1
|
Braidotti S, Zudeh G, Franca R, Kiren V, Colombini A, Bettini LR, Brivio E, Locatelli F, Vinti L, Bertorello N, Fagioli F, Silvestri D, Valsecchi MG, Decorti G, Stocco G, Rabusin M. The Role of Candidate Polymorphisms in Drug Transporter Genes on High-Dose Methotrexate in the Consolidation Phase of the AIEOP-BFM ALL 2009 Protocol. Clin Transl Sci 2025; 18:e70136. [PMID: 39891427 PMCID: PMC11786019 DOI: 10.1111/cts.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 02/03/2025] Open
Abstract
High-dose methotrexate (HD-MTX) infusions are commonly used to consolidate remission in children with acute lymphoblastic leukemia (ALL). We investigate the potential role of candidate polymorphisms in SLCO1B1 (rs4149056 and rs2306283), ABCB1 (rs1045642), ABCC2 (rs717620), ABCC3 (rs9895420), and ABCC4 (rs7317112) drug transporters genes on HD-MTX pharmacokinetics and patients' outcome (meant both as relapse and drug-related toxicities) in an Italian cohort of 204 ALL pediatric patients treated according to the AIEOP-BFM ALL 2009 protocol. TaqMan SNP genotyping assays determined patient's genotypes. Measurements of HD-MTX plasma concentration were available for 814 HD-MTX courses in 204 patients; MTX clearance was estimated by a two-compartmental linear pharmacokinetic model with first-order elimination and a Bayesian approach, via ADAPT. Independent contributions of age and ABCC4 SNP rs7317112 (A>G, intronic) on MTX clearance were detected in a multivariate analysis (p = 1.57 × 10-8 and p = 2.06 × 10-5, respectively), suggesting a delayed elimination of the drug in older patients and an accelerated one in carriers of the variant GG genotype. After multiple corrections, the association between ABCC2 SNP rs717620 (-24 C>T) and severe hematological toxicity was found (p < 0.005). Moreover, SLCO1B1 SNP rs4149056 (c.521T>C, p.V174A) affected patients' outcomes: carriers of the variant C allele presented a reduced risk of relapse compared to wild-type TT (hazard risk: 0.27, 95% confidence interval [CI]: 0.08-0.90, p = 0.037). Taken together, these data highlighted the importance of variants in drug transporters genes on HD-MTX disposition in the AIEOP-BFM ALL 2009 protocol consolidation phase, and their putative role as predictive markers of outcome.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of PediatricsInstitute for Maternal and Child Health ‐ IRCCS Burlo GarofoloTriesteItaly
| | - Giulia Zudeh
- Department of Translational and Advanced DiagnosticsInstitute for Maternal and Child Health ‐ IRCCS Burlo GarofoloTriesteItaly
| | - Raffaella Franca
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Valentina Kiren
- Department of PediatricsInstitute for Maternal and Child Health ‐ IRCCS Burlo GarofoloTriesteItaly
| | | | - Laura Rachele Bettini
- Department of Pediatrics, IRCCS San Gerardo dei TintoriMonzaItaly
- University of Milano‐BicoccaMilanItaly
| | - Erica Brivio
- Department of Pediatric OncologyErasmus MC‐Sophia Children's Hospital RotterdamRotterdamThe Netherlands
- Princess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
| | - Franco Locatelli
- Department of Hematology, Oncology and of Cell and Gene TherapyIRCCS Ospedale Pediatrico Bambino Gesú, Catholic University of the Sacred HeartRomeItaly
| | - Luciana Vinti
- Department of Hematology, Oncology and of Cell and Gene TherapyIRCCS Ospedale Pediatrico Bambino Gesú, Catholic University of the Sacred HeartRomeItaly
| | - Nicoletta Bertorello
- Paediatric Onco‐Haematology DepartmentRegina Margherita Children's HospitalTurinItaly
| | - Franca Fagioli
- Paediatric Onco‐Haematology DepartmentRegina Margherita Children's HospitalTurinItaly
- Department of Public Health and PediatricsUniversity of TurinTurinItaly
| | - Daniela Silvestri
- Bicocca Centre of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and SurgeryUniversity of Milano BicoccaMilanoItaly
| | - Maria Grazia Valsecchi
- Bicocca Centre of Bioinformatics, Biostatistics and Bioimaging, School of Medicine and SurgeryUniversity of Milano BicoccaMilanoItaly
| | - Giuliana Decorti
- Department of Translational and Advanced DiagnosticsInstitute for Maternal and Child Health ‐ IRCCS Burlo GarofoloTriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Gabriele Stocco
- Department of Translational and Advanced DiagnosticsInstitute for Maternal and Child Health ‐ IRCCS Burlo GarofoloTriesteItaly
- Department of Medical, Surgical and Health SciencesUniversity of TriesteTriesteItaly
| | - Marco Rabusin
- Department of PediatricsInstitute for Maternal and Child Health ‐ IRCCS Burlo GarofoloTriesteItaly
| |
Collapse
|
2
|
Nekouian R, Faranoush P, Khesali F, Shams P, Foroughi‐Gilvaee MR, Sadighnia N, Azad DF, Ehsani M, Faranoush M. ATP-Binding Cassette Transporter Genes and microRNAs in Pediatric B-Cell ALL: Expression Insights. J Clin Lab Anal 2025; 39:e25134. [PMID: 39714045 PMCID: PMC11737115 DOI: 10.1002/jcla.25134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/28/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
BACKGROUND Acute lymphocytic leukemia (ALL), characterized by uncontrolled growth of abnormal lymphocytes, predominantly affects children. Genetic analysis focusing on genes and microRNAs reveals important information about the biology of ALL, enabling accurate diagnosis and treatment. This study examines gene and microRNA expression in B cell ALL to improve early diagnosis and personalized treatment. METHODS Bone marrow samples were collected from patients both before and after the induction phase of chemotherapy. Comprehensive diagnostic techniques including flow cytometry, molecular assays, real-time PCR for common translocations, karyotyping, and complete blood count (CBC) analysis were employed. These methods were utilized to determine the type and risk assessment of ALL, identify specific gene and microRNA expressions, and measure blood cell counts. RESULTS The study comprised 12 patients, all under the age of 18. Post-treatment RT-PCR analysis revealed significant reductions in the expression of the ABCB1 gene, miR-129-5p, and miR-9-5p following the induction phase of chemotherapy. Karyotype analysis indicated that two patients were hypodiploid; unfortunately, both of these patients did not survive. CONCLUSION MicroRNAs and ABC genes serve as predictive and prognostic biomarkers in Acute Lymphoblastic Leukemia (ALL) and should be carefully reconsidered. It is more accurate to state that while microRNAs and ABC genes may potentially influence treatment response in ALL, further research is crucial to fully understand their roles in determining treatment outcomes.
Collapse
Affiliation(s)
- Reza Nekouian
- Pediatric Growth and Development Research CenterInstitute of Endocrinology Iran University of Medical SciencesTehranIran
- Mehresoheila Cancer CharityAlborzIran
| | - Pooya Faranoush
- Pediatric Growth and Development Research CenterInstitute of Endocrinology Iran University of Medical SciencesTehranIran
- Mehresoheila Cancer CharityAlborzIran
| | - Fatemeh Khesali
- Pediatric Growth and Development Research CenterInstitute of Endocrinology Iran University of Medical SciencesTehranIran
| | - Parisa Shams
- Cell and Developmental Biology Department, Faculty of Sciences and Advanced Technologies in BiologyUniversity of Science and Culture ACECRTehranIran
| | - Mohammad Reza Foroughi‐Gilvaee
- Pediatric Growth and Development Research CenterInstitute of Endocrinology Iran University of Medical SciencesTehranIran
- Mehresoheila Cancer CharityAlborzIran
| | - Negin Sadighnia
- Pediatric Growth and Development Research CenterInstitute of Endocrinology Iran University of Medical SciencesTehranIran
| | - Dorsa Fallah Azad
- Pediatric Growth and Development Research CenterInstitute of Endocrinology Iran University of Medical SciencesTehranIran
| | | | - Mohammad Faranoush
- Pediatric Growth and Development Research CenterInstitute of Endocrinology Iran University of Medical SciencesTehranIran
| |
Collapse
|
3
|
Su J, Hu Y, Cheng J, Li Z, Li J, Zheng N, Zhang Z, Yang J, Li X, Yu Q, Du W, Chen X. Comprehensive analysis of the RNA transcriptome expression profiles and construction of the ceRNA network in heart failure patients with sacubitril/valsartan therapeutic heterogeneity after acute myocardial infarction. Eur J Pharmacol 2023; 944:175547. [PMID: 36708978 DOI: 10.1016/j.ejphar.2023.175547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Sacubitril/valsartan has a noteworthy advantage in improving ventricular remodelling, as well as reducing cardiovascular mortality and the rate of heart failure (HF) readmission. However, clinically, some patients with HF still have low sensitivity to sacubitril/valsartan, indicating sacubitril/valsartan resistance (SVR). A total of 46 patients with HF after AMI (23 SVR and 23 non-sacubitril/valsartan resistance (NSVR)) were selected. Five SVR and 5 matched NSVR samples were screened for differentially expressed ncRNAs along with mRNAs. A total of 124 differentially expressed miRNAs, 137 circRNAs, 237 lncRNAs and 50 mRNAs were screened by RNA sequencing technology. After quantitative real-time PCR (qRT‒PCR) verification of selected biomarkers in 18 pairs of samples, we found that for patients with SVR, hsa-miR-543, hsa-miR-642b-5p, hsa-miR-760, hsa_circ_0137499, ENST00000474394, ENST00000528337, E2F1, NEAT1, and YTHDF2 were upregulated, and hsa-miR-424-5p, hsa-miR-21-3p, hsa_circRNA_0003275, hsa_circRNA_0004494, hsa_circ_0093522, ENST00000467951, ENST00000558177, ACTA2, ANPEP, and CAMP were downregulated. Then, with the help of our constructed ceRNA network and functional annotation enrichment, we speculated that inflammatory pathways (such as the apelin signalling pathway) and lipid metabolism pathways (such as fatty acid metabolism) may be involved in the regulation of SVR. These discoveries lay a foundation for further mechanistic research and provide a direction for individualized drug administration.
Collapse
Affiliation(s)
- Jia Su
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China
| | - Yingchu Hu
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China
| | - Ji Cheng
- Department of Emergency, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Zhenwei Li
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China
| | - Jiyi Li
- Department of Cardiology, Yuyao People's Hospital of Zhejiang Province, Yuyao, Zhejiang, PR China
| | - Nan Zheng
- Department of Cardiology, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Zhaoxia Zhang
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China
| | - Jin Yang
- Department of Geriatrics, Ningbo No. 1 Hospital, Ningbo, Zhejiang, PR China
| | - Xiaojin Li
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, PR China
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, Zhejiang, PR China.
| | - Weiping Du
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China.
| | - Xiaomin Chen
- Department of Cardiology, Ningbo No.1 Hospital, Ningbo, Zhejiang, PR China; Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, PR China.
| |
Collapse
|
4
|
Goracci L, Nurisso A, Roussel E, Pérès B, Chaptal V, Falson P, Marminon C, Jose J, Le Borgne M, Boumendjel A. Inhibitors of ABCG2-mediated multidrug resistance: Lead generation through computer-aided drug design. Eur J Med Chem 2023; 248:115070. [PMID: 36628850 DOI: 10.1016/j.ejmech.2022.115070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/10/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Human breast cancer resistance protein (BCRP), known also as ABCG2, plays a major role in multiple drug resistance (MDR) in tumor cells. Through this ABC transporter, cancer cells acquire the ability of resistance to structurally and functionally unrelated anticancer drugs. Nowadays, the design of ABCG2 inhibitors as potential agents to enhance the chemotherapy efficacy is an interesting strategy. In this context, we have used computer-aided drug design (CADD) based on available data of a large series of potent inhibitors from our groups as an approach in guiding the design of effective ABCG2 inhibitors. We report therein the results on the use of the FLAPpharm method to elucidate the pharmacophoric features of one of the ABCG2 binding sites involved in the regulation of the basal ATPase activity of the transporter. The predictivity of the model was evaluated by testing three predicted compounds which were found to induce high inhibitory activity of BCRP, in the nanomolar range for the best of them.
Collapse
Affiliation(s)
- Laura Goracci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Italy
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CH-1211, Geneva 4, Switzerland
| | - Emile Roussel
- Université Grenoble Alpes, INSERM, LRB UMR 1039, 38000, Grenoble, France
| | - Basile Pérès
- Université Grenoble Alpes, CNRS, DPM, UMR 5063, 38000, Grenoble, France
| | - Vincent Chaptal
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Pierre Falson
- Drug Resistance and Membrane Proteins Group, Molecular Microbiology and Structural Biochemistry Laboratory, CNRS UMR 5086, University of Lyon, IBCP, 7, passage du Vercors, 69367, Lyon, France
| | - Christelle Marminon
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Joachim Jose
- Westfälische Wilhelms-Universität Münster, Institute of Pharmaceutical and Medicinal Chemistry, PharmaCampus, Corrensstr. 48, 48149, Münster, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Univ Lyon, 69373, Lyon, France
| | - Ahcène Boumendjel
- Université Grenoble Alpes, INSERM, LRB UMR 1039, 38000, Grenoble, France.
| |
Collapse
|
5
|
Xun T, Lin Z, Zhang M, Mo L, Chen Y, Wang X, Zhao J, Ye C, Feng H, Yang X. Advanced oxidation protein products upregulate ABCB1 expression and activity via HDAC2-Foxo3α-mediated signaling in vitro and in vivo. Toxicol Appl Pharmacol 2022; 449:116140. [PMID: 35753429 DOI: 10.1016/j.taap.2022.116140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/12/2022] [Accepted: 06/21/2022] [Indexed: 11/28/2022]
Abstract
The unpredictable pharmacokinetics of non-renal cleared drugs in chronic kidney disease (CKD) patients is associated with the activity of drug transporters. However, the mechanisms underlying regulation of drug transporters are yet to be established. In this study, we demonstrated the involvement of a HDAC2-Foxo3α pathway in advanced oxidation protein products (AOPPs)-induced ATP-binding cassette subfamily B member 1 (ABCB1) expression and activity. The correlation of AOPPs accumulation with concentration of cyclosporine in plasma was evaluated in 194 patients with transplantation. Molecular changes in acetylation of various histones and related regulatory molecules were examined in HepG2 cell cultures treated with AOPPs. Accumulation of AOPPs in serum in relation to molecular changes in HDAC2-Foxo3α in vivo were evaluated in 5/6 nephrectomy (5/6 nx) and oral adenine (Adenine) CKD rat models. Interestingly, the cyclosporine level was negatively correlated with AOPPs in plasma. In addition, AOPPs markedly suppressed the expression of histone deacetylase 2 (HDAC2), inducing ABCB1 expression and activity in vitro and in vivo. Importantly, AOPPs modulated phosphorylation of Foxo3α and the upstream Akt protein. Our findings indicate that AOPPs regulate the expression and activity of ABCB1 via reducing HDAC2 expression and activating Foxo3α-dependent signaling. The collective results support the utility of AOPPs as a potential target for drug and/or dosage adjustment in CKD patients. Targeting of AOPPs presents a novel approach to regulate non-renal clearance.
Collapse
Affiliation(s)
- Tianrong Xun
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhufen Lin
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Mimi Zhang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liqian Mo
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Chen
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jingqian Zhao
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Chunxiao Ye
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Haixing Feng
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
6
|
Kong FC, Lang LQ, Hu J, Zhang XL, Zhong MK, Ma CL. A novel epigenetic marker, Ten-eleven translocation family member 2 (TET2), is identified in the intractable epileptic brain and regulates ATP binding cassette subfamily B member 1 (ABCB1) in the blood-brain barrier. Bioengineered 2022; 13:6638-6649. [PMID: 35235761 PMCID: PMC8974043 DOI: 10.1080/21655979.2022.2045838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Drug-resistant epilepsy (DRE) is a chronic condition derived from spontaneous changes and regulatory effects in the epileptic brain. As demethylation factors, ten-eleven translocation (TET) family members have become a focus in recent studies of neurological disorders. Here, we quantified and localized TET1, TET2 and 5-hydroxymethylcytosine (5-hmC) in the temporal lobe cortex of DRE patients (n = 27) and traumatic brain hemorrhage controls (n = 10) by immunochemical staining. TET2 and ATP binding cassette subfamily B member 1 (ABCB1) expression patterns were determined in the isolated brain capillaries of DRE patients. TET2 expression was significantly increased in the temporal cortical tissue of DRE patients with or without hippocampal sclerosis (HS) compared to control patients, while TET1 and 5-hmC showed no differences in expression. We also found that a particularly strong expression of TET2 in the vascular tissue of DRE patients. ABCB1 and TET2 have evidently higher expression in the vascular endothelium from the neocortex of DRE patients. In blood–brain barrier (BBB) model, TET2 depletion can cause attenuated expression and function of ABCB1. Data from a cohort study and experiments in a BBB model suggest that TET2 has a specific regulatory effect on ABCB1, which may serve as a potential mechanism and target in DRE.
Collapse
Affiliation(s)
- Fan-Cheng Kong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Li-Qin Lang
- Department of Neurosurgery, Huashan Hospital at Fudan University, Shanghai, China
| | - Jie Hu
- Department of Neurosurgery, Huashan Hospital at Fudan University, Shanghai, China
| | - Xia-Ling Zhang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Joshi S, Ghosh P, Barage S, Basu B, Deobagkar DD. Genome-wide lone strand adenine methylation in Deinococcus radiodurans R1: Regulation of gene expression through DR0643-dependent adenine methylation. Microbiol Res 2022; 257:126964. [PMID: 35042054 DOI: 10.1016/j.micres.2022.126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022]
Abstract
DNA methylation is a covalent modification of adenine or cytosine in the genome of an organism and is found in diverse microbes including the radiation resistant bacterium Deinococcus radiodurans R1. Although earlier findings have confirmed repression or de-repression of certain genes in adenine methyltransferase (DR_0643/Dam1DR) deficient D. radiodurans mutant however, the overall regulatory aspects of Dam1DR-mediated adenine methylation remain mostly unexplored. In the present study, we compared the genome-wide methylome and the corresponding transcriptome of D. radiodurans WT and Δdam1 mutant to explore the correlation between methylation and gene expression. In D. radiodurans, deletion of DR_0643 ORF (Δdam1) led to hypomethylation of 512 genes resulting in differential expression of 168 genes (99 genes are upregulated and 69 genes are downregulated). The modification patterns deduced for Dam1DR (DR_0643) and Dam2DR (DR_2267) were non-palindromic and atypical. Moreover, we observed methylation at opportunistic sites that show adenine methylation only in D. radiodurans Δdam1 and not in D. radiodurans WT. Correlation between the methylome and transcriptome suggests that hypomethylation at Dam1DR specific sites had both negative as well as a positive effects on gene expression. Pathways such as amino acid metabolism, transport, oxidative phosphorylation, quorum sensing, signal transduction, two-component system, glycolysis/gluconeogenesis, TCA cycle, glyoxylate and dicarboxylate metabolism were modulated by Dam1DR-mediated adenine methylation in D. radiodurans. Processes such as DNA repair, recombination, ATPase and transmembrane transporter activity were enriched when Dam1DR mutant was subjected to radiation stress. We further evaluated the molecular interactions and mode of binding between Dam1DR protein and S-adenosyl methionine using molecular docking followed by MD simulation. To get a better insight into the methylation mechanism, the Dam1DR-SAM complex was also docked with a DNA molecule to elucidate DNA-Dam1DR structural interaction during methyl-group transfer reaction. In summary, our work presents comprehensive and integrative approaches to investigate both functional and structural aspects of DNA adenine methyltransferase (Dam1DR) in D. radiodurans biology.
Collapse
Affiliation(s)
- Suraj Joshi
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India; Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Payel Ghosh
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India.
| | - Sagar Barage
- Amity Institute of Biotechnology, Amity University, Mumbai - Pune Expressway, Bhatan, Post-Somathne, Panvel, Maharashtra, 410206, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
8
|
Pinto CA, DE Sousa Portilho AJ, Barbosa MC, DE Moraes MEA, DE Lemos JAR, Burbano RMR, Moreira-Nunes CA. Combined Therapy of ATRA and Imatinib Mesylate Decreases BCR-ABL and ABCB1/MDR1 Expression Through Cellular Differentiation in a Chronic Myeloid Leukemia Model. In Vivo 2021; 35:2661-2667. [PMID: 34410954 DOI: 10.21873/invivo.12549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND/AIM Chronic Myeloid Leukemia (CML) is a clonal myeloproliferative disease, and a major challenge for the eradication of CML is to understand the cause of the permanence of minimal residual disease (DRM). This work aimed to induce the maturation of leukemic stem cells with All-trans-retinoic acid (ATRA), making them sensitive to treatment with Imatinib (IM). MATERIALS AND METHODS K562 cells were treated with IM and with the combined therapy of ATRA together with IM for 48 and 72 h. The expression of BCR-ABL gene and multidrug resistance gene ABCB1 were evaluated using RT-qPCR. RESULTS The combined ATRA and IM therapy showed a discreet cell differentiation pattern, evidenced by the panoptic morphology analysis at 48 and 72 h of treatment. The BCR-ABL expression showed no statistical difference when treated alone with IM, however in combination with ATRA, the expression was statistically significant in 48 and 72 h (p≤0.0001) and when the treatment groups were compared to each other (p≤0.001). The ABCB1 gene expression showed a decrease in isolated IM therapy (p≤0.05) and in the combination in 48 and 72 h (p≤0.0001). CONCLUSION Combined ATRA and IM therapy was shown to be effective in decreasing BCR-ABL and ABCB1 genes, possibly through the differentiation of blast cells, demonstrating that the therapy could be potentially effective in the blast crisis of the disease and for those patients who develop resistance to available CML treatments.
Collapse
Affiliation(s)
- Camila Albuquerque Pinto
- Human Cytogenetics Laboratory, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Adrhyann Jullyanne DE Sousa Portilho
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | - Maria Elisabete Amaral DE Moraes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil
| | | | | | - Caroline Aquino Moreira-Nunes
- Pharmacogenetics Laboratory, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Brazil;
| |
Collapse
|
9
|
Wang X, Wang H, Jiang H, Qiao L, Guo C. Circular RNAcirc_0076305 Promotes Cisplatin (DDP) Resistance of Non-Small Cell Lung Cancer Cells by Regulating ABCC1 Through miR-186-5p. Cancer Biother Radiopharm 2021. [PMID: 34339285 DOI: 10.1089/cbr.2020.4153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: Lung cancer is a social problem of increasing concern, and non-small cell lung cancer (NSCLC) accounts for 80%-85% incidence of lung cancer. Cisplatin (DDP) is reported as a first-line chemotherapy drug for NSCLC, but the resistance has became a main obstacle for NSCLC treatment. The high level of circular RNA circ_0076305 was related to the DDP resistance in NSCLC. However, the mechanism of circ_0076305 remains unclear in DDP resistance of NSCLC. Materials and Methods: Exosomes were detected by a transmission electron microscope and nanoparticle tracking analysis. The protein levels of CD63, CD81, P-glycoprotein (P-gp), Lung resistance-related protein, and ATP-binding cassette subfamily C member 1 (ABCC1) were examined by Western blot assay. Circ_0076305, microRNA-186-5p (miR-186-5p), and ABCC1 levels were tested by real-time quantitative polymerase chain reaction. DDP resistance was examined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide assay. The binding relationship between miR-186-5p and circ_0076305 or ABCC1 was predicted by circRNA interactome or starBase, and then verified by dual-luciferase reporter and RNA immunoprecipitation assays. The effect of circ_0076305 on DDP resistance in NSCLC was examined by xenograft tumor model in vivo. Results: Circ_0076305 was increased in NSCLC cell-derived exosomes, DDP-resistant NSCLC tissues and cells. Circ_0076305 knockdown elevated DDP sensitivity in vitro. Mechanically, circ_0076305 enhanced ABCC1 expression through sponging miR-186-5p, thus regulating DDP resistance of NSCLC. Furthermore, circ_0076305 silencing improved DDP sensitivity of NSCLC in vivo. Conclusion: The results from this study disclosed that circ_0076305 knockdown improved DDP sensitivity by the miR-186-5p/ABCC1 axis in NSCLC, hinting a potential circRNA-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Xinli Wang
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| | - Hailiang Wang
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| | - Housen Jiang
- Department of Orthopedic Surgery, and Weifang People's Hospital, Weifang, China
| | - Liang Qiao
- Department of Urology, Weifang People's Hospital, Weifang, China
| | - Chunhong Guo
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| |
Collapse
|
10
|
Ganesan M, Kanimozhi G, Pradhapsingh B, Khan HA, Alhomida AS, Ekhzaimy A, Brindha GR, Prasad NR. Phytochemicals reverse P-glycoprotein mediated multidrug resistance via signal transduction pathways. Biomed Pharmacother 2021; 139:111632. [PMID: 34243600 DOI: 10.1016/j.biopha.2021.111632] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
P-glycoprotein, encoded by ATP-binding cassette transporters B1 gene (ABCB1), renders multidrug resistance (MDR) during cancer chemotherapy. Several synthetic small molecule inhibitors affect P-glycoprotein (P-gp) transport function in MDR tumor cells. However, inhibition of P-gp transport function adversely accumulates chemotherapeutic drugs in non-target normal tissues. Moreover, most small-molecule P-gp inhibitors failed in the clinical trials due to the low therapeutic window at the maximum tolerated dose. Therefore, downregulation of ABCB1-gene expression (P-gp) in tumor tissues seems to be a novel approach rather than inhibiting its transport function for the reversal of multidrug resistance (MDR). Several plant-derived phytochemicals modulate various signal transduction pathways and inhibit translocation of transcription factors, thereby reverses P-gp mediated MDR in tumor cells. Therefore, phytochemicals may be considered an alternative to synthetic small molecule P-gp inhibitors for the reversal of MDR in cancer cells. This review discussed the role of natural phytochemicals that modulate ABCB1 expression through various signal transduction pathways in MDR cancer cells. Therefore, modulating the cell signaling pathways by phytochemicals might play crucial roles in modulating ABCB1 gene expression and the reversal of MDR.
Collapse
Affiliation(s)
- M Ganesan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - G Kanimozhi
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, Tamil Nadu, India
| | - B Pradhapsingh
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India
| | - Haseeb A Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah S Alhomida
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Aishah Ekhzaimy
- Division of Endocrinology, Department of Medicine, King Khalid University Hospital, Riyadh 12372, Saudi Arabia
| | - G R Brindha
- School of Computing, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar 608002, Tamil Nadu, India.
| |
Collapse
|
11
|
Li W, Zihan X, Yizhe W, Yanyang L, Zhixi L, Xi Y. Trilobatin Induces Apoptosis and Attenuates Stemness Phenotype of Acquired Gefitinib Resistant Lung Cancer Cells via Suppression of NF-κB Pathway. Nutr Cancer 2021; 74:735-746. [PMID: 33860693 DOI: 10.1080/01635581.2021.1912368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Trilobatin is a common type of flavonoids compounds derived from Lithocarpus polystachyus Rehd leaves. Previous report suggests that trilobatin was potentially involved in pro-and anticancer, antioxidative and anti-hyperglycemic activities. Here, we investigated the anticancer efficiency of trilobatin on gefitinib resistant lung cancer cells. In this study, MTT assays, EdU incorporation assays, DAPI staining, tumor sphere formation assays, immunofluorescent staining and Western blot analysis were performed to explore the functional role of trilobatin on gefitinib resistant lung cancer cells. The results showed that trilobatin inhibits proliferation of gefitinib resistant lung cancer cells. In addition, the proportions of apoptotic cells were increased along with down-regulated expression levels of Bcl-2 and mitochondrial Cytochrome C while up-regulated Bax, Cleaved Caspase-3, -9, and cytosolic Cytochrome C expression. Moreover, trilobatin decreased tumor sphere formation and expression levels of multiple stemness markers (ALDH1, CD133, Nanog, and ABCG2) in gefitinib resistant lung cancer cells. Furthermore, investigation of the mechanism indicated that trilobatin suppressed activity of NF-κB via decreasing constitutive phosphorylation of NF-κB p65 and IκB-α in gefitinib resistant lung cancer cells. All these results indicate that trilobatin induces apoptosis and attenuates stemness phenotype of gefitinib resistant lung cancer cells, involved with, or partly, the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Wang Li
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xu Zihan
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Yizhe
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liu Yanyang
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Li Zhixi
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yan Xi
- Lung Cancer Center, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Emerging noninvasive methylation biomarkers of cancer prognosis and drug response prediction. Semin Cancer Biol 2021; 83:584-595. [PMID: 33757849 DOI: 10.1016/j.semcancer.2021.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/15/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022]
Abstract
Cancer is the second leading cause of death worldwide being responsible for 9.6 million deaths in 2018. Epigenetic alterations are key in directing the aberrant expression of tumor-associated genes that drive cellular malignant transformation and cancer progression. Among epigenetic alterations, DNA methylation is the most deeply studied one in relation to environmental exposure. Tissue biopsies have traditionally been the main procedure by which a small sample of body tissue is excised to confirm cancer diagnosis or to indicate the primary site when cancer has spread. In contrast, the analysis of circulating tumor-derived material, or tumor circulome, by means of liquid biopsy of peripheral blood, urine, saliva or sputum is a noninvasive, fast and reproducible alternative to tissue biopsy. Recently, the assessment of epigenetic alterations such as DNA methylation and hydroxymethylation in circulating free DNA has been proved possible. These marks can be associated to prognosis and response to a variety of treatments including chemotherapy, hormonotherapy or immunotherapy. Epigenetic biomarkers may offer some advantages over RNA or genetic biomarkers given their stability in bodily fluids and their high tissue-specificity. While many challenges are still ahead, the unique advantages of these types of biomarkers is urging the scientific community to persevere in their clinical validation and integration into reliable prediction models. This review aims at recapitulating the emerging noninvasive DNA methylated biomarkers of importance for prediction of prognosis and drug response in cancer.
Collapse
|
13
|
Wang Y, Wang Y, Qin Z, Cai S, Yu L, Hu H, Zeng S. The role of non-coding RNAs in ABC transporters regulation and their clinical implications of multidrug resistance in cancer. Expert Opin Drug Metab Toxicol 2021; 17:291-306. [PMID: 33544643 DOI: 10.1080/17425255.2021.1887139] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Multi-drug resistance (MDR) is a hindrance toward the successful treatment of cancers. The primary mechanism that gives rise to acquired chemoresistance is the overexpression of adenosine triphosphate-binding cassette (ABC) transporters. The dysregulation of non-coding RNAs (ncRNAs) is a widely concerned reason contributing to this phenotype. AREAS COVERED In this review, we describe the role of intracellular and exosomal ncRNAs including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) in ABC transporters-induced tumor MDR. Meanwhile, we will introduce the potential therapeutic strategies which reverse MDR in terms of reducing the expression of ABC transporters via targeting ncRNAs, like nucleic acid delivery with nanoparticles as well as miRNAs-targeted small molecular compounds. EXPERT OPINION The dysregulated ncRNAs-mediated overexpression of ABC transporters in chemo-resistant cancer is not negligible. Finding out the underlying mechanism may provide a theoretical basis for clinical therapy of cancer MDR, and the emergence of new approaches for gene therapy targeting ncRNAs to suppress ABC transporters makes reversing cancer MDR possible despite its clinical application requires further investigations. Also, the discovered ncRNAs regulating ABC transporters in chemo-resistant cancers are just a tip of the iceberg of the genetic transcripts, especially for circRNAs, which justify more concern.Abbreviations: MDR, multi-drug resistance; ABC, adenosine triphosphate-binding cassette; NcRNAs, non-coding RNAs; MiRNAs, microRNAs; LncRNAs, long non-coding RNAs; CircRNAs, circular RNAs; CeRNAs, competing endogenous RNAs; 3'UTR, 3'-untranslated regions; SLC, solute carrier; ABCB1/MDR1, ABC subfamily B member 1; ABCG2/BCRP, ABC subfamily G member 2; ABCCs/MRPs, ABC subfamily C 1 to 12; DLL1: Delta-like protein 1; DTX, docetaxel; DOX/ADM/ADR, doxorubicin/adriamycin; PTX, paclitaxel; VBL, vinblastine; VCR, vincristine; MTX, methotrexate; CDDP/DDP, cisplatin/cis-diaminedichloroplatinum; OXA/L-OHP, oxaliplatin; TMZ, temozolomide; 5-FU, 5-fluorouracil; MTA, pemetrexed; NSCLC, non-small cell lung carcinoma; HCC, hepatocellular carcinoma; CRC, colorectal carcinoma; RB, retinoblastoma; RCC, renal cell carcinoma; OS, osteosarcoma; PDAC, pancreatic ductal adenocarcinoma; TNBC, triple-negative breast cancer.
Collapse
Affiliation(s)
- Yu Wang
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yingying Wang
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zhiyuan Qin
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Sheng Cai
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Lushan Yu
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Haihong Hu
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Su Zeng
- Institution of Drug Metabolism and Pharmaceutical Analysis, Cancer Center of Zhejiang University,Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Yan LH, Zhang D, Mo SS, Yuan H, Mo XW, Zhao JM. Anlotinib suppresses metastasis and multidrug resistance via dual blockade of MET/ABCB1 in colorectal carcinoma cells. J Cancer 2021; 12:2092-2104. [PMID: 33754008 PMCID: PMC7974540 DOI: 10.7150/jca.45618] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Anlotinib, a highly selective multi-targeted tyrosine kinase inhibitor (TKI) has therapeutic effects on non-small-cell lung cancer (NSCLC). In this study, the anti-tumor activity and molecular mechanism of anlotinib in metastatic colorectal cancer (mCRC) was explored. The anti-angiogenesis, anti-metastasis, anti-proliferative, and anti-multidrug resistance efficacy of anlotinib were analyzed by using in vitro and in vivo models of human CRC cells. The results indicated that anlotinib boosted chemo-sensitivity of CRC cells, and restrained its proliferation. Besides the suppression of the MET signaling pathway, anlotinib also inhibited invasion and migration of CRC cells. Furthermore, anlotinib prevented VEGF-induced angiogenesis, N-cadherin (CDH2)-induced cell migration, and reversed ATP-binding cassette subfamily B member 1 (ABCB1) -mediated CRC multidrug resistance in CRC. The CRC liver metastasis and subcutaneously implanted xenograft model testified that anlotinib could inhibit proliferation and liver metastasis in CRC cells. Such an observation suggested that a combination of anlotinib with anti-cancer drugs could attenuate angiogenesis, metastasis, proliferative, and multidrug resistance, which constitutes a novel treatment strategy for CRC patients with metastasis.
Collapse
Affiliation(s)
- Lin-Hai Yan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Di Zhang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Si Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hao Yuan
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jin-Min Zhao
- Department of Pharmacology, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
15
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
16
|
Wang W, Liang Z, Ma P, Zhao Q, Dai M, Zhu J, Han X, Xu H, Chang Q, Zhen Y. Application of CRISPR/Cas9 System to Reverse ABC-Mediated Multidrug Resistance. Bioconjug Chem 2021; 32:73-81. [PMID: 33393280 DOI: 10.1021/acs.bioconjchem.0c00627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is the main obstacle in cancer chemotherapy. ATP-binding cassette (ABC) transporters can transport a wide range of antitumor drugs out of cells, which is the most common reason in the development of resistance to drugs. Currently, various therapeutic strategies are used to reverse MDR, among which CRISPR/Cas9 gene editing technique is expected to be an effective way. Here, we reviewed the research progress of reversing ABC-mediated drug resistance by CRISPR/Cas9 system.
Collapse
Affiliation(s)
- Wei Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Ze Liang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Pengfei Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Qi Zhao
- The First Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Mengyuan Dai
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Jie Zhu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Xu Han
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Qingyan Chang
- Pharmacy Department, Dalian Sixth People Hospital of Dalian Medical University, Dalian 116031, China
| | - Yuhong Zhen
- College of Pharmacy, Dalian Medical University, Dalian, 116044, China
| |
Collapse
|
17
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
18
|
Ramos-Peñafiel C, Olarte-Carrillo I, Maldonado RC, de la Cruz Rosas A, Collazo-Jaloma J, Martínez-Tovar A. Association of three factors (ABCB1 gene expression, steroid response, early response at day + 8) on the response to induction in patients with acute lymphoblastic leukemia. Ann Hematol 2020; 99:2629-2637. [PMID: 32980890 DOI: 10.1007/s00277-020-04277-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Treatment of acute lymphoblastic leukemia (ALL) requires the combination of multiple drugs to integrate a complete remission. The different prognostic factors (age, leukocytes, risk, cytogenetic alterations) allow identifying those patients with a high risk of relapse, but there are few described factors that impact the induction response. The objective was to identify the utility of different risk factors (overexpression of the ABCB1 drug resistance gene, favorable response to steroids (FRS) and early response at day + 8 of treatment) on the percentage of complete remissions and overall survival. This is a prospective, observational study in adult patients with B-ALL without specific cytogenetic alterations, who started induction treatment based on a pretreatment with prednisone and subsequently vincristine (1.6 mg/m2 subcutaneous) plus daunorubicin (45 mg/m2 subcutaneously) on days + 1, + 8, + 15. The ABCB1 resistance gene was evaluated at diagnosis, the FRS at the end of the pretreatment and the early response during day + 8. A total of 53 adult patients diagnosed with ALL Philadelphia negative chromosome (Ph-), with immunophenotype B, with a normal karyotype, were studied. Cases with genetic abnormalities with a poor prognosis were excluded in order to reduce bias. The mean age was 48 years (range 17-68 years). 62.3% of patients were at high risk of relapse. When analyzing the risk factors, 30.2% showed high levels of the ABCB1 resistance gene, without showing an impact on the induction response (OR: 1.218, p = 0.743), but its overexpression was associated with a poor response to steroids as in the absence of early response. Individually, both the FRS (OR: 5.7, p = 0.004) and the absence of early response to day + 8 (OR: 6.42, p = 0.002) showed significance. By combining the different factors, having more than 2 was directly related to a failure (OR: 9.514, p = 0.000). The identification of factors such as FRS such as the persistence of blasts at the end of the first week of treatment is useful to identify patients at risk of failure in induction.
Collapse
Affiliation(s)
- Christian Ramos-Peñafiel
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", 06726, Ciudad de México, Mexico
| | - Irma Olarte-Carrillo
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Rafael Cerón Maldonado
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Adrián de la Cruz Rosas
- Laboratorio de Biología Molecular, Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", Ciudad de México, Mexico
| | - Juan Collazo-Jaloma
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", 06726, Ciudad de México, Mexico
| | - Adolfo Martínez-Tovar
- Servicio de Hematología, Hospital General de México, "Dr. Eduardo Liceaga", 06726, Ciudad de México, Mexico.
| |
Collapse
|
19
|
Peedicayil J. Pharmacoepigenetics and Pharmacoepigenomics: An Overview. Curr Drug Discov Technol 2020; 16:392-399. [PMID: 29676232 DOI: 10.2174/1570163815666180419154633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The rapid and major advances being made in epigenetics are impacting pharmacology, giving rise to new sub-disciplines in pharmacology, pharmacoepigenetics, the study of the epigenetic basis of variation in response to drugs; and pharmacoepigenomics, the application of pharmacoepigenetics on a genome-wide scale. METHODS This article highlights the following aspects of pharmacoepigenetics and pharmacoepigenomics: epigenetic therapy, the role of epigenetics in pharmacokinetics, the relevance of epigenetics to adverse drug reactions, personalized medicine, drug addiction, and drug resistance, and the use of epigenetic biomarkers in drug therapy. RESULTS Epigenetics is having an increasing impact on several areas of pharmacology. CONCLUSION Pharmacoepigenetics and pharmacoepigenomics are new sub-disciplines in pharmacology and are likely to have an increasing impact on the use of drugs in clinical practice.
Collapse
Affiliation(s)
- Jacob Peedicayil
- Department of Pharmacology & Clinical Pharmacology, Christian Medical College, Vellore, India
| |
Collapse
|
20
|
Luo X, Teng QX, Dong JY, Yang DH, Wang M, Dessie W, Qin JJ, Lei ZN, Wang JQ, Qin Z, Chen ZS. Antimicrobial Peptide Reverses ABCB1-Mediated Chemotherapeutic Drug Resistance. Front Pharmacol 2020; 11:1208. [PMID: 32903706 PMCID: PMC7438908 DOI: 10.3389/fphar.2020.01208] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) of tumor cells to chemotherapeutic agents is the main reason for the failure of cancer chemotherapy. Overexpression of ABCB1 transporter that actively pumps various drugs out of the cells has been considered a major contributing factor for MDR. Over the past decade, many antimicrobial peptides with antitumor activity have been identified or synthesized, and some antitumor peptides have entered the clinical practice. In this study, we report that peptide HX-12C has the effect of reversing ABCB1-mediated chemotherapy resistance. In ABCB1-overexpressing cells, nontoxic dose of peptide HX-12C inhibited drug resistance and increased the effective intracellular concentration of paclitaxel and other ABCB1 substrate drugs. The mechanism study showed that peptide HX-12C stimulated ABCB1 ATPase activity without changing the expression level and localization patterns of ABCB1. Molecular docking predicted the binding modes between peptide HX-12C and ABCB1. Overall, we found that peptide HX-12C reverses ABCB1-mediated MDR through interacting with ABCB1 and blocking its function without affecting the transporter's expression and cellular localization. Our findings suggest that this antimicrobial peptide may be used as a novel prospective cancer therapeutic strategy in combination with conventional anticancer agents.
Collapse
Affiliation(s)
- Xiaofang Luo
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jin-Yun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Meifeng Wang
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Wubliker Dessie
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|
21
|
Abstract
Effective leukemia treatment is seriously hampered by drug resistance, and the potential role of epigenetic mechanisms in cancer drug resistance has recently been investigated. With conventional anticancer drugs, including alkylating drugs, anti-metabolite drugs, topoisomerase inhibitors, and microtubule inhibitors-which have been available for half a century-drug resistance often develops because of decreased expression of target enzymes, in conjunction with increased expression of drug export pumps. Alterations of target gene expression and increased export pump function might be caused by epigenetic changes, such as alterations in methylation status, as well as by changes in histone acetylation status. In addition, newly developed anticancer drugs, including small-molecule drugs, such as kinase inhibitors, antibody drugs, and immune modulatory drugs, also resulted in development of drug resistance within 1 year, although these drugs showed significant effectiveness for patients resistant to conventional anticancer drugs. The resistant cells exhibited increased expression of bypass pathways, activation of downstream cascades, decreased expression of antigens of tumor cells, increased DNA repair activity, and increased expression of drug export pumps, which also suggests the presence of epigenetic changes. This article reviews drug resistance in cancer therapy and the possible roles of epigenetic mechanisms.
Collapse
Affiliation(s)
- Takeshi Asano
- Department of Pediatrics, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
22
|
Dong J, Qin Z, Zhang WD, Cheng G, Yehuda AG, Ashby CR, Chen ZS, Cheng XD, Qin JJ. Medicinal chemistry strategies to discover P-glycoprotein inhibitors: An update. Drug Resist Updat 2020; 49:100681. [PMID: 32014648 DOI: 10.1016/j.drup.2020.100681] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
Abstract
The presence of multidrug resistance (MDR) in malignant tumors is one of the primary causes of treatment failure in cancer chemotherapy. The overexpression of the ATP binding cassette (ABC) transporter, P-glycoprotein (P-gp), which significantly increases the efflux of certain anticancer drugs from tumor cells, produces MDR. Therefore, inhibition of P-gp may represent a viable therapeutic strategy to overcome cancer MDR. Over the past 4 decades, many compounds with P-gp inhibitory efficacy (referred to as first- and second-generation P-gp inhibitors) have been identified or synthesized. However, these compounds were not successful in clinical trials due to a lack of efficacy and/or untoward toxicity. Subsequently, third- and fourth-generation P-gp inhibitors were developed but dedicated clinical trials did not indicate a significant therapeutic effect. In recent years, an extraordinary array of highly potent, selective, and low-toxicity P-gp inhibitors have been reported. Herein, we provide a comprehensive review of the synthetic and natural products that have specific inhibitory activity on P-gp drug efflux as well as promising chemosensitizing efficacy in MDR cancer cells. The present review focuses primarily on the structural features, design strategies, and structure-activity relationships (SAR) of these compounds.
Collapse
Affiliation(s)
- Jinyun Dong
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zuodong Qin
- Research Center of Biochemical Engineering Technology, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Wei-Dong Zhang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Gang Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Assaraf G Yehuda
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles R Ashby
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Xiang-Dong Cheng
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China.
| | - Jiang-Jiang Qin
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, China; College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
23
|
Di Paolo A, Arrigoni E, Luci G, Cucchiara F, Danesi R, Galimberti S. Precision Medicine in Lymphoma by Innovative Instrumental Platforms. Front Oncol 2019; 9:1417. [PMID: 31921674 PMCID: PMC6928138 DOI: 10.3389/fonc.2019.01417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/28/2019] [Indexed: 12/13/2022] Open
Abstract
In recent years, many efforts have been addressed to the growing field of precision medicine in order to offer individual treatments to every patient on the basis of his/her genetic background. Formerly adopted to achieve new disease classifications as it is still done, innovative platforms, such as microarrays, genome-wide association studies (GWAS), and next generation sequencing (NGS), have made the progress in pharmacogenetics faster and cheaper than previously expected. Several studies in lymphoma patients have demonstrated that these platforms can be used to identify biomarkers predictive of drug efficacy and tolerability, discovering new possible druggable proteins. Indeed, GWAS and NGS allow the investigation of the human genome, finding interesting associations with putative or unexpected targets, which in turns may represent new therapeutic possibilities. Importantly, some objective difficulties have initially hampered the translation of findings in clinical routines, such as the poor quantity/quality of genetic material or the paucity of targets that could be investigated at the same time. At present, some of these technical issues have been partially solved. Furthermore, these analyses are growing in parallel with the development of bioinformatics and its capabilities to manage and analyze big data. Because of pharmacogenetic markers may become important during drug development, regulatory authorities (i.e., EMA, FDA) are preparing ad hoc guidelines and recommendations to include the evaluation of genetic markers in clinical trials. Concerns and difficulties for the adoption of genetic testing in routine are still present, as well as affordability, reliability and the poor confidence of some patients for these tests. However, genetic testing based on predictive markers may offers many advantages to caregivers and patients and their introduction in clinical routine is justified.
Collapse
Affiliation(s)
- Antonello Di Paolo
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Unit of Clinical Pharmacology and Pharmacogenetics, Pisa University Hospital, Pisa, Italy
| | - Elena Arrigoni
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giacomo Luci
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Unit of Clinical Pharmacology and Pharmacogenetics, Pisa University Hospital, Pisa, Italy
| | - Sara Galimberti
- Section of Hematology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Unit of Hematology, Pisa University Hospital, Pisa, Italy
| |
Collapse
|
24
|
Grassi S, Palumbo S, Mariotti V, Liberati D, Guerrini F, Ciabatti E, Salehzadeh S, Baratè C, Balducci S, Ricci F, Buda G, Iovino L, Mazziotta F, Ghio F, Ercolano G, Di Paolo A, Cecchettini A, Baldini C, Mattii L, Pellegrini S, Petrini M, Galimberti S. The WNT Pathway Is Relevant for the BCR-ABL1-Independent Resistance in Chronic Myeloid Leukemia. Front Oncol 2019; 9:532. [PMID: 31293972 PMCID: PMC6601352 DOI: 10.3389/fonc.2019.00532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023] Open
Abstract
Notwithstanding the introduction of Tyrosine Kinase Inhibitors (TKIs) revolutionized the outcome of Chronic Myeloid Leukemia (CML), one third of patients still suspends treatment for failure response. Recent research demonstrated that several BCR/ABL1-independent mechanisms can sustain resistance, but the relationship between these mechanisms and the outcome has not yet been fully understood. This study was designed to evaluate in a “real-life” setting if a change of expression of several genes involved in the WNT/BETA-CATENIN, JAK-STAT, and POLYCOMB pathways might condition the outcome of CML patients receiving TKIs. Thus, the expression of 255 genes, related to the aforementioned pathways, was measured by quantitative PCR after 6 months of therapy and compared with levels observed at diagnosis in 11 CML patients, in order to find possible correlations with quality of response to treatment and event-free-survival (EFS). These results were then re-analyzed by the principal component method (PCA) for tempting to better cluster resistant cases. After 12 months of therapy, 6 patients achieved an optimal response and 5 were “resistant;” after application of both statistical methods, it was evident that in all pathways a significant overall up-regulation occurred, and that WNT was the pathway mostly responsible for the TKIs resistance. Indeed, 100% of patients with a “low” up-regulation of this pathway achieved an optimal response vs. 33% of those who showed a “high” gene over-expression (p = 0.016). Analogously, the 24-months EFS resulted significantly influenced by the degree of up-regulation of the WNT signaling: all patients with a “low” up-regulation were event-free vs. 33% of those who presented a “high” gene expression (p = 0.05). In particular, the PCA analysis confirmed the role of WNT pathway and showed that the most significantly up-regulated genes with negative prognostic value were DKK, WNT6, WISP1, and FZD8. In conclusion, our results sustain the need of a wide and multitasking approach in order to understand the resistance mechanisms in CML.
Collapse
Affiliation(s)
- Susanna Grassi
- Hematology Division, University of Pisa, Pisa, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Sara Palumbo
- Department of Surgical, Medical and Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Veronica Mariotti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | - Gabriele Buda
- Hematology Division, University of Pisa, Pisa, Italy
| | | | - Francesco Mazziotta
- Hematology Division, University of Pisa, Pisa, Italy.,Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | | | | | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, Pharmacology Division, University of Pisa, Pisa, Italy
| | | | - Chiara Baldini
- Department of Clinical and Experimental Medicine, Rheumatology Division, University of Pisa, Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Silvia Pellegrini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Mario Petrini
- Hematology Division, University of Pisa, Pisa, Italy
| | | |
Collapse
|
25
|
Ceballos MP, Rigalli JP, Ceré LI, Semeniuk M, Catania VA, Ruiz ML. ABC Transporters: Regulation and Association with Multidrug Resistance in Hepatocellular Carcinoma and Colorectal Carcinoma. Curr Med Chem 2019; 26:1224-1250. [PMID: 29303075 DOI: 10.2174/0929867325666180105103637] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/19/2017] [Accepted: 11/21/2017] [Indexed: 02/07/2023]
Abstract
For most cancers, the treatment of choice is still chemotherapy despite its severe adverse effects, systemic toxicity and limited efficacy due to the development of multidrug resistance (MDR). MDR leads to chemotherapy failure generally associated with a decrease in drug concentration inside cancer cells, frequently due to the overexpression of ABC transporters such as P-glycoprotein (P-gp/MDR1/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2), which limits the efficacy of chemotherapeutic drugs. The aim of this review is to compile information about transcriptional and post-transcriptional regulation of ABC transporters and discuss their role in mediating MDR in cancer cells. This review also focuses on drug resistance by ABC efflux transporters in cancer cells, particularly hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) cells. Some aspects of the chemotherapy failure and future directions to overcome this problem are also discussed.
Collapse
Affiliation(s)
- María Paula Ceballos
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Juan Pablo Rigalli
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina.,Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Lucila Inés Ceré
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Mariana Semeniuk
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - Viviana Alicia Catania
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| | - María Laura Ruiz
- Institute of Experimental Physiology, Faculty of Biochemical and Pharmaceutical Science, Rosario National University, Rosario, Argentina
| |
Collapse
|
26
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer-Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is an aggressive carcinoma and the fourth cause of cancer deaths in Western countries. Although surgery is the most effective therapeutic option for PC, the management of unresectable, locally advanced disease is highly challenging. Our improved understanding of pancreatic tumor biology and associated pathways has led to the development of various treatment modalities that can control the metastatic spread of PC. This review intends to present trials of small molecule tyrosine kinase inhibitors (TKIs) in PC management and the troubles encountered due to inevitable acquired resistance to TKIs.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Saikrishna Lakkakula
- Department of Zoology, Visvodaya Government Degree College, Venkatagiri, AP-524132, India
| | - Sujatha Peela
- Department of Biotechnology, Dr.B.R.Ambedkar University, Srikakulam, Andhra Pradesh, India
| | - Nagendra Sastry Yarla
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP- 500004, India
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA.
| |
Collapse
|
27
|
Gu LQ, Cui PF, Xing L, He YJ, Chang X, Zhou TJ, Liu Y, Li L, Jiang HL. An energy-blocking nanoparticle decorated with anti-VEGF antibody to reverse chemotherapeutic drug resistance. RSC Adv 2019; 9:12110-12123. [PMID: 35548379 PMCID: PMC9087936 DOI: 10.1039/c9ra01356c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022] Open
Abstract
Multi-drug resistance (MDR) of tumor cells has greatly hindered the therapeutic efficacy of chemotherapeutic drugs, resulting in chemotherapy failure, while overexpression of ATP-binding cassette (ABC) transporters in cell membranes is the leading cause of MDR. In this study, we reported novel self-assembled triphenylphosphine-quercetin-polyethylene glycol-monoclonal antibody nanoparticles (TQ-PEG-mAb NPs) for overcoming MDR primarily through mitochondrial damage to block ATP supply to ABC transporters both in vitro and in vivo. The doxorubicin (DOX)-loaded NPs (TQ/DOX-PEG-mAb) were composed of two drugs (TQ and DOX) and an outer shielding shell of the PEG-mAb conjugate. Besides, the outer shell could be acid-responsively detached to expose the positive charge of TQ inside the NPs to enhance cellular uptake. TQ was proved to effectively induce mitochondrial damage with increased ROS levels and depolarization of mitochondrial membrane potential (MMP), leading to prominently reduced ATP supply to ABC transporters. Moreover, the involvement of the anti-vascular endothelial growth factor (VEGF) mAb was not only for efficient targeting but also for combined therapy. Consequently, TQ/DOX-PEG-mAb showed that the internalized amount of DOX was largely improved while the efflux amount was dramatically inhibited on MCF-7/ADR cells, indicating excellent reversal of DOX resistance. Importantly, the growth of DOX-resistant breast tumors was significantly inhibited with no evident systemic toxicity. Therefore, the employment of TQ-PEG-mAb is believed to be a new approach to improve the efficacy of chemotherapeutic drugs in MDR tumors.
Collapse
Affiliation(s)
- Liu-Qing Gu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Peng-Fei Cui
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| | - Yu-Jing He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Xin Chang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
| | - Yu Liu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University Nanjing 210009 China +86-25-83271019 +86-25-83271543
| | - Ling Li
- Department of Endocrinology, Zhongda Hospital, Southeast University Nanjing 210009 China +86-25-83272011 +86-25-83272012
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University Nanjing 210009 China +86-25-83271027 +86-25-83271027
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University Nanjing 210009 China
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
28
|
Allegra S, Di Paolo A, Cusato J, Fatiguso G, Arrigoni E, Danesi R, Corcione S, D'Avolio A. Different Underlying Mechanism Might Explain the Absence of a Significant Difference in Area Under the Concentration–Time Curve of Linezolid for Different ABCB1 Genotypes. Ther Drug Monit 2019; 41:254-255. [DOI: 10.1097/ftd.0000000000000596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Mollaev M, Gorokhovets N, Nikolskaya E, Faustova M, Zabolotsky A, Zhunina O, Sokol M, Zamulaeva I, Severin E, Yabbarov N. Type of pH sensitive linker reveals different time-dependent intracellular localization, in vitro and in vivo efficiency in alpha-fetoprotein receptor targeted doxorubicin conjugate. Int J Pharm 2019; 559:138-146. [DOI: 10.1016/j.ijpharm.2018.12.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/15/2018] [Accepted: 12/18/2018] [Indexed: 12/14/2022]
|
30
|
Chen X, Luo X, Cheng Y. Trifluoperazine prevents FOXO1 nuclear excretion and reverses doxorubicin-resistance in the SHG44/DOX drug-resistant glioma cell line. Int J Mol Med 2018; 42:3300-3308. [PMID: 30272254 PMCID: PMC6202074 DOI: 10.3892/ijmm.2018.3885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 09/04/2018] [Indexed: 01/09/2023] Open
Abstract
As a tumor suppressor, Forkhead box O1 (FOXO1) is located in the nucleus where it regulates gene expression and inhibits tumor progression. However, the antitumor effects of FOXO1 are attenuated in several tumors due to its translocation from the nucleus to the cytoplasm. Trifluoperazine (TFP) is able to reverse tumor drug resistance by inhibiting multidrug resistance (MDR), however, the detailed molecular mechanisms by which this occurs remain to be fully elucidated. In the present study, the doxorubicin (DOX)‑resistant SHG44/DOX glioma cell line was established. The results showed that TFP promoted DOX‑induced cytotoxicity, cell cycle arrest and early apoptosis using a Cell Counting Kit‑8 and flow cytometry. In vivo experiments also demonstrated that DOX combined with TFP reduced tumor volumes and proliferation indices, and led to higher protein levels of FOXO1. In addition, TFP inhibited the nuclear exclusion of FOXO1, contributing toward the downregulation of MDR genes and an increase in intracellular DOX concentrations by reverse transcription‑quantitative polymerase chain reaction, western blot analysis, immunofluorescence and spectrophotometer analysis. Therefore, TFP may inhibit DOX resistance by stimulating FOXO1 nuclear translocation and suppressing MDF genes in SHG44/DOX cells, contributing to promising clinical prospects for tumor chemotherapy.
Collapse
Affiliation(s)
- Xiaozhong Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010
| | - Xiaoquan Luo
- Department of Neurosurgery, Nanchong Central Hospital, Second Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010
| |
Collapse
|
31
|
Briot T, Roger E, Thépot S, Lagarce F. Advances in treatment formulations for acute myeloid leukemia. Drug Discov Today 2018; 23:1936-1949. [DOI: 10.1016/j.drudis.2018.05.040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/25/2018] [Accepted: 05/29/2018] [Indexed: 10/24/2022]
|
32
|
Yakusheva EN, Titov DS. Structure and Function of Multidrug Resistance Protein 1. BIOCHEMISTRY (MOSCOW) 2018; 83:907-929. [DOI: 10.1134/s0006297918080047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
miR-140-5p inhibits the proliferation and enhances the efficacy of doxorubicin to breast cancer stem cells by targeting Wnt1. Cancer Gene Ther 2018; 26:74-82. [PMID: 30032164 DOI: 10.1038/s41417-018-0035-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding single-stranded RNAs molecules, the dysregulation of which plays a critical role in the initiation and biological progression of malignancies. The current study demonstrated that miR-140-5p was frequently downregulated in breast cancer stem cells (BCSCs), and miR-140-5p mimics could inhibit the proliferation of BCSCs. Moreover, Wnt1 was a direct target of miR-140-5p, as was proved by luciferase reporter assays. miR-140-5p mimics could downregulate the wnt1 mRNA and protein levels in MCF-7 and MDA-MB-231 cells. Furthermore, miR-140 mimics could enhance the sensitivity of BCSCs to doxorubicin (Dox) through the Wnt1/ABCB1 pathway both in vitro and vivo. Our findings have presented a novel miRNA-mediated regulatory network for BCSCs, which may provide a potential therapeutic target for breast cancer.
Collapse
|
34
|
Huang JF, Wen CJ, Zhao GZ, Dai Y, Li Y, Wu LX, Zhou HH. Overexpression of ABCB4 contributes to acquired doxorubicin resistance in breast cancer cells in vitro. Cancer Chemother Pharmacol 2018; 82:199-210. [DOI: 10.1007/s00280-018-3603-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/14/2018] [Indexed: 12/01/2022]
|
35
|
Arrigoni E, Del Re M, Galimberti S, Restante G, Rofi E, Crucitta S, Baratè C, Petrini M, Danesi R, Di Paolo A. Concise Review: Chronic Myeloid Leukemia: Stem Cell Niche and Response to Pharmacologic Treatment. Stem Cells Transl Med 2018; 7:305-314. [PMID: 29418079 PMCID: PMC5827745 DOI: 10.1002/sctm.17-0175] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/09/2018] [Indexed: 12/27/2022] Open
Abstract
Nowadays, more than 90% of patients affected by chronic myeloid leukemia (CML) survive with a good quality of life, thanks to the clinical efficacy of tyrosine kinase inhibitors (TKIs). Nevertheless, point mutations of the ABL1 pocket occurring during treatment may reduce binding of TKIs, being responsible of about 20% of cases of resistance among CML patients. In addition, the presence of leukemic stem cells (LSCs) represents the most important event in leukemia progression related to TKI resistance. LSCs express stem cell markers, including active efflux pumps and genetic and epigenetic alterations together with deregulated cell signaling pathways involved in self-renewal, such as Wnt/β-catenin, Notch, and Hedgehog. Moreover, the interaction with the bone marrow microenvironment, also known as hematopoietic niche, may influence the phenotype of surrounding cells, which evade mechanisms controlling cell proliferation and are less sensitive or frankly resistant to TKIs. This Review focuses on the role of LSCs and stem cell niche in relation to response to pharmacological treatments. A literature search from PubMed database was performed until April 30, 2017, and it has been analyzed according to keywords such as chronic myeloid leukemia, stem cell, leukemic stem cells, hematopoietic niche, tyrosine kinase inhibitors, and drug resistance. Stem Cells Translational Medicine 2018;7:305-314.
Collapse
Affiliation(s)
- Elena Arrigoni
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Sara Galimberti
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giuliana Restante
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Eleonora Rofi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Claudia Baratè
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Mario Petrini
- Unit of Hematology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Antonello Di Paolo
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
36
|
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17:25. [PMID: 29455646 PMCID: PMC5817862 DOI: 10.1186/s12943-018-0775-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
37
|
Del Re M, Arrigoni E, Restante G, Passaro A, Rofi E, Crucitta S, De Marinis F, Di Paolo A, Danesi R. Concise Review: Resistance to Tyrosine Kinase Inhibitors in Non-Small Cell Lung Cancer: The Role of Cancer Stem Cells. Stem Cells 2018; 36:633-640. [PMID: 29352734 DOI: 10.1002/stem.2787] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Abstract
Among the potential mechanisms involved in resistance to tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer, the manifestation of stem-like properties in cancer cells seems to have a crucial role. Alterations involved in the development of TKI resistance may be acquired in a very early phase of tumorigenesis, supporting the hypothesis that these aberrations may be present in cancer stem cells (CSCs). In this regard, the characterization of tumor subclones in the initial phase and the identification of the CSCs may be helpful in planning a specific treatment to target selected biomarkers, suppress tumor growth, and prevent drug resistance. The aim of this review is to elucidate the role of CSCs in the development of resistance to TKIs and its implication for the management of patients. Stem Cells 2018;36:633-640.
Collapse
Affiliation(s)
- Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giuliana Restante
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Passaro
- Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo De Marinis
- Division of Thoracic Oncology, European Institute of Oncology, Milan, Italy
| | - Antonello Di Paolo
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
38
|
Salvia AM, Cuviello F, Coluzzi S, Nuccorini R, Attolico I, Pascale SP, Bisaccia F, Pizzuti M, Ostuni A. Expression of some ATP-binding cassette transporters in acute myeloid leukemia. Hematol Rep 2017; 9:7406. [PMID: 29333226 PMCID: PMC5757415 DOI: 10.4081/hr.2017.7406] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022] Open
Abstract
Hematopoietic cells express ATP binding cassette (ABC) transporters in relation to different degrees of differentiation. One of the known multidrug resistance mechanisms in acute myeloid leukemia (AML) is the overexpression of efflux pumps belonging to the superfamily of ABC transporters such as ABCB1, ABCG2 and ABCC1. Although several studies were carried out to correlate ABC transporters expression with drug resistance, little is known about their role as markers of diagnosis and progression of the disease. For this purpose we investigated the expression, by real-time PCR, of some ABC genes in bone marrow samples of AML patients at diagnosis and after induction therapy. At diagnosis, ABCG2 was always down-regulated, while an up regulated trend for ABCC1 was observed. After therapy the examined genes showed a different expression trend and approached the values of healthy subjects suggesting that this event could be considered as a marker of AML regression. The expression levels of some ABC transporters such as ABCC6, seems to be related to gender, age and to the presence of FLT3/ITD gene mutation.
Collapse
Affiliation(s)
| | | | - Sabrina Coluzzi
- Department of Hematology, San Carlo Hospital, Potenza, Italy
| | | | | | | | | | - Michele Pizzuti
- Department of Hematology, San Carlo Hospital, Potenza, Italy
| | - Angela Ostuni
- Department of Sciences, University of Basilicata, Potenza
| |
Collapse
|
39
|
Kaehler M, Ruemenapp J, Gonnermann D, Nagel I, Bruhn O, Haenisch S, Ammerpohl O, Wesch D, Cascorbi I, Bruckmueller H. MicroRNA-212/ABCG2-axis contributes to development of imatinib-resistance in leukemic cells. Oncotarget 2017; 8:92018-92031. [PMID: 29190894 PMCID: PMC5696160 DOI: 10.18632/oncotarget.21272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
BCR-ABL-independent resistance against tyrosine kinase inhibitor is an emerging problem in therapy of chronic myeloid leukemia. Such drug resistance can be linked to dysregulation of ATP-binding cassette (ABC)-transporters leading to increased tyrosine kinase inhibitor efflux, potentially caused by changes in microRNA expression or DNA-methylation. In an in vitro-imatinib-resistance model using K-562 cells, microRNA-212 was found to be dysregulated and inversely correlated to ABC-transporter ABCG2 expression, targeting its 3'-UTR. However, the functional impact on drug sensitivity remained unknown. Therefore, we performed transfection experiments using microRNA-mimics and -inhibitors and investigated their effect on imatinib-susceptibility in sensitive and resistant leukemic cell lines. Under imatinib-treatment, miR-212 inhibition led to enhanced cell viability (p = 0.01), reduced apoptosis (p = 0.01) and cytotoxicity (p = 0.03). These effects were limited to treatment-naïve cells and were not observed in cells, which were resistant to various imatinib-concentrations (0.1 μM to 2 μM). Further analysis in treatment-naïve cells revealed that miR-212 inhibition resulted in ABCG2 upregulation and increased ABCG2-dependent efflux. Furthermore, we observed miR-212 promoter hypermethylation in 0.5 and 2 μM IM-resistant sublines, whereas ABCG2 methylation status was not altered. Taken together, the miR-212/ABCG2-axis influences imatinib-susceptibility contributing to development of imatinib-resistance. Our data reveal new insights into mechanisms initiating imatinib-resistance in leukemic cells.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Johanna Ruemenapp
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniel Gonnermann
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Oliver Bruhn
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sierk Haenisch
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
40
|
Galimberti S, Bucelli C, Arrigoni E, Baratè C, Grassi S, Ricci F, Guerrini F, Ciabatti E, Fava C, D'Avolio A, Fontanelli G, Cambrin GR, Isidori A, Loscocco F, Caocci G, Greco M, Bocchia M, Aprile L, Gozzini A, Scappini B, Cattaneo D, Scortechini AR, La Nasa G, Bosi A, Leoni P, Danesi R, Saglio G, Visani G, Cortelezzi A, Petrini M, Iurlo A, Di Paolo A. The hOCT1 and ABCB1 polymorphisms do not influence the pharmacodynamics of nilotinib in chronic myeloid leukemia. Oncotarget 2017; 8:88021-88033. [PMID: 29152138 PMCID: PMC5675690 DOI: 10.18632/oncotarget.21406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
First-line nilotinib in chronic myeloid leukemia is more effective than imatinib to achieve early and deep molecular responses, despite poor tolerability or failure observed in one-third of patients. The toxicity and efficacy of tyrosine kinase inhibitors might depend on the activity of transmembrane transporters. However, the impact of transporters genes polymorphisms in nilotinib setting is still debated. We investigated the possible correlation between single nucleotide polymorphisms of hOCT1 (rs683369 [c.480C>G]) and ABCB1 (rs1128503 [c.1236C>T], rs2032582 [c.2677G>T/A], rs1045642 [c.3435C>T]) and nilotinib efficacy and toxicity in a cohort of 78 patients affected by chronic myeloid leukemia in the context of current clinical practice. The early molecular response was achieved by 81% of patients while 64% of them attained deep molecular response (median time, 26 months). The 36-month event-free survival was 86%, whereas 58% of patients experienced toxicities. Interestingly, hOCT1 and ABCB1 polymorphisms alone or in combination did not influence event-free survival or the adverse events rate. Therefore, in contrast to data obtained in patients treated with imatinib, hOCT1 and ABCB1 polymorphisms do not impact on nilotinib efficacy or toxicity. This could be relevant in the choice of the first-line therapy: patients with polymorphisms that negatively condition imatinib efficacy might thus receive nilotinib as first-line therapy.
Collapse
Affiliation(s)
- Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Cristina Bucelli
- Oncohematology Division, IRCCS Ca' Granda, Maggiore Policlinico Hospital Foundation, University of Milan, Milano, Italy
| | - Elena Arrigoni
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Pisa, Italy
| | - Claudia Baratè
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Susanna Grassi
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy.,GeNOMEC, University of Siena, Siena, Italy
| | - Federica Ricci
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Francesca Guerrini
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Elena Ciabatti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Carmen Fava
- Hematology Division, Ospedale Mauriziano, Torino, Italy
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Torino, Torino, Italy
| | - Giulia Fontanelli
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Giovanna Rege Cambrin
- Department of Clinical and Biological Sciences, University of Torino, AOU San Luigi Gonzaga, Torino, Italy
| | - Alessandro Isidori
- Hematology and Stem Cell Transplant Center, San Salvatore Hospital, Pesaro, Italy
| | - Federica Loscocco
- Hematology and Stem Cell Transplant Center, San Salvatore Hospital, Pesaro, Italy
| | - Giovanni Caocci
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Marianna Greco
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Monica Bocchia
- Division of Hematology, Ospedale Le Scotte, University of Siena, Siena, Italy
| | - Lara Aprile
- Division of Hematology, Ospedale Le Scotte, University of Siena, Siena, Italy
| | - Antonella Gozzini
- Division of Hematology, AOU Careggi, University of Florence, Firenze, Italy
| | - Barbara Scappini
- Division of Hematology, AOU Careggi, University of Florence, Firenze, Italy
| | - Daniele Cattaneo
- Oncohematology Division, IRCCS Ca' Granda, Maggiore Policlinico Hospital Foundation, University of Milan, Milano, Italy
| | | | - Giorgio La Nasa
- Department of Medical Sciences, University of Cagliari, Cagliari, Italy
| | - Alberto Bosi
- Division of Hematology, AOU Careggi, University of Florence, Firenze, Italy
| | - Pietro Leoni
- Division of Hematology, Marche Polytechnic University, Ancona, Italy
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Pisa, Italy
| | | | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, San Salvatore Hospital, Pesaro, Italy
| | - Agostino Cortelezzi
- Oncohematology Division, IRCCS Ca' Granda, Maggiore Policlinico Hospital Foundation, University of Milan, Milano, Italy
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Pisa, Italy
| | - Alessandra Iurlo
- Oncohematology Division, IRCCS Ca' Granda, Maggiore Policlinico Hospital Foundation, University of Milan, Milano, Italy
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Pisa, Italy
| |
Collapse
|
41
|
Cánovas V, Puñal Y, Maggio V, Redondo E, Marín M, Mellado B, Olivan M, Lleonart M, Planas J, Morote J, Paciucci R. Prostate Tumor Overexpressed-1 (PTOV1) promotes docetaxel-resistance and survival of castration resistant prostate cancer cells. Oncotarget 2017; 8:59165-59180. [PMID: 28938627 PMCID: PMC5601723 DOI: 10.18632/oncotarget.19467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/19/2017] [Indexed: 12/28/2022] Open
Abstract
Metastatic prostate cancer is presently incurable. The oncogenic protein PTOV1, first described in prostate cancer, was reported as overexpressed and significantly correlated with poor survival in numerous tumors. Here, we investigated the role of PTOV1 in prostate cancer survival to docetaxel and self-renewal ability. Transduction of PTOV1 in docetaxel-sensitive Du145 and PC3 cells significantly increased cell survival after docetaxel exposure and induced docetaxel-resistance genes expression (ABCB1, CCNG2 and TUBB2B). In addition, PTOV1 induced prostatospheres formation and self-renewal genes expression (ALDH1A1, LIN28A, MYC and NANOG). In contrast, Du145 and PC3 cells knockdown for PTOV1 significantly accumulated in the G2/M phase, presented a concomitant increased subG1 peak, and cell death by apoptosis. These effects were enhanced in docetaxel-resistant cells. Analyses of tumor datasets show that PTOV1 expression significantly correlated with prostate tumor grade, drug resistance (CCNG2) and self-renewal (ALDH1A1, MYC) markers. These genes are concurrently overexpressed in most metastatic lesions. Metastases also show PTOV1 genomic amplification in significant co-occurrence with docetaxel-resistance and self-renewal genes. Our findings identify PTOV1 as a promoter of docetaxel-resistance and self-renewal characteristics for castration resistant prostate cancer. The concomitant increased expression of PTOV1, ALDH1A1 and CCNG2 in primary tumors, may predict metastasis and bad prognosis.
Collapse
Affiliation(s)
- Verónica Cánovas
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yolanda Puñal
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valentina Maggio
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enric Redondo
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mercedes Marín
- Laboratory of Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Medical Oncoloy Department, Hospital Clinic, Barcelona, Spain
| | - Begoña Mellado
- Laboratory of Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Medical Oncoloy Department, Hospital Clinic, Barcelona, Spain
| | - Mireia Olivan
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Matilde Lleonart
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jacques Planas
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Deparment of Urology, Vall d'Hebron Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Morote
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Deparment of Urology, Vall d'Hebron Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosanna Paciucci
- Biomedical Research Group of Urology, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
42
|
Chen Y, Luo D, Tian W, Li Z, Zhang X. Demethylation of miR-495 inhibits cell proliferation, migration and promotes apoptosis by targeting STAT-3 in breast cancer. Oncol Rep 2017; 37:3581-3589. [PMID: 28498478 DOI: 10.3892/or.2017.5621] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/18/2017] [Indexed: 11/06/2022] Open
Abstract
In breast cancer (BC), silencing of miRNA genes due to miRNA gene promoter methylation are the important mechanisms directly contributing to tumorigenesis and tumor progression. miRNA-495 (miR-495) has been reported to be a tumor suppressor gene in various cancers, but its role and regulation in BC remains unclear. In the present study, the level of miR-495 was inversely correlated with the expression of STAT-3 in BC tissues and cell lines. miR-495 can directly target 3'-UTR of STAT-3 mRNA and thereby decrease the expression of STAT-3 in MCF-7 and HCC1973 cells by Targetscan and Dual-luciferase assay. We further analyzed miR-495 promoter methylation by sodium bisulfite sequencing method (BSP), and found DNA methyltransferase inhibitor, 5-AzaC concomitantly upregulated expression of miR-495 and downregulated its target gene STAT-3 and its downstream target VEGF. Furthermore, we further observed that 5-AzaC treatment, miR-495 mimics and STAT-3 knockdown significantly inhibited cell function in breast cancer by Transwell assay, EdU flow cytometry, Annexin V-FITC/PI combined with flow cytometry and Hoechst staining. Taken together, our data are first to demonstrate that the miR-495 is silenced due to promoter methylation in breast cancer. DNA methyltransferase inhibitor 5-AzaC could reverse miR‑495 (suppressor gene) and STAT-3 (oncogene). The anticancer properties of 5-AzaC were preliminarily confirmed in breast cancer.
Collapse
Affiliation(s)
- Yi Chen
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Donglin Luo
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Wuguo Tian
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Zhirong Li
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| | - Xiaohua Zhang
- Department of General (Breast and Thyroid), Daping Hospital of the Third Military Medical University, No. 10 Yangtze River Branch, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
43
|
Genovese I, Ilari A, Assaraf YG, Fazi F, Colotti G. Not only P-glycoprotein: Amplification of the ABCB1- containing chromosome region 7q21 confers multidrug resistance upon cancer cells by coordinated overexpression of an assortment of resistance-related proteins. Drug Resist Updat 2017; 32:23-46. [DOI: 10.1016/j.drup.2017.10.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/01/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
|
44
|
Chen JR, Jia XH, Wang H, Yi YJ, Li YJ. With no interaction, knockdown of Apollon and MDR1 reverse the multidrug resistance of human chronic myelogenous leukemia K562/ADM cells. Oncol Rep 2017; 37:2735-2742. [PMID: 28358418 DOI: 10.3892/or.2017.5535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 09/22/2016] [Indexed: 11/06/2022] Open
Abstract
Chemotherapy is the main treatment method for patients with chronic myeloid leukemia (CML) and has achieved marked results. However, the acquisition of multidrug resistance (MDR) has seriously affected the quality of life and survival rate of patients. The overexpression of the inhibitors of apoptosis proteins (IAPs) and the adenosine triphosphate (ATP)-dependent binding cassette (ABC) transporters are the two main causes of MDR. Apollon and MDR1 are the most important and representative members, respectively, among the IAPs and ABC transporters. In the present study, we investigated the role of Apollon and MDR1 in chemotherapy resistance and their mechanism of interaction. We respectively knocked down the expression of Apollon and MDR1 using short hairpin RNA (shRNA) in adriamycin (ADM) resistant human CML K562 cells and examined the drug sensitivity, the consequences with regard to ADM accumulation and the alterations in the expression of Apollon and MDR1. The expression levels of Apollon and MDR1 mRNA were higher in the K562/ADM cells compared with the parental K562 cells as determined by reverse transcription‑polymerase chain reaction (RT-PCR). The plasmids of Apollon and MDR1 shRNA were respectively stably transfected into K562/ADM cells using Lipofectamine 2000. The transfection efficiency was detected by fluorescence microscopy. Cell Counting Kit-8 (CCK-8) assay revealed that Apollon or MDR1 knockdown significantly increased the chemosensitivity of the K562/ADM cells to ADM. Flow cytometric assay revealed that K562/ADM/shMDR1 cells exhibited a significantly increased intracellular accumulation of ADM, and that changes were not found in the K562/ADM/shApollon cells. Compared with the parental K562/ADM cells, a significantly decreased expression of Apollon mRNA and protein was determined in the K562/ADM/shApollon cells without affecting the expression of MDR1 as determined by RT-PCR and western blotting. Likewise, the expression levels of MDR1 mRNA and protein also markedly downregulated in the K562/ADM/shMDR1 cells had no effect on Apollon expression. Collectively, our findings demonstrated, for the first time, that downregulation of Apollon or MDR1 through stable transfection with the Apollon- or MDR1-targeting shRNA induced MDR reversal through respective inhibition of Apollon or MDR1 expression and function. However, the reversal mechanism of Apollon and MDR1 revealed no direct interaction with each other.
Collapse
Affiliation(s)
- Jie-Ru Chen
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Xiu-Hong Jia
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Hong Wang
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - Ying-Jie Yi
- Department of Pediatrics, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong 256603, P.R. China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Tumour Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
45
|
Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A. Pharmacogenetic Foundations of Therapeutic Efficacy and Adverse Events of Statins. Int J Mol Sci 2017; 18:ijms18010104. [PMID: 28067828 PMCID: PMC5297738 DOI: 10.3390/ijms18010104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background: In the era of precision medicine, more attention is paid to the search for predictive markers of treatment efficacy and tolerability. Statins are one of the classes of drugs that could benefit from this approach because of their wide use and their incidence of adverse events. Methods: Literature from PubMed databases and bibliography from retrieved publications have been analyzed according to terms such as statins, pharmacogenetics, epigenetics, toxicity and drug–drug interaction, among others. The search was performed until 1 October 2016 for articles published in English language. Results: Several technical and methodological approaches have been adopted, including candidate gene and next generation sequencing (NGS) analyses, the latter being more robust and reliable. Among genes identified as possible predictive factors associated with statins toxicity, cytochrome P450 isoforms, transmembrane transporters and mitochondrial enzymes are the best characterized. Finally, the solute carrier organic anion transporter family member 1B1 (SLCO1B1) transporter seems to be the best target for future studies. Moreover, drug–drug interactions need to be considered for the best approach to personalized treatment. Conclusions: Pharmacogenetics of statins includes several possible genes and their polymorphisms, but muscular toxicities seem better related to SLCO1B1 variant alleles. Their analysis in the general population of patients taking statins could improve treatment adherence and efficacy; however, the cost–efficacy ratio should be carefully evaluated.
Collapse
Affiliation(s)
- Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Leonardo Fidilio
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Stefano Fogli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Antonello Di Paolo
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|