Plants: Enhancing Stress Tolerance and Mitigating Environmental Challenges in Cereal Crop Production. Int J Mol Sci 2024; 25:4551. [PMID: 38674136 PMCID: PMC11049982 DOI: 10.3390/ijms25084551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cereal crops are crucial for global food security; however, they are susceptible to various environmental stresses that significantly hamper their productivity. In response, melatonin has emerged as a promising regulator, offering potential benefits for stress tolerance and crop growth. This review explores the effects of melatonin on maize, sorghum, millet, rice, barley, and wheat, aiming to enhance their resilience to stress. The application of melatonin has shown promising outcomes, improving water use efficiency and reducing transpiration rates in millet under drought stress conditions. Furthermore, it enhances the salinity and heavy metal tolerance of millet by regulating the activity of stress-responsive genes. Similarly, melatonin application in sorghum enhances its resistance to high temperatures, low humidity, and nutrient deficiency, potentially involving the modulation of antioxidant defense and aspects related to photosynthetic genes. Melatonin also exerts protective effects against drought, salinity, heavy metal, extreme temperatures, and waterlogging stresses in maize, wheat, rice, and barley crops by decreasing reactive oxygen species (ROS) production through regulating the antioxidant defense system. The molecular reactions of melatonin upregulated photosynthesis, antioxidant defense mechanisms, the metabolic pathway, and genes and downregulated stress susceptibility genes. In conclusion, melatonin serves as a versatile tool in cereal crops, bolstering stress resistance and promoting sustainable development. Further investigations are warranted to elucidate the underlying molecular mechanisms and refine application techniques to fully harness the potential role of melatonin in cereal crop production systems.
Collapse
Affiliation(s)
- Ihsan Muhammad
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China;
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Weijun Shen
- Guangxi Key Laboratory of Forest Ecology and Conservation, State Key Laboratory for Conservation and Utilization of Agro-Bioresources, College of Forestry, Guangxi University, Nanning 530004, China;
| |
Collapse
|
4
|
Rafiyan M, Davoodvandi A, Reiter RJ, Mansournia MA, Rasooli Manesh SM, Arabshahi V, Asemi Z. Melatonin and cisplatin co-treatment against cancer: A mechanistic review of their synergistic effects and melatonin's protective actions. Pathol Res Pract 2024; 253:155031. [PMID: 38103362 DOI: 10.1016/j.prp.2023.155031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Combination chemotherapy appears to be a preferable option for some cancer patients, especially when the medications target multiple pathways of oncogenesis; individuals treated with combination treatments may have a better prognosis than those treated with single agent chemotherapy. However, research has revealed that this is not always the case, and that this technique may just enhance toxicity while having little effect on boosting the anticancer effects of the medications. Cisplatin (CDDP) is a chemotherapeutic medicine that is commonly used to treat many forms of cancer. However, it has major adverse effects such as cardiotoxicity, skin necrosis, testicular toxicity, and nephrotoxicity. Many research have been conducted to investigate the effectiveness of melatonin (MLT) as an anticancer medication. MLT operates in a variety of ways, including decreasing cancer cell growth, causing apoptosis, and preventing metastasis. We review the literature on the role of MLT as an adjuvant in CDDP-based chemotherapies and discuss how MLT may enhance CDDP's antitumor effects (e.g., by inducing apoptosis and suppressing metastasis) while protecting other organs from its adverse effects, such as cardio- and nephrotoxicity.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Vajiheh Arabshahi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Huang Y, Hong Y, Wu S, Yang X, Huang Q, Dong Y, Xu D, Huang Z. Prolonged darkness attenuates imidacloprid toxicity through the brain-gut-microbiome axis in zebrafish, Danio rerio. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163481. [PMID: 37068676 DOI: 10.1016/j.scitotenv.2023.163481] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
The present study investigated the toxic effects of IMI on brain and gut of zebrafish (Danio rerio) by a combination of transcriptome and microbiome analysis. In addition, the involvement of light/dark period was also evaluated. An acute toxic test was conducted on adult zebrafish weighing 0.45 ± 0.02 g with 4 experimental groups (n = 15): 1) IMI group (Light: Dark = 12: 12 h), 2) prolonged light group (Light: Dark = 20: 4 h), 3) prolonged darkness group (Light: Dark = 4: 20 h) which received 20 mg/L of IMI, and 4) control group, which was not treated with IMI (Light: Dark = 12: 12 h). The results showed that prolonged darkness improved the survival rate of zebrafish upon IMI exposure for 96 h. In the sub-chronic test, zebrafish were divided into the same 4 groups and exposed to IMI at 1 mg/L for 14 d (n = 30). The results showed that IMI induced oxidative stress in both IMI and prolonged light groups by inhibition of antioxidant activities and accumulation of oxidative products. Transcriptome analysis revealed a compromise of antioxidation and tryptophan metabolism pathways under IMI exposure. Several genes encoding rate-limiting enzymes in serotonin and melatonin synthesis were all inhibited in both IMI and LL groups. Meanwhile, significant decrease (P < 0.5) of serotonin and melatonin levels was observed. However, there's remarkable improvement of biochemical and transcriptional status in prolonged darkness group. In addition, microbiome analysis showed great alteration of gut bacterial community structure and inhibition of tryptophan metabolism pathway. Similarly, the gut microbiota dysbiosis induced by IMI was alleviated in prolonged darkness. In summary, sub-chronic IMI exposure induced neurotoxicity and gut toxicity in zebrafish by oxidative stress and impaired the brain-gut-axis through tryptophan metabolism perturbation. Prolonged darkness could effectively attenuate the IMI toxicity probably through maintaining a normal tryptophan metabolism.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China.
| | - Shu Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Road, Chengdu 611137, China
| | - Xiaozhen Yang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Engineering Research Centre of Agriculture, Shanghai Ocean University, 999 Huchenghuan Road, Lingang New District, Shanghai 201306, China
| | - Qiang Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Yanzhen Dong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Dayong Xu
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| | - Zhiqiu Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, Sichuan Province, China
| |
Collapse
|
6
|
Mustafa S, Anwar H, Ain QU, Ahmed H, Iqbal S, Ijaz MU. Therapeutic effect of gossypetin against paraquat-induced testicular damage in male rats: a histological and biochemical study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62237-62248. [PMID: 36940025 DOI: 10.1007/s11356-023-26469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paraquat (PQ) is an organic compound, which is commonly used as a herbicide in the agriculture sector, and it is also known to stimulate critical damages in the male reproductive system. Gossypetin (GPTN) is one of important members of the flavonoid family, which is an essential compound in flowers and calyx of Hibiscus sabdariffa with potential pharmacological properties. The current investigation was aimed to examine the ameliorative potential of GPTN against PQ-instigated testicular damages. Adult male Sprague-Dawley rats (n = 48) were distributed into four groups: control, PQ (5 mg/kg), PQ + GPTN (5 mg/kg + 30 mg/kg respectively), and GPTN (30 mg/kg). After 56 days of treatment, biochemical, spermatogenic indices, hormonal, steroidogenic, pro-or-anti-apoptotic, and histopathological parameters were estimated. PQ exposure disturbed the biochemical profile by reducing the activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GSR), while it increased the concentration of reactive oxygen species (ROS) and malondialdehyde (MDA) level. Furthermore, PQ exposure decreased the sperm motility, viability, number of hypo-osmotic tail swelled spermatozoa, and epididymal sperm count; additionally, it increased sperm morphological (head mid-piece and tail) abnormalities. Moreover, PQ lessened the follicle-stimulating hormone (FSH), luteinizing hormone (LH), and plasma testosterone levels. Besides, PQ-intoxication downregulated the gene expression of steroidogenic enzymes (StAR, 3β-HSD, and 17β-HSD) and anti-apoptotic marker (Bcl-2), whereas upregulated the gene expression of apoptotic markers (Bax and Caspase-3). PQ exposure led to histopathological damages in testicular tissues as well. Nonetheless, GPTN inverted all the illustrated impairments in testes. Taken together, GPTN could potently ameliorate PQ-induced reproductive dysfunctions due to its antioxidant, androgenic, and anti-apoptotic potential.
Collapse
Affiliation(s)
- Shama Mustafa
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University, Faisalabad, Pakistan
| | - Qurat Ul Ain
- Department of Zoology, Government College Women University, Sialkot, Pakistan
| | - Hussain Ahmed
- Department of Zoology, The University of Buner, Khyber Pakhtunkhwa, Pakistan
| | - Shabnoor Iqbal
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | - Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
7
|
Peng X, Wang N, Sun S, Geng L, Guo N, Liu A, Chen S, Ahammed GJ. Reactive oxygen species signaling is involved in melatonin-induced reduction of chlorothalonil residue in tomato leaves. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130212. [PMID: 36308936 DOI: 10.1016/j.jhazmat.2022.130212] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pesticide overuse has led to serious global concerns regarding food safety and environmental pollution. Although the reduction of pesticide residue is critical, our knowledge about induced pesticide metabolism in plants remains fragmentary. Melatonin (N-acetyl-5-methoxytryptamine) is an effective stress-relieving agent in both animals and plants, but little is known about the melatonin signaling mechanism and its effect on pesticide metabolism in plants. Here, we found that exogenous melatonin treatment significantly reduced chlorothalonil residue by 41 % but suppression of endogenous melatonin accumulation increased chlorothalonil residue in tomato leaves. Moreover, melatonin increased photosynthesis, Fv/Fm, Calvin cycle enzyme activity, antioxidant enzyme activity, glutathione pool, and RESPIRATORY BURST HOMOLOG1 (RBOH1) expression in tomato leaves. However, the upregulation of RBOH1, CYP724B2, GST1, GST2, GSH and ABC, the increased glutathione concentrations and the activity of detoxification enzymes due to melatonin treatment were all significantly attenuated by the treatment with an NADPH oxidase inhibitor and a ROS scavenger, indicating a clear relationship between the reduction of pesticide residue and induction in detoxifying enzymes and genes upon melatonin treatment in an apoplastic H2O2-dependent manner. These results reveal that melatonin-induced reduction in chlorothalonil residue is mediated by H2O2 signaling in tomato leaves.
Collapse
Affiliation(s)
- Xiaohua Peng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Nannan Wang
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Shuangsheng Sun
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Lijiahong Geng
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Ning Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Airong Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang 471023, PR China.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, PR China; Henan International Joint Laboratory of Stress Resistance Regulation and Safe Production of Protected Vegetables, Luoyang 471023, PR China; Henan Engineering Technology Research Center for Horticultural Crop safety and Disease Control, Luoyang 471023, PR China.
| |
Collapse
|
8
|
Wen L, Miao X, Ding J, Tong X, Wu Y, He Y, Zheng F. Pesticides as a risk factor for cognitive impairment: Natural substances are expected to become alternative measures to prevent and improve cognitive impairment. Front Nutr 2023; 10:1113099. [PMID: 36937345 PMCID: PMC10016095 DOI: 10.3389/fnut.2023.1113099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/01/2023] [Indexed: 03/08/2023] Open
Abstract
Pesticides are the most effective way to control diseases, insects, weeds, and fungi. The central nervous system (CNS) is damaged by pesticide residues in various ways. By consulting relevant databases, the systemic relationships between the possible mechanisms of pesticides damage to the CNS causing cognitive impairment and related learning and memory pathways networks, as well as the structure-activity relationships between some natural substances (such as polyphenols and vitamins) and the improvement were summarized in this article. The mechanisms of cognitive impairment caused by pesticides are closely related. For example, oxidative stress, mitochondrial dysfunction, and neuroinflammation can constitute three feedback loops that interact and restrict each other. The mechanisms of neurotransmitter abnormalities and intestinal dysfunction also play an important role. The connection between pathways is complex. NMDAR, PI3K/Akt, MAPK, Keap1/Nrf2/ARE, and NF-κB pathways can be connected into a pathway network by targets such as Ras, Akt, and IKK. The reasons for the improvement of natural substances are related to their specific structure, such as polyphenols with different hydroxyl groups. This review's purpose is to lay a foundation for exploring and developing more natural substances that can effectively improve the cognitive impairment caused by pesticides.
Collapse
Affiliation(s)
- Liankui Wen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xiwen Miao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Jia Ding
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Xuewen Tong
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | - Yuzhu Wu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- National Engineering Research Center for Wheat and Corn Deep Processing, Changchun, China
- *Correspondence: Yuzhu Wu, ✉
| | - Yang He
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
- Yang He, ✉
| | - Fei Zheng
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
- Fei Zheng, ✉
| |
Collapse
|
9
|
Jozkowiak M, Piotrowska-Kempisty H, Kobylarek D, Gorska N, Mozdziak P, Kempisty B, Rachon D, Spaczynski RZ. Endocrine Disrupting Chemicals in Polycystic Ovary Syndrome: The Relevant Role of the Theca and Granulosa Cells in the Pathogenesis of the Ovarian Dysfunction. Cells 2022; 12:cells12010174. [PMID: 36611967 PMCID: PMC9818374 DOI: 10.3390/cells12010174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common heterogeneous endocrine disorder among women of reproductive age. The pathogenesis of PCOS remains elusive; however, there is evidence suggesting the potential contribution of genetic interactions or predispositions combined with environmental factors. Among these, endocrine disrupting chemicals (EDCs) have been proposed to potentially contribute to the etiology of PCOS. Granulosa and theca cells are known to cooperate to maintain ovarian function, and any disturbance can lead to endocrine disorders, such as PCOS. This article provides a review of the recent knowledge on PCOS pathophysiology, the role of granulosa and theca cells in PCOS pathogenesis, and the evidence linking exposure to EDCs with reproductive disorders such as PCOS.
Collapse
Affiliation(s)
- Malgorzata Jozkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
- Correspondence: ; Tel.: +48-61847-0721
| | - Dominik Kobylarek
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Natalia Gorska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368 Wroclaw, Poland
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland
| | - Dominik Rachon
- Department of Clinical and Experimental Endocrinology, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Robert Z. Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment Pastelova, Pastelowa 8, 60-198 Poznan, Poland
| |
Collapse
|
10
|
Bai L, Sun S, Su W, Chen C, Lv Y, Zhang J, Zhao J, Li M, Qi Y, Zhang W, Wang Y. Melatonin inhibits HCC progression through regulating the alternative splicing of NEMO. Front Pharmacol 2022; 13:1007006. [PMID: 36225557 PMCID: PMC9548564 DOI: 10.3389/fphar.2022.1007006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common primary cancers with limited therapeutic options. Melatonin, a neuroendocrine hormone produced primarily by the pineal gland, demonstrates an anti-cancer effect on a myriad of cancers including HCC. However, whether melatonin could suppress tumor growth through regulating RNA alternative splicing remains largely unknown. Here we demonstrated that melatonin could inhibit the growth of HCC. Mechanistically, melatonin induced transcriptional alterations of genes, which are involved in DNA replication, DNA metabolic process, DNA repair, response to wounding, steroid metabolic process, and extracellular matrix functions. Importantly, melatonin controlled numerous cancer-related RNA alternative splicing events, regulating mitotic cell cycle, microtubule-based process, kinase activity, DNA metabolic process, GTPase regulator activity functions. The regulatory effect of melatonin on alternative splicing is partially mediated by melatonin receptor MT1. Specifically, melatonin regulates the splicing of IKBKG (NEMO), an essential modulator of NF-κB. In brief, melatonin increased the production of the long isoform of NEMO-L with exon 5 inclusion, thereby inhibiting the growth of HepG2 cells. Collectively, our study provides a novel mechanism of melatonin in regulating RNA alternative splicing, and offers a new perspective for melatonin in the inhibition of cancer progression.
Collapse
Affiliation(s)
- Lu Bai
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Siwen Sun
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wenmei Su
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yuesheng Lv
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Man Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
- Department of Pulmonary Oncology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- *Correspondence: Yangfan Qi, ; Wenjing Zhang, ; Yang Wang,
| |
Collapse
|
11
|
Wang L, Wang J, Guo H, Wang Y, Xu B, Guo X, Wang C. Activating transcription factor 2 (AccATF2) regulates tolerance to oxidative stress in Apis cerana cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105179. [PMID: 35973768 DOI: 10.1016/j.pestbp.2022.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Activating transcription factor 2 (ATF2), a basic leucine zipper (bZIP) transcription factor, plays a crucial role in immune and DNA damage response in mammals. However, the function of ATF2 in insects remains unknown. Here, we isolated the ATF2 gene from Apis cerana cerana (AccATF2) and found that AccATF2 was a main regulator of the honeybee response to oxidative stress. Our results showed that AccATF2 was highly expressed in the head, thorax and integument. AccATF2 was expressed throughout the development period of honeybees, and the highest AccATF2 transcript level was noted in brown-eyed pupae, indicating its indispensable roles in honeybee survival. Antioxidant function analysis showed that AccATF2 expression was markedly induced in response to oxidative stress caused by various environmental stresses. AccATF2 overexpression substantially enhanced the tolerance to oxidative stress of Escherichia coli cells compared with control cells. AccATF2 knockdown significantly increased the production of malondialdehyde (MDA), the transcription of antioxidant genes and the activity of antioxidant enzymes in honeybees, suggesting that AccATF2 knockdown resulted in oxidative damage to honeybees. Moreover, AccATF2 knockdown decreased honeybee resistance to oxidative stress caused by high temperature. Overall, AccATF2 plays an important role in maintaining redox homeostasis and protecting honeybees from oxidative stress caused by various environmental stimuli. Our discoveries add to a growing understanding of how honeybees cope with various adverse environmental conditions to ensure their survival.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jiayu Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Huijuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
12
|
Expression and distribution of MTNR1A in the hypothalamus-pituitary-gonadal axis of Tibetan sheep during the estrous cycle. Gene 2022; 839:146731. [PMID: 35835405 DOI: 10.1016/j.gene.2022.146731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/17/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022]
Abstract
The melatonin 1A receptor (MTNR1A) is a membrane receptor distributed across the mammalian gonadal axis-associated membrane. Melatonin (MT) can specifically bind with MTNR1A on the cell membrane and regulates mammalian reproductive activities. However, the role of MTNR1A in regulating the reproductive physiological activities of sheep in the Tibetan Plateau remains unclear. In this study, the MT content in Tibetan sheep blood during the estrous cycle was detected by ELISA. The distribution of MTNR1A in the hypothalamus-pituitary-gonadal axis (HPGA) was analyzed by immunohistochemistry and immunofluorescence. Western blot and qRT-PCR were used to detect dynamic changes of MTNR1A mRNA and protein expression, and the protein distributions in the HPGA. The results showed that the average secretion level of MT in Tibetan sheep blood was highest occurred during diestrus and the lowest during proestrus. Additionally, the secretion of MT at night was significantly higher than during the day. The immunopositive products of MTNR1A were primarily distributed around the glial cells in the dorsal hypothalamic nucleus region, chromophobe cells, and eosinophilic cytoplasm in the pituitary gland, follicular granular layer, follicular adventitia, tubal mucosa, cilia, endometrium, interstices, and glands in the uterus. The expression trends of MTNR1A mRNA and proteins in the HPGA during the estrous cycle were the same. The relative expression levels of MTNR1A mRNA and proteins in the hypothalamus and ovaries were the highest during proestrus and the lowest during metestrus; the highest during diestrus in the pituitary and oviducts; the highest during metestrus in the uterus. Collectively, the differences in the secretion of MT in Tibetan sheep blood and the expression of MTNR1A in HPGA suggest that they may be affected by steroid hormone secretion during the estrous cycle of Tibetan sheep, which has a potential impact on the regulation of animal estrous cycle.
Collapse
|
13
|
Li Z, Duan J, Chen L, Wang Y, Qin Q, Dang X, Zhou Z. Melatonin enhances the antioxidant capacity to rescue the honey bee Apis mellifera from the ecotoxicological effects caused by environmental imidacloprid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113622. [PMID: 35617898 DOI: 10.1016/j.ecoenv.2022.113622] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Imidacloprid severely poisons the nontarget insect honey bee Apis mellifera. Few treatments are available to mitigate the adverse effects of imidacloprid. The primary concern is that the molecular understanding of imidacloprid toxicity is not comprehensive enough. Oxidative stress is the primary pathophysiological mechanism by which pesticides cause high mortality. Our pilot study found for the first time that imidacloprid stimulates bee brains to secrete melatonin, a free radical scavenger. However, the molecular basis for imidacloprid toxicity and the role of melatonin in coping with imidacloprid have not been systematically investigated in bees. This study administered an environmental dose of imidacloprid (36 ng/bee) orally to A. mellifera. The detoxification gene cytochrome P450 CYP4G11 was significantly induced. However, potent cytotoxicity of imidacloprid suppressed the expression of the antioxidants catalase (CAT) and thioredoxin reductase (TrxR), and the activity of guaiacol peroxidase (GPX), superoxide dismutase (SOD), and reduced glutathione (GSH) was not induced. The levels of reactive oxygen species (ROS) and the lipid peroxidation marker malondialdehyde (MDA) were increased. The expression of the apoptotic genes cysteinyl aspartate specific proteinase (Caspase-3) and apoptosis inducing factor (AIF) increased, and the apoptotic features of midgut cells were prominently apparent. These results suggest that imidacloprid disrupts the bee antioxidant system, causing severe oxidative stress and tissue damage and ultimately leading to apoptosis. Significantly, however, imidacloprid exposure also stimulated bee brains to continuously secrete melatonin. Further preadministration of exogenous melatonin (200 ng/bee) orally to bees significantly reversed and enhanced the activity of the imidacloprid-suppressed antioxidants CAT, SOD, and GSH, which allowed imidacloprid-induced ROS accumulation to be effectively alleviated. The MDA content, apoptotic genes Caspase-3 and AIF, and detoxification gene CYPG411 expression were restored to normalization; midgut cell damage, apoptosis, and mortality were significantly reduced. These findings strongly suggest that melatonin enhanced bee antioxidant capacity, thus attenuating oxidative stress and apoptosis to confer imidacloprid tolerance to honey bees. Melatonin secretion may be a defense mechanism to mitigate imidacloprid toxicity.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Animal Biology, China.
| | - Jiaxin Duan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Lanchun Chen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuedi Wang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qiqian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xiaoqun Dang
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Animal Biology, China
| | - Zeyang Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, China; The State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Melatonin Rescues Dimethoate Exposure-Induced Meiotic and Developmental Defects of Porcine Oocytes. Animals (Basel) 2022; 12:ani12070832. [PMID: 35405822 PMCID: PMC8997005 DOI: 10.3390/ani12070832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Environmental pollution poses concerns for public health. Dimethoate is a pesticide widely used in agricultural fields and home gardens. Recent studies have shown that dimethoate exposure impaired reproductive functions in male and female animals. However, whether dimethoate exposure affects oocyte maturation and how to reduce the toxicity of dimethoate remain unclear. Here, we showed that dimethoate exposure impaired nuclear and cytoplasmic maturation of porcine oocytes. Melatonin supplementation restored the meiotic maturation of dimethoate-exposed oocytes by suppressing the generation of excessive reactive oxygen species and autophagy and DNA damage accumulation. Therefore, melatonin counteracts the toxic effects of dimethoate exposure on porcine oocyte maturation. These findings imply that melatonin could be a promising agent in improving the quality of dimethoate-exposed oocytes from humans and animals. Abstract Dimethoate (DT) is an environmental pollutant widely used in agricultural fields and home gardens. Studies have shown that exposure to DT causes reproductive defects in both male and female animals. However, the effects of DT exposure on oocyte maturation and the approach to counteract it are not yet known. Here, we investigated the toxicity of DT on porcine oocyte maturation and the protective effects of melatonin (MT) on DT-exposed oocytes. DT exposure with 1.5 mM partially inhibited cumulus cell expansion and significantly reduced the rate of first polar body extrusion (pb1) during oocyte maturation. Parthenogenetically activated embryos derived from DT-exposed oocytes could not develop to the 2-cell and blastocyst stage. Furthermore, DT exposure led to a significant increase in the rates of misaligned chromosomes, disorganized spindles, and abnormal actin assembly. DT exposure severely disrupted the distribution patterns of mitochondria in oocytes but did not change the subcellular localizations of cortical granules. Importantly, MT supplementation rescued the meiotic and developmental defects of DT-exposed oocytes through repressing the generation of excessive reactive oxygen species (ROS) and autophagy, and DNA damage accumulation. These results demonstrate that melatonin protects against meiotic defects induced by DT during porcine oocyte maturation.
Collapse
|
15
|
Li H, Liu M, Zhang C. Women with polycystic ovary syndrome (PCOS) have reduced melatonin concentrations in their follicles and have mild sleep disturbances. BMC Womens Health 2022; 22:79. [PMID: 35313872 PMCID: PMC8935689 DOI: 10.1186/s12905-022-01661-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/04/2022] [Indexed: 11/11/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common gynecologic disorder related to abnormal circadian rhythm. Therefore, we aimed to find whether the level of melatonin, a rhythm regulating hormone changed in the ovarian microenvironment in this disease. Methods The melatonin concentrations in follicular fluid (FF) were measured in 35 PCOS and 36 non-PCOS women undergoing in vitro fertilization (IVF) treatment. Results The FF melatonin concentration was significantly lower in PCOS women than non-PCOS women (p = 0.045) and it was found positively correlated with serum basal FSH level (r = 0.308, p = 0.013). In IVF procedures, there was no significant difference in the fertilization rate of oocytes between the two groups, but the high-quality embryogenesis rate on the third day of the PCOS group was significantly lower than that of the control group (p = 0.042), which showed a weak positive correlation with the FF melatonin concentration (rs = 0.240, p = 0.044). Furthermore, there was no significant difference in overall pregnancy outcome. The PSQI questionnaire showed that sleep disorders were more likely to exist in the PCOS group, though there was no significant difference. Conclusion The obtained results suggested PCOS women had lower melatonin concentrations in the ovarian microenvironment.
Collapse
Affiliation(s)
- Hongwanyu Li
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| | - Mei Liu
- Department of Obstetrics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42 Wenhua xi Road, Jinan, 250011, Shandong, China
| | - Cong Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China. .,Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China. .,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
| |
Collapse
|
16
|
Guo HJ, Wang LJ, Wang C, Guo DZ, Xu BH, Guo XQ, Li H. Identification of an Apis cerana zinc finger protein 41 gene and its involvement in the oxidative stress response. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21830. [PMID: 34288081 DOI: 10.1002/arch.21830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Zinc finger proteins (ZFPs) are a class of transcription factors that contain zinc finger domains and play important roles in growth, aging, and responses to abiotic and biotic stresses. These proteins activate or inhibit gene transcription by binding to single-stranded DNA or RNA and through RNA/DNA bidirectional binding and protein-protein interactions. However, few studies have focused on the oxidation resistance functions of ZFPs in insects, particularly Apis cerana. In the current study, we identified a ZFP41 gene from A. cerana, AcZFP41, and verified its function in oxidative stress responses. Real-time quantitative polymerase chain reaction showed that the transcription level of AcZFP41 was upregulated to different degrees during exposure to oxidative stress, including that induced by extreme temperature, UV radiation, or pesticides. In addition, the silencing of AcZFP41 led to changes in the expression patterns of some known antioxidant genes. Moreover, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), and glutathione S-transferase (GST) in AcZFP41-silenced honeybees were higher than those in a control group. In summary, the data indicate that AcZFP41 is involved in the oxidative stress response. The results provide a theoretical basis for further studies of zinc finger proteins and improve our understanding of the antioxidant mechanisms of honeybees.
Collapse
Affiliation(s)
- Hui-Juan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Li-Jun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - De-Zheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Bao-Hua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Xing-Qi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
17
|
Liu N, Li J, Lv J, Yu J, Xie J, Wu Y, Tang Z. Melatonin alleviates imidacloprid phytotoxicity to cucumber (Cucumis sativus L.) through modulating redox homeostasis in plants and promoting its metabolism by enhancing glutathione dependent detoxification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112248. [PMID: 33901782 DOI: 10.1016/j.ecoenv.2021.112248] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Melatonin (Mel), a powerful antioxidant that has the ability to regulate physiological and biochemical processes in plants under abiotic stresses. However, its roles in pesticide detoxification is poorly understood. Herein, selecting leaf spraying insecticide imidacloprid (IMD) as the model, we demonstrated the detoxification mechanism underlying root pretreatment of Mel on IMD in cucumber. IMD treatment affected the primary light conversion efficiency of photosystem II (Fv/Fm), reduced the quantum yield, and increased hydrogen peroxide and superoxide anions contents as well as the levels of membrane lipid peroxidation, indicating that excessive IMD treatment induces oxidative stress. Nonetheless, by increasing the appropriate levels of exogenous Mel, the photosynthesis of cucumber under IMD treatment reached the control levels, effectively removing reactive oxygen species. Furthermore, the content and ratio of ascorbate (AsA) and glutathione (GSH) were decreased under IMD treatment; Mel treatment enhanced the AsA/DHA and GSH/GSSG ratios, as well as the activities of MDHAR, DHAR and GR, suggesting that Mel could alleviate oxidative stress of cucumber treated with IMD by regulating the ascorbic acid-glutathione cycle. Importantly, IMD degradation rate and glutathione S-transferase (GST) activity increased after Mel treatment. The levels of transcripts encoding antioxidant enzymes GPX and GST (GST1,2 and 3) were also increased, indicating that Mel accelerated IMD degradation. These results suggest that Mel plays an important role in the detoxification of IMD by promoting GST activity and transcription and the AsA-GSH cycle, thus providing an approach for plants to reduce IMD residue through the plant's own detoxification mechanism.
Collapse
Affiliation(s)
- Na Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jinwu Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jian Lv
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; Gansu Provincial Key Laboratory of Arid-land Crop Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
18
|
Astaxanthin Relieves Busulfan-Induced Oxidative Apoptosis in Cultured Human Spermatogonial Stem Cells by Activating the Nrf-2/HO-1 pathway. Reprod Sci 2021; 29:374-394. [PMID: 34129218 DOI: 10.1007/s43032-021-00651-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/30/2021] [Indexed: 12/30/2022]
Abstract
Many child cancer patients endure anticancer therapy containing alkylating agents before sexual maturity. Busulfan (BU), as an alkylating agent, is a chemotherapy drug, causing DNA damage and cytotoxicity in germ cells. In the present study, we aimed to investigate the protective effect of astaxanthin (AST), as a potent antioxidant and powerful reactive oxygen species (ROS) scavenger, on BU-induced toxicity in human spermatogonial stem cells. For this purpose, testes were obtained from four brain-dead donors. After tissue enzymatic digestions, testicular cells were cultured for 3 weeks for spermatogonial stem cell (SSC) isolation and purification. K562 cell line was cultured to survey the effect of AST on cancer treatment. The cultured SSCs and K562 cell line were finally treated with AST (10μM), BU (0.1nM), and AST+BU. The expression of NRF-2, HO-1, SOD2, SOD3, TP53, and apoptotic genes, including CASP9, CASP3, BCL2, and BAX, were assayed using real-time PCR. Moreover, ROS level in different groups and malondialdehyde level and total antioxidant capacity in cell contraction of SSCs were measured using ELISA. Data showed that AST significantly upregulated the expression of NRF-2 gene (P<0.001) and protein (P<0.005) and also significantly decreased the production of BU-induced ROS (P<0.001). AST activated the NRF-2/HO-1 pathway that could remarkably restrain BU-induced apoptosis in SSCs. Interestingly, AST upregulated the expression level of apoptosis genes in the K562 cell line. The results of this study indicated that AST reduces the side effects of BU on SSCs without interference with its chemotherapy effect on cancerous cells through modulation of the NRF-2/HO-1 and mitochondria-mediated apoptosis pathways.
Collapse
|
19
|
Shan W, Guo D, Guo H, Tan S, Ma L, Wang Y, Guo X, Xu B. Cloning and expression studies on glutathione S-transferase like-gene in honey bee for its role in oxidative stress. Cell Stress Chaperones 2021; 27:121-134. [PMID: 35102524 PMCID: PMC8943077 DOI: 10.1007/s12192-022-01255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/03/2022] Open
Abstract
Glutathione S-transferases (GSTs) constitute an important multifunctional enzyme family that plays vital roles in cellular detoxification and protecting organisms against oxidative stress caused by reactive oxygen species (ROS). In this study, we isolated a GST-like gene from Apis cerana cerana (AccGSTL) and investigated its antioxidant functions under stress conditions. We found that AccGSTL belongs to the Sigma class of GSTs. Real-time quantitative PCR and western blotting analyses showed that the mRNA and protein levels of AccGSTL were altered in response to oxidative stress caused by various external stimuli. In addition, a heterologous expression analysis showed that AccGSTL overexpression in Escherichia coli (E. coli) cells enhanced resistance to oxidative stress. After AccGSTL silencing with RNA interference (RNAi) technology, the expression of some antioxidant genes was inhibited, and the enzymatic activities of POD, CAT, and SOD were decreased. In conclusion, these data suggest that AccGSTL may be involved in antioxidant defense under adverse conditions in A. cerana cerana.
Collapse
Affiliation(s)
- Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Huijuan Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Lanting Ma
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China.
| |
Collapse
|
20
|
Saoudi M, Badraoui R, Rahmouni F, Jamoussi K, El Feki A. Antioxidant and Protective Effects of Artemisia campestris Essential Oil Against Chlorpyrifos-Induced Kidney and Liver Injuries in Rats. Front Physiol 2021; 12:618582. [PMID: 33716767 PMCID: PMC7945717 DOI: 10.3389/fphys.2021.618582] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
This study is aimed to elucidate the possible antioxidant and protective effects of Artemisia campestris essential oil (ACEO) against the deleterious effects of chlorpyrifos (CPF) in rats. The in vivo study revealed increases in aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP) activities and the serum contents of creatinine, urea, uric acid, cholesterol, triglycerides, low density lipoproteins (LDL), and glucose in rats treated with CPF as compared to controls. Meanwhile, hepatic and renal activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver and kidney decreased and the content of malondialdehyde (MDA) increased. Some histopathologic features were noticed in liver and kidney of the CPF group. Interestingly, ACEO alleviated the biochemical disruptions and reduced these hepato-renal morphologic changes.
Collapse
Affiliation(s)
- Mongi Saoudi
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| | - Riadh Badraoui
- Department of Biology, University of Hai’l, Ha’il, Saudi Arabia
- Laboratory of Histology - Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax University, Sfax, Tunisia
| | - Fatma Rahmouni
- Laboratory of Histo-Embryology and Cytogenetics, Medicine Faculty of Sfax University, Sfax, Tunisia
| | - Kamel Jamoussi
- Biochemistry Laboratory, University Hospital Complex (CHU) Hedi Chaker of Sfax, Sfax, Tunisia
| | - Abdelfattah El Feki
- Animal Ecophysiology Laboratory, Sciences Faculty of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
21
|
Moloudizargari M, Moradkhani F, Hekmatirad S, Fallah M, Asghari MH, Reiter RJ. Therapeutic targets of cancer drugs: Modulation by melatonin. Life Sci 2020; 267:118934. [PMID: 33385405 DOI: 10.1016/j.lfs.2020.118934] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
The biological functions of melatonin range beyond the regulation of the circadian rhythm. With regard to cancer, melatonin's potential to suppress cancer initiation, progression, angiogenesis and metastasis as well as sensitizing malignant cells to conventional chemo- and radiotherapy are among its most interesting effects. The targets at which melatonin initiates its anti-cancer effects are in common with those of a majority of existing anti-cancer agents, giving rise to the notion that this molecule is a pleiotropic agent sharing many features with other antineoplastic drugs in terms of their mechanisms of action. Among these common mechanisms of action are the regulation of several major intracellular pathways including mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) and protein kinase B (AKT/PKB) signaling. The important mediators affected by melatonin include cyclins, nuclear factor-κB (NF-κB), heat shock proteins (HSPs) and c-Myc, all of which can serve as potential targets for cancer drugs. Melatonin also exerts some of its anti-cancer effects via inducing epigenetic modifications, DNA damage and mitochondrial disruption in malignant cells. The regulation of these mediators by melatonin mitigates tumor growth and invasiveness via modulating their downstream responsive genes, housekeeping enzymes, telomerase reverse transcriptase, apoptotic gene expression, angiogenic factors and structural proteins involved in metastasis. Increasing our knowledge on how melatonin affects its target sites will help find ways of exploiting the beneficial effects of this ubiquitously-acting molecule in cancer therapy. Acknowledging this, here we reviewed the most studied target pathways attributed to the anti-cancer effects of melatonin, highlighting their therapeutic potential.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Medical Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marjan Fallah
- Medicinal Plant Research Centre, Faculty of Pharmacy, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health, San Antonio, TX, USA.
| |
Collapse
|
22
|
Nuszkiewicz J, Woźniak A, Szewczyk-Golec K. Ionizing Radiation as a Source of Oxidative Stress-The Protective Role of Melatonin and Vitamin D. Int J Mol Sci 2020; 21:E5804. [PMID: 32823530 PMCID: PMC7460937 DOI: 10.3390/ijms21165804] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/31/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation (IR) has found widespread application in modern medicine, including medical imaging and radiotherapy. As a result, both patients and healthcare professionals are exposed to various IR doses. To minimize the negative side effects of radiation associated with oxidative imbalance, antioxidant therapy has been considered. In this review, studies on the effects of melatonin and vitamin D on radiation-induced oxidative stress are discussed. According to the research data, both substances meet the conditions for use as agents that protect humans against IR-induced tissue damage. Numerous studies have confirmed that melatonin, a hydro- and lipophilic hormone with strong antioxidant properties, can potentially be used as a radioprotectant in humans. Less is known about the radioprotective effects of vitamin D, but the results to date have been promising. Deficiencies in melatonin and vitamin D are common in modern societies and may contribute to the severity of adverse side effects of medical IR exposure. Hence, supporting supplementation with both substances seems to be of first importance. Interestingly, both melatonin and vitamin D have been found to selectively radiosensitise cancer cells, which makes them promising adjuvants in radiotherapy. More research is needed in this area, especially in humans.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| | | | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St, 85-092 Bydgoszcz, Poland;
| |
Collapse
|
23
|
Zhao G, Wang C, Wang Y, Wang L, Xu B, Guo X. Role of Apis cerana cerana N-terminal asparagine amidohydrolase (AccNtan1) in oxidative stress. J Biochem 2020; 168:337-348. [DOI: 10.1093/jb/mvaa071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
AbstractN-Terminal asparagine amidohydrolase is a component of the ubiquitin-dependent N-end rule pathway of protein degradation that has been implicated in a variety of physiological functions, including the sensing of heme, oxygen, nitric oxide, selective elimination of misfolded proteins and the repair of DNA. We identified the Apis cerana cerana N-terminal asparagine amidohydrolase (AccNtan1) gene from A. cerana cerana and investigated its role in oxidation resistance. Multiple sequence alignments and phylogenetic analysis revealed that N-terminal asparagine amidohydrolase is highly conserved in insect species. Quantitative real-time polymerase chain reaction analysis indicated that the expression levels of AccNtan1 were significantly lower in the wing, honey sac and abdomen than in other tissues and were significantly higher in early stages of development, including the larva, prepupa and pink-eyed pupa stages, than in later stages. We further observed that AccNtan1 expression was induced by several environmental stressors, including aberrant temperature, H2O2, UV, heavy metals and pesticides. Moreover, a bacteriostatic assay suggested that overexpression of AccNtan1 enhances the resistance of bacteria to oxidative stress. In addition, knockdown of AccNtan1 using RNA interference significantly affected the expression levels of most antioxidant genes and the activity levels of several antioxidant enzymes. Thus, we hypothesize that AccNtan1 plays important roles in environmental stress responses and antioxidative processes.
Collapse
Affiliation(s)
- Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Road No.61, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Road No.61, Taian, Shandong 271018, PR China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Daizong Road No.61, Taian, Shandong 271018, PR China
| | - Lijun Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Road No.61, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Daizong Road No.61, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Road No.61, Taian, Shandong 271018, PR China
| |
Collapse
|
24
|
Gunata M, Parlakpinar H, Acet H. Melatonin: A review of its potential functions and effects on neurological diseases. Rev Neurol (Paris) 2020; 176:148-165. [DOI: 10.1016/j.neurol.2019.07.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/03/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022]
|
25
|
Gomez SD, Bustos PS, Sánchez VG, Ortega MG, Guiñazú N. Trophoblast toxicity of the neonicotinoid insecticide acetamiprid and an acetamiprid-based formulation. Toxicology 2020; 431:152363. [DOI: 10.1016/j.tox.2020.152363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/11/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023]
|
26
|
Costa C, Briguglio G, Catanoso R, Giambò F, Polito I, Teodoro M, Fenga C. New perspectives on cytokine pathways modulation by pesticide exposure. CURRENT OPINION IN TOXICOLOGY 2020. [DOI: 10.1016/j.cotox.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Mojaverrostami S, Asghari N, Khamisabadi M, Heidari Khoei H. The role of melatonin in polycystic ovary syndrome: A review. Int J Reprod Biomed 2019; 17:865-882. [PMID: 31970309 PMCID: PMC6943797 DOI: 10.18502/ijrm.v17i12.5789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/16/2019] [Accepted: 07/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a widespread endocrine disorder, affecting approximately 20% of women within reproductive age. It is associated with hyperandrogenism, obesity, menstrual irregularity, and anovulatory infertility. Melatonin is the main pineal gland hormone involved in the regulation of the circadian rhythm. In recent years, it has been observed that a reduction in melatonin levels of follicular fluid exists in PCOS patients. Melatonin receptors in the ovary and intra-follicular fluid adjust sex steroid secretion at different phases of ovarian follicular maturation. Moreover, melatonin is a strong antioxidant and an effective free radical scavenger, which protects ovarian follicles during follicular maturation. Objective In this paper, we conducted a literature review and the summary of the current research on the role of melatonin in PCOS. Materials and Methods Electronic databases including PubMed/MEDLINE, Web of Science, Scopus, and Reaxys were searched from their inception to October 2018 using the keywords “Melatonin” AND “Polycystic ovary syndrome” OR “PCOS.” Results Based on the data included in our review, it was found that the administration of melatonin can improve the oocyte and embryo quality in PCOS patients. It may also have beneficial effects in correcting the hormonal alterations in PCOS patients. Conclusion Since metabolic dysfunction is the major finding contributing to the initiation of PCOS, melatonin can hinder this process via its improving effects on metabolic functions.
Collapse
Affiliation(s)
- Sina Mojaverrostami
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Asghari
- Department of Molecular Medicine, Faculty of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | | | - Heidar Heidari Khoei
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
do Nascimento Marinho KS, Lapa Neto CJC, de Sousa Coelho IDD, da Silva MA, Gomes Melo ME, dos Santos KRP, Chagas CA, Coelho Teixeira ÁA, Teixeira VW. Evaluation of the protective effect on exogenous melatonin in adult rats and their offspring exposed to insecticides methomyl and cypermethrin during pregnancy. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 848:503107. [DOI: 10.1016/j.mrgentox.2019.503107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/06/2022]
|
29
|
Chao Y, Wang C, Jia H, Zhai N, Wang H, Xu B, Li H, Guo X. Identification of an Apis cerana cerana MAP kinase phosphatase 3 gene (AccMKP3) in response to environmental stress. Cell Stress Chaperones 2019; 24:1137-1149. [PMID: 31664697 PMCID: PMC6882995 DOI: 10.1007/s12192-019-01036-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 08/23/2019] [Accepted: 09/23/2019] [Indexed: 12/26/2022] Open
Abstract
MAP kinase phosphatase 3 (MKP3), a member of the dual-specificity protein phosphatase (DUSP) superfamily, has been widely studied for its role in development, cancer, and environmental stress in many organisms. However, the functions of MKP3 in various insects have not been well studied, including honeybees. In this study, we isolated an MKP3 gene from Apis cerana cerana and explored the role of this gene in the resistance to oxidation. We found that AccMKP3 is highly conserved in different species and shares the closest evolutionary relationship with AmMKP3. We determined the expression patterns of AccMKP3 under various stresses. qRT-PCR results showed that AccMKP3 was highly expressed during the pupal stages and in adult muscles. We further found that AccMKP3 was induced in all the stress treatments. Moreover, we discovered that the enzymatic activities of peroxidase, superoxide dismutase, and catalase increased and that the expression levels of several antioxidant genes were affected after AccMKP3 was knocked down. Collectively, these results suggest that AccMKP3 may be associated with antioxidant processes involved in response to various environmental stresses.
Collapse
Affiliation(s)
- Yuzhen Chao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Haihong Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Na Zhai
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, Shandong, People's Republic of China.
| |
Collapse
|
30
|
Moloudizargari M, Moradkhani F, Asghari N, Fallah M, Asghari MH, Moghadamnia AA, Abdollahi M. NLRP inflammasome as a key role player in the pathogenesis of environmental toxicants. Life Sci 2019; 231:116585. [PMID: 31226415 DOI: 10.1016/j.lfs.2019.116585] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 12/26/2022]
Abstract
Exposure to environmental toxicants (ET) results in specific organ damage and auto-immune diseases, mostly mediated by inflammatory responses. The NLRP3 inflammasome has been found to be the major initiator of the associated pathologic inflammation. It has been found that ETs can trigger all the signals required for an NLRP3-mediated response. The exaggerated activation of the NLRP3 inflammasome and its end product IL-1β, is responsible for the pathogenesis caused by many ETs including pesticides, organic pollutants, heavy metals, and crystalline compounds. Therefore, an extensive study of these chemicals and their mechanisms of inflammasome (INF) activation may provide the scientific evidence for possible targeting of this pathway by proposing possible protective agents that have been previously shown to affect INF compartments and its activation. Melatonin and polyunsaturated fatty acids (PUFA) are among the safest and the most studied of these agents, which affect a wide variety of cellular and physiological processes. These molecules have been shown to suppress the NLRP3 inflammasome mostly through the regulation of cellular redox status and the nuclear factor-κB (NF-κB) pathway, rendering them potential promising compounds to overcome ET-mediated organ damage. In the present review, we have made an effort to extensively review the ETs that exert their pathogenesis via the stimulation of inflammation, their precise mechanisms of action and the possible protective agents that could be potentially used to protect against such toxicants.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradkhani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Asghari
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran, Islamic Republic of Iran
| | - Marjan Fallah
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Ali Akbar Moghadamnia
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Wang X, Chao Y, Wang Y, Xu B, Wang C, Li H. Identification of an adaptor protein‐2 mu gene (
AccAP2m
) in
Apis cerana cerana
and its role in oxidative stress responses. J Cell Biochem 2019; 120:16600-16613. [DOI: 10.1002/jcb.28919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xinxin Wang
- State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University Taian Shandong PR China
| | - Yuzhen Chao
- State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University Taian Shandong PR China
| | - Ying Wang
- College of Animal Science and Technology Shandong Agricultural University Taian Shandong PR China
| | - Baohua Xu
- College of Animal Science and Technology Shandong Agricultural University Taian Shandong PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University Taian Shandong PR China
| | - Han Li
- State Key Laboratory of Crop Biology College of Life Sciences, Shandong Agricultural University Taian Shandong PR China
| |
Collapse
|
32
|
Ertuğrul H, Yalçın B, Güneş M, Kaya B. Ameliorative effects of melatonin against nano and ionic cobalt induced genotoxicity in two in vivo Drosophila assays. Drug Chem Toxicol 2019; 43:279-286. [DOI: 10.1080/01480545.2019.1585444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Havva Ertuğrul
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Burçin Yalçın
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Merve Güneş
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| | - Bülent Kaya
- Faculty of Sciences, Department of Biology, Akdeniz University, Antalya, Turkey
| |
Collapse
|
33
|
Pang YW, Jiang XL, Wang YC, Wang YY, Hao HS, Zhao SJ, Du WH, Zhao XM, Wang L, Zhu HB. Melatonin protects against paraquat-induced damage during in vitro maturation of bovine oocytes. J Pineal Res 2019; 66:e12532. [PMID: 30320949 DOI: 10.1111/jpi.12532] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/15/2022]
Abstract
Paraquat (PQ), a broad-spectrum agricultural pesticide, causes cellular toxicity by increasing oxidative stress levels in various biological systems, including the reproductive system. PQ exposure causes embryotoxicity and reduces the developmental abilities of embryos. However, there is little information regarding the toxic effects of PQ on oocyte maturation. In this study, we studied the toxic effects of PQ exposure and the effects of melatonin on PQ-induced damage in bovine oocytes. PQ exposure disrupted nuclear and cytoplasmic maturation, which was manifested as decreased cumulus cell expansion, reduced first polar body extrusion, and abnormal distribution patterns of cortical granules and mitochondria. In addition, PQ treatment severely disrupted the ability of the resulted in vitro-produced embryos to develop to the blastocyst stage. Moreover, PQ exposure significantly increased the intracellular reactive oxygen species (ROS) level and early apoptotic rate, and decreased the glutathione (GSH) level, antioxidative CAT and GPx4 mRNA, and apoptotic-related Bcl-2/Bax mRNA ratio. These results indicated that PQ causes reproductive toxicity in bovine oocytes. Melatonin application resulted in significant protection against the toxic effects of PQ in PQ-exposed oocytes. The mechanisms underlying the role of melatonin included the inhibition of PQ-induced p38 mitogen-activated protein kinase (MAPK) activation, and restoration of abnormal trimethyl-histone H3 lysine 4 (H3K4me3) and trimethyl-histone H3 lysine 9 (H3K9me3) levels. These results reveal that melatonin serves as a powerful agent against experimental PQ-induced toxicity during bovine oocyte maturation and could form a basis for further studies to develop therapeutic strategies against PQ poisoning.
Collapse
Affiliation(s)
- Yun-Wei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Long Jiang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Agricultural Animal and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ya-Chun Wang
- Key Laboratory of Agricultural Animal and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yang-Yang Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Sheng Hao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Jiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei-Hua Du
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue-Ming Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua-Bin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
34
|
Moloudizargari M, Asghari MH, Abdollahi M. Modifying exosome release in cancer therapy: How can it help? Pharmacol Res 2018; 134:246-256. [PMID: 29990623 DOI: 10.1016/j.phrs.2018.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
The reciprocal interactions of cancer cells with their microenvironment constitute an inevitable aspect of tumor development, progression and response to treatment in all cancers. Such bilateral transactions also serve as the key scenario underlying the development of drug resistance in many cases finally determining the fate of the disease and survival. In this view, a class of extracellular vesicles (EV) known as exosomes (EX) have been shown in the past few years to be important mediators of local and remote cell-to-cell contact changing the activity of their target cells by introducing their content of proteins, non-coding RNAs, and membrane-associated small molecules. In addition to the direct targeting of cancer cells, which has been routinely undertaken by different means to date, parallel attempts to change the signaling network governed by tumor-derived exosomes (TDE) may offer a promising potential to be utilized in cancer therapy. TDE drive diverse functions in the body, most of which have been shown to act to the advantage of tumor progression; however, there are also several studies that report the good aspects of TDE the interruption of which may result in undesirable outcomes. In the present paper, we made an effort to address this important issue by reviewing the very recent literature on different aspects of EX biogenesis and regulation and the various bodily effects of TDE which have been uncovered to date. Moreover, we have reviewed the possible interventions that can be made in TDE release as an important stage of EX biogenesis. Finally, keeping a criticizing view, the advantages and disadvantages of such interventions have been discussed and the future prospect in the field has been outlined.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology, School of Medicine, Babol University of Medical Sciences, Babol, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Asghari MH, Moloudizargari M, Abdollahi M. Reply to Zamani and Hassanian-Moghaddam, 2017: being specific and targeting disease-causing pathology matter in therapeutics. Arch Toxicol 2018; 92:1907-1908. [PMID: 29332132 DOI: 10.1007/s00204-018-2154-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/08/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Milad Moloudizargari
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Heidari Khoei H, Fakhri S, Parvardeh S, Shams Mofarahe Z, Baninameh Z, Vardiani M. Astaxanthin prevents the methotrexate-induced reproductive toxicity by targeting oxidative stress in male mice. TOXIN REV 2018. [DOI: 10.1080/15569543.2018.1452263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Heidar Heidari Khoei
- Department of Biology and Anatomical Sciences, Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Iran
| | - Zahra Shams Mofarahe
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Baninameh
- Sina Hospital, Ahvaz Jondishapour University of Medical Sciences, Ahvaz, Iran
| | - Mina Vardiani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Asghari MH, Ghobadi E, Moloudizargari M, Fallah M, Abdollahi M. Does the use of melatonin overcome drug resistance in cancer chemotherapy? Life Sci 2018; 196:143-155. [DOI: 10.1016/j.lfs.2018.01.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/12/2018] [Accepted: 01/22/2018] [Indexed: 12/23/2022]
|
38
|
Zhao G, Wang C, Wang H, Gao L, Liu Z, Xu B, Guo X. Characterization of the CDK5 gene in Apis cerana cerana (AccCDK5) and a preliminary identification of its activator gene, AccCDK5r1. Cell Stress Chaperones 2018; 23:13-28. [PMID: 28674940 PMCID: PMC5741578 DOI: 10.1007/s12192-017-0820-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 06/01/2017] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is an unusual CDK whose function has been implicated in protecting the central nervous system (CNS) from oxidative damage. However, there have been few studies of CDK5 in insects. In this study, we identified the AccCDK5 gene from Apis cerana cerana and investigated its role in oxidation resistance. We found that AccCDK5 is highly conserved across species and contains conserved features of the CDK5 family. The results of qPCR analysis indicated that AccCDK5 is highly expressed during the larval and pupal stages and in the adult head and muscle. We further observed that AccCDK5 is induced by several environmental oxidative stresses. Moreover, the overexpression of the AccCDK5 protein in E. coli enhances the resistance of the bacteria to oxidative stress. The activation of CDK5 requires binding to its activator. Therefore, we also identified and cloned cyclin-dependent kinase 5 regulatory subunit 1, which we named AccCDK5r1, from Apis cerana cerana. AccCDK5r1 contains a conserved cell localization targeting domain as well as binding and activation sites for CDK5. Yeast two-hybrid analysis demonstrated the interaction between AccCDK5 and AccCDK5r1. The expression patterns of the two genes were similar after stress treatment. Collectively, these results suggest that AccCDK5 plays a pivotal role in the response to oxidative stresses and that AccCDK5r1 is a potential activator of AccCDK5.
Collapse
Affiliation(s)
- Guangdong Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Lijun Gao
- College of Life Sciences, Taishan Medical University, Taian, Shandong, 271016, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China.
| |
Collapse
|
39
|
Haghi-Aminjan H, Asghari MH, Farhood B, Rahimifard M, Hashemi Goradel N, Abdollahi M. The role of melatonin on chemotherapy-induced reproductive toxicity. J Pharm Pharmacol 2017; 70:291-306. [DOI: 10.1111/jphp.12855] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022]
Abstract
Abstract
Objectives
Reproductive malfunctions after chemotherapy still are a reason of reducing fertility and need specialized intensive care. The aim of this review was to investigate the effect of melatonin on the reproductive system under threatening with chemotherapeutic drugs.
Methods
To find the role of melatonin in the reproductive system during chemotherapy, a full systematic literature search was carried out based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines in the electronic databases up to 17 April 2017 using search terms in the titles and abstracts. A total of 380 articles are screened according to our inclusion and exclusion criteria. Finally, 18 articles were included in this study.
Key findings
It has been cleared that melatonin has bilateral effects on reproductive cells. Melatonin protects normal cells via mechanisms, including decrease in oxidative stress, apoptosis, inflammation and modulating mitochondrial function, and sexual hormones. Furthermore, melatonin with antiproliferative properties and direct effects on its receptors improves reproductive injury and function during chemotherapy. On the other hand, melatonin sensitizes the effects of chemotherapeutic drugs and enhances chemotherapy-induced toxicity in cancerous cells through increasing apoptosis, oxidative stress and mitochondrial malfunction.
Conclusions
The study provides evidence of the bilateral role of melatonin in the reproductive system during chemotherapy.
Collapse
Affiliation(s)
- Hamed Haghi-Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasser Hashemi Goradel
- Young Researchers and Elite Club, Ardabil Branch, Islamic Azad University, Ardabil, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Goradel NH, Asghari MH, Moloudizargari M, Negahdari B, Haghi-Aminjan H, Abdollahi M. Melatonin as an angiogenesis inhibitor to combat cancer: Mechanistic evidence. Toxicol Appl Pharmacol 2017; 335:56-63. [DOI: 10.1016/j.taap.2017.09.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/13/2017] [Accepted: 09/28/2017] [Indexed: 12/15/2022]
|
41
|
Moloudizargari M, Asghari MH, Ghobadi E, Fallah M, Rasouli S, Abdollahi M. Autophagy, its mechanisms and regulation: Implications in neurodegenerative diseases. Ageing Res Rev 2017; 40:64-74. [PMID: 28923312 DOI: 10.1016/j.arr.2017.09.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022]
Abstract
Autophagy is a major regulatory cellular mechanism which gives the cell an ability to cope with some of the destructive events that normally occur within a metabolically living cell. This is done by maintaining the cellular homeostasis, clearance of damaged organelles and proteins and recycling necessary molecules like amino acids and fatty acids. There is a wide array of factors that influence autophagy in the state of health and disease. Disruption of these mechanisms may not only give rise to several autophagy-related disease, but also it can occur as the result of intracellular changes induced during disease pathogenesis causing exacerbation of the disease. Our knowledge is increasing regarding the role of autophagy and its mechanisms in the pathogenesis of various neurodegenerative diseases such as multiple sclerosis, Parkinson's disease, Alzheimer's disease, Huntington's disease and Amyotrophic lateral sclerosis. Indeed, getting to know about the pathways of autophagy and its regulation can provide the basis for designing therapeutic interventions. In the present paper, we review the pathways of autophagy, its regulation and the possible autophagy-targeting interventions for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Emad Ghobadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Fallah
- Student Research Committee, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shima Rasouli
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
42
|
Asghari MH, Moloudizargari M, Ghobadi E, Fallah M, Abdollahi M. Melatonin as a multifunctional anti-cancer molecule: Implications in gastric cancer. Life Sci 2017; 185:38-45. [DOI: 10.1016/j.lfs.2017.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022]
|
43
|
Asghari MH, Moloudizargari M, Baeeri M, Baghaei A, Rahimifard M, Solgi R, Jafari A, Aminjan HH, Hassani S, Moghadamnia AA, Ostad SN, Abdollahi M. On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity. Arch Toxicol 2017; 91:3109-3120. [PMID: 28551710 DOI: 10.1007/s00204-017-1998-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/22/2017] [Indexed: 12/20/2022]
Abstract
Aluminum phosphide (AlP), one of the most commonly used pesticides worldwide, has been the leading cause of self-poisoning mortalities among many Asian countries. The heart is the main organ affected in AlP poisoning. Melatonin has been previously shown to be beneficial in reversing toxic changes in the heart. The present study reveals evidence on the probable protective effects of melatonin on AlP-induced cardiotoxicity in rats. The study groups included a control (almond oil only), ethanol 5% (solvent), sole melatonin (50 mg/kg), AlP (16.7 mg/kg), and 4 AlP + melatonin groups which received 20, 30, 40 and 50 mg/kg of melatonin by intraperitoneal injections following AlP treatment. An electronic cardiovascular monitoring device was used to record the electrocardiographic (ECG) parameters. Heart tissues were studied in terms of oxidative stress biomarkers, mitochondrial complexes activities, ADP/ATP ratio and apoptosis. Abnormal ECG records as well as declined heart rate and blood pressure were found to be related to AlP administration. Based on the results, melatonin was highly effective in controlling AlP-induced changes in the study groups. Significant improvements were observed in the activities of mitochondrial complexes, oxidative stress biomarkers, the activities of caspases 3 and 9, and ADP/ATP ratio following treatment with melatonin at doses of 40 and 50 mg/kg. Our results indicate that melatonin can counteract the AlP-induced oxidative damage in the heart. This is mainly done by maintaining the normal balance of intracellular ATP as well as the prevention of oxidative damage. Further research is warranted to evaluate the possibility of using melatonin as an antidote in AlP poisoning.
Collapse
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Milad Moloudizargari
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Amir Baghaei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Reza Solgi
- Legal Medicine Research Center, Legal Medicine Organization of Iran, Hamedan, Iran
| | - Abbas Jafari
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Haghi Aminjan
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shokoufeh Hassani
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ali Akbar Moghadamnia
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran.
| |
Collapse
|
44
|
Reiter RJ, Rosales-Corral SA, Tan DX, Acuna-Castroviejo D, Qin L, Yang SF, Xu K. Melatonin, a Full Service Anti-Cancer Agent: Inhibition of Initiation, Progression and Metastasis. Int J Mol Sci 2017; 18:E843. [PMID: 28420185 PMCID: PMC5412427 DOI: 10.3390/ijms18040843] [Citation(s) in RCA: 318] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
There is highly credible evidence that melatonin mitigates cancer at the initiation, progression and metastasis phases. In many cases, the molecular mechanisms underpinning these inhibitory actions have been proposed. What is rather perplexing, however, is the large number of processes by which melatonin reportedly restrains cancer development and growth. These diverse actions suggest that what is being observed are merely epiphenomena of an underlying more fundamental action of melatonin that remains to be disclosed. Some of the arresting actions of melatonin on cancer are clearly membrane receptor-mediated while others are membrane receptor-independent and involve direct intracellular actions of this ubiquitously-distributed molecule. While the emphasis of melatonin/cancer research has been on the role of the indoleamine in restraining breast cancer, this is changing quickly with many cancer types having been shown to be susceptible to inhibition by melatonin. There are several facets of this research which could have immediate applications at the clinical level. Many studies have shown that melatonin's co-administration improves the sensitivity of cancers to inhibition by conventional drugs. Even more important are the findings that melatonin renders cancers previously totally resistant to treatment sensitive to these same therapies. Melatonin also inhibits molecular processes associated with metastasis by limiting the entrance of cancer cells into the vascular system and preventing them from establishing secondary growths at distant sites. This is of particular importance since cancer metastasis often significantly contributes to death of the patient. Another area that deserves additional consideration is related to the capacity of melatonin in reducing the toxic consequences of anti-cancer drugs while increasing their efficacy. Although this information has been available for more than a decade, it has not been adequately exploited at the clinical level. Even if the only beneficial actions of melatonin in cancer patients are its ability to attenuate acute and long-term drug toxicity, melatonin should be used to improve the physical wellbeing of the patients. The experimental findings, however, suggest that the advantages of using melatonin as a co-treatment with conventional cancer therapies would far exceed improvements in the wellbeing of the patients.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Sergio A Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Del Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico.
| | - Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | | | - Lilan Qin
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX 78229, USA.
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan, Medical University, Taichung 40201, Taiwan.
| | - Kexin Xu
- Department of Molecular Medicine, UT Health, San Antonio, TX 78229, USA.
| |
Collapse
|
45
|
Asghari MH, Abdollahi M, de Oliveira MR, Nabavi SM. A review of the protective role of melatonin during phosphine-induced cardiotoxicity: focus on mitochondrial dysfunction, oxidative stress and apoptosis. J Pharm Pharmacol 2016; 69:236-243. [PMID: 28000313 DOI: 10.1111/jphp.12682] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/12/2016] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Acute poisoning with aluminium phosphide (AlP) is a major cause of mortality in developing countries. AlP mortality is due to cardiac dysfunction leading to cardiomyocyte death. The main mechanism is an inhibition of cytochrome c oxidase in the cardiomyocyte mitochondria, resulting in a decreased ATP production and oxidative stress. Unfortunately, the administration of exogenous drugs does not meet the desired requirements of an effective therapy. Melatonin is an amphiphilic molecule and can easily pass through all cellular compartments with the highest concentration recorded in mitochondria. It is known as a vigorous antioxidant, acting as a potent reactive oxygen species (ROS) scavenger. Our aim is to summarize the mechanisms by which melatonin may modulate the deteriorating effects of AlP poisoning on cardiac mitochondria. KEY FINDINGS Melatonin not only mitigates the inhibition of respiratory chain complexes, but also increases ATP generation. Moreover, it can directly inhibit the mitochondrial permeability transition pore (mPTP) opening, thus preventing apoptosis. In addition, melatonin inhibits the release of cytochrome c from mitochondria to hinder caspase activation leading to cell survival. SUMMARY Based on the promising effects of melatonin on mitochondria, melatonin may mitigate AlP-induced cardiotoxicity and might be potentially suggested as cardioprotective in AlP-intoxicated patients.
Collapse
Affiliation(s)
- Mohammad Hossein Asghari
- Department of Pharmacology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, Tehran, Iran.,Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
46
|
Kiss Z, Ghosh PM. WOMEN IN CANCER THEMATIC REVIEW: Circadian rhythmicity and the influence of 'clock' genes on prostate cancer. Endocr Relat Cancer 2016; 23:T123-T134. [PMID: 27660402 PMCID: PMC5148656 DOI: 10.1530/erc-16-0366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 01/10/2023]
Abstract
The androgen receptor (AR) plays a key role in the development and progression of prostate cancer (CaP). Since the mid-1990s, reports in the literature pointed out higher incidences of CaP in some select groups, such as airline pilots and night shift workers in comparison with those working regular hours. The common finding in these 'high-risk' groups was that they all experienced a deregulation of the body's internal circadian rhythm. Here, we discuss how the circadian rhythm affects androgen levels and modulates CaP development and progression. Circadian rhythmicity of androgen production is lost in CaP patients, with the clock genes Per1 and Per2 decreasing, and Bmal1 increasing, in these individuals. Periodic expression of the clock genes was restored upon administration of the neurohormone melatonin, thereby suppressing CaP progression. Activation of the melatonin receptors and the AR antagonized each other, and therefore the tumour-suppressive effects of melatonin and the clock genes were most clearly observed in the absence of androgens, that is, in conjunction with androgen deprivation therapy (ADT). In addition, a large-scale study found that high-dose radiation was more effective in CaP patients when it was delivered before 17:00 h, compared with those delivered after 17:00 h, suggesting that the therapy was more effective when delivered in synchrony with the patient's circadian clock. As CaP patients are shown to become easily resistant to new therapies, perhaps circadian delivery of these therapeutic agents or delivery in conjunction with melatonin and its novel analogs should be tested to see if they prevent this resistance.
Collapse
Affiliation(s)
- Zsofia Kiss
- VA Northern California Health Care SystemMather, California, USA
- Department of UrologyUniversity of California at Davis, Sacramento, California, USA
| | - Paramita M Ghosh
- VA Northern California Health Care SystemMather, California, USA
- Department of UrologyUniversity of California at Davis, Sacramento, California, USA
- Department of Biochemistry and Molecular MedicineUniversity of California at Davis, Sacramento, California, USA
| |
Collapse
|