1
|
Zahoor I, Mir S, Giri S. Profiling Blood-Based Neural Biomarkers and Cytokines in Experimental Autoimmune Encephalomyelitis Model of Multiple Sclerosis Using Single-Molecule Array Technology. Int J Mol Sci 2025; 26:3258. [PMID: 40244087 PMCID: PMC11989419 DOI: 10.3390/ijms26073258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a preclinical animal model widely used to study multiple sclerosis (MS). Blood-based analytes, including cytokines and neural biomarkers are the predictors of neurodegeneration, disease activity, and disability in patients with MS. However, understudied confounding factors cause variation in reports on EAE across animal strains/studies, limiting the utility of these biomarkers for predicting disease activity. In this study, we investigated blood-based analyte profiles, including neural markers (NFL and GFAP) and cytokines (IL-6, IL-17, IL-12p70, IL-10, and TNF-α), in two clinically distinct EAE models: relapsing-remitting (RR)-EAE and chronic-EAE. Ultrasensitive single-molecule array technology (SIMOA, Quanterix) was used to profile the analytes in the blood plasma of mice at the acute, chronic, and progressive phases of disease. In both models, NFL was substantially increased during post-disease onset across all phases, with a pronounced increase observed in chronic-EAE. The leakage of GFAP into peripheral blood was also greater after disease onset in both EAE models, especially in the acute phase of chronic-EAE. Among all cytokines, only IL-10 had consistently lower levels in both EAE models throughout the course of disease. This study suggests NFL, GFAP, and IL-10 as potential translational predictors of disease activity in EAE, making them potential candidates as surrogate markers for the preclinical testing of therapeutic interventions in animal models of MS.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA;
| | | | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA;
| |
Collapse
|
2
|
Zahoor I, Mir S, Giri S. Profiling blood-based neural biomarkers and cytokines in experimental autoimmune encephalomyelitis model of multiple sclerosis using single-molecule array technology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.25.573285. [PMID: 38234812 PMCID: PMC10793409 DOI: 10.1101/2023.12.25.573285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is a preclinical animal model widely used to study multiple sclerosis (MS). Blood-based cytokines and neural biomarkers are predictors of neurodegeneration, disease activity, and disability in patients with MS. However, understudied confounding factors cause variation in reports on EAE across animal strains/studies, limiting the utility of these biomarkers for predicting disease activity. In this study, we investigated blood-based analyte profiles, including neural markers (NFL and GFAP) and cytokines (IL-6, IL-17, IL-12p70, IL-10, and TNF-α), in two clinically distinct EAE models: relapsing-remitting (RR)-EAE and chronic-EAE. Ultrasensitive single-molecule array technology (SIMOA, Quanterix) was used to profile the analytes in blood plasma of mice at the acute, chronic, and progressive phases of disease. In both models, NFL was substantially increased during post-disease onset at the peak, chronic, and progressive phases, with pronounced increase in chronic-EAE. Leakage of GFAP into peripheral blood was also greater after disease onset in both EAE models, especially in the acute phase of chronic-EAE. Among all cytokines, only IL-10 had consistently lower levels in both EAE models throughout the course of disease. This study suggests NFL, GFAP, and IL-10 as potential translational predictors of disease activity in EAE, making them potential candidates for surrogate markers for preclinical testing of therapeutic interventions in animal models of MS.
Collapse
Affiliation(s)
- Insha Zahoor
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Sajad Mir
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Mado H, Stasiniewicz A, Adamczyk-Sowa M, Sowa P. Selected Interleukins Relevant to Multiple Sclerosis: New Directions, Potential Targets and Therapeutic Perspectives. Int J Mol Sci 2024; 25:10931. [PMID: 39456713 PMCID: PMC11506881 DOI: 10.3390/ijms252010931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that progresses with demyelination and neurodegeneration. To date, many studies have revealed the key role of interleukins in the pathogenesis of MS, but their impact has not been fully explained. The aim of the present study was to collect and review the results obtained so far regarding the influence of interleukins on the development and course of MS and to assess the potential for their further use. Through the platform "PubMed", terms related to interleukins and MS were searched. The following interval was set as the time criterion: 2014-2024. A total of 12,731 articles were found, and 100 papers were subsequently used. Cells that produce IL-10 have a neuroprotective effect, whereas those that synthesize IL-6 most likely exacerbate neuroinflammation. IL-12, IL-23 and IL-18 represent pro-inflammatory cytokines. It was found that treatment with an anti-IL-12p40 monoclonal antibody in a study group of MS patients showed a beneficial effect. IL-4 is a pleiotropic cytokine that plays a significant role in type 2 immune responses and inhibits MS progression. IL-13 is an anti-inflammatory cytokine through which the processes of oligodendrogenesis and remyelination occur more efficiently. The group of interleukins discussed in our paper may represent a promising starting point for further research aimed at finding new therapies and prognostic markers for MS.
Collapse
Affiliation(s)
- Hubert Mado
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Artur Stasiniewicz
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3 Maja 13/15, 41-800 Zabrze, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| |
Collapse
|
4
|
Sun X, Qian M, Li H, Wang L, Zhao Y, Yin M, Dai L, Bao H. FKBP5 activates mitophagy by ablating PPAR-γ to shape a benign remyelination environment. Cell Death Dis 2023; 14:736. [PMID: 37952053 PMCID: PMC10640650 DOI: 10.1038/s41419-023-06260-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease of the central nervous system (CNS) that is characterized by myelin damage, followed by axonal and ultimately neuronal loss, which has been found to be associated with mitophagy. The etiology and pathology of MS remain elusive. However, the role of FK506 binding protein 5 (FKBP5, also called FKBP51), a newly identified gene associated with MS, in the progression of the disease has not been well defined. Here, we observed that the progress of myelin loss and regeneration in Fkbp5ko mice treated with demyelination for the same amount of time was significantly slower than that in wild-type mice, and that mitophagy plays an important regulatory role in this process. To investigate the mechanism, we discovered that the levels of FKBP5 protein were greatly enhanced in the CNS of cuprizone (CPZ) mice and the myelin-denuded environment stimulates significant activation of the PINK1/Parkin-mediated mitophagy, in which the important regulator, PPAR-γ, is critically regulated by FKBP5. This study reveals the role of FKBP5 in regulating a dynamic pathway of natural restorative regulation of mitophagy through PPAR-γ in pathological demyelinating settings, which may provide potential targets for the treatment of demyelinating diseases.
Collapse
Affiliation(s)
- Xingzong Sun
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Menghan Qian
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Hongliang Li
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Lei Wang
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Yunjie Zhao
- School of Medicine, Yunnan University, Kunming, 650091, China
| | - Min Yin
- School of Medicine, Yunnan University, Kunming, 650091, China.
| | - Lili Dai
- School of Agronomy and Life Sciences, Kunming University, Kunming, 650214, China.
| | - Hongkun Bao
- School of Medicine, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
5
|
Zhang X, Song Y, Chen X, Zhuang X, Wei Z, Yi L. Integration of Genetic and Immune Infiltration Insights into Data Mining of Multiple Sclerosis Pathogenesis. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1661334. [PMID: 35795733 PMCID: PMC9252675 DOI: 10.1155/2022/1661334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Background Multiple sclerosis (MS) is an immune-mediated demyelinating disease of the central nervous system. MS pathogenesis is closely related to the environment, genetic, and immune system, but the underlying interactions have not been clearly elucidated. This study aims to unveil the genetic basis and immune landscape of MS pathogenesis with bioinformatics. Methods Gene matrix was retrieved from the gene expression database NCBI-GEO. Then, bioinformatics was used to standardize the samples and obtain differentially expressed genes (DEGs). The protein-protein interaction network was constructed with DEGs on the STRING website. Cytohubba plug-in and MCODE plug-in were used to mine hub genes. Meanwhile, the CIBERSORTX algorithm was used to explore the characteristics of immune cell infiltration in MS brain tissues. Spearman correlation analysis was performed between genes and immune cells, and the correlation between genes and different types of brain tissues was also analyzed using the WGCNA method. Results A total of 90 samples from 2 datasets were included, and 882 DEGs and 10 hub genes closely related to MS were extracted. Functional enrichment analysis suggested the role of immune response in MS. Besides, CIBERSORTX algorithm results showed that MS brain tissues contained a variety of infiltrating immune cells. Correlation analysis suggested that the hub genes were highly relevant to chronic active white matter lesions. Certain hub genes played a role in the activation of immune cells such as macrophages and natural killer cells. Conclusions Our study shall provide guidance for the further study of the genetic basis and immune infiltration mechanism of MS.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Rehabilitation, Shenzhen Longhua District Central Hospital, Shenzhen 518000, China
| | - Ying Song
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Xiao Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Xiaojia Zhuang
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Zhiqiang Wei
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen 518000, China
| |
Collapse
|
6
|
Zorzella-Pezavento SFG, Mimura LAN, Denadai MB, de Souza WDF, Fraga-Silva TFDC, Sartori A. Is there a window of opportunity for the therapeutic use of vitamin D in multiple sclerosis? Neural Regen Res 2022; 17:1945-1954. [PMID: 35142671 PMCID: PMC8848597 DOI: 10.4103/1673-5374.335139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis is an autoimmune treatable but not curable disease. There are a multiplicity of medications for multiple sclerosis therapy, including a class entitled disease-modifying drugs that are mainly indicated to reduce the number and severity of disease relapses. Not all patients respond well to these therapies, and minor to severe adverse effects have been reported. Vitamin D, called sunshine vitamin, is being studied as a possible light at the end of the tunnel. In this review, we recapitulated the similar immunopathogenesis of multiple sclerosis and experimental autoimmune encephalomyelitis, the immunomodulatory and neuroprotective potential of vitamin D and the state-of-art concerning its supplementation to multiple sclerosis patients. Finally, based on our and other groups’ experimental findings, we analyzed the need to consider the relevance of the route and the different time-point administration aspects for a more rational indication of this vitamin to multiple sclerosis patients.
Collapse
Affiliation(s)
| | - Luiza Ayumi Nishiyama Mimura
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Marina Bonifácio Denadai
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - William Danilo Fernandes de Souza
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | | | - Alexandrina Sartori
- Department of Chemical and Biological Sciences, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
7
|
Sánchez-Fernández A, Zandee S, Mastrogiovanni M, Charabati M, Rubbo H, Prat A, López-Vales R. Administration of Maresin-1 ameliorates the physiopathology of experimental autoimmune encephalomyelitis. J Neuroinflammation 2022; 19:27. [PMID: 35109863 PMCID: PMC8808957 DOI: 10.1186/s12974-022-02386-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/13/2022] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Resolution of inflammation is an active and regulated process that leads to the clearance of cell debris and immune cells from the challenged tissue, facilitating the recovery of homeostasis. This physiological response is coordinated by endogenous bioactive lipids known as specialized pro-resolving mediators (SPMs). When resolution fails, inflammation becomes uncontrolled leading chronic inflammation and tissue damage, as occurs in multiple sclerosis (MS). METHODS SPMs and the key biosynthetic enzymes involved in SPM production were analysed by metabololipidomics and qPCR in active brain lesions, serum and peripheral blood mononuclear cells (PBMC) of MS patients as well as in the spinal cord of mice with experimental autoimmune encephalomyelitis (EAE). We also tested the therapeutic actions of the SPM coined Maresin-1 (MaR1) in EAE mice and studied its impact on inflammation by doing luminex and flow cytometry analysis. RESULTS We show that levels of MaR1 and other SPMs were below the limit of detection or not increased in the spinal cord of EAE mice, whereas the production of pro-inflammatory eicosanoids was induced during disease progression. Similarly, we reveal that SPMs were undetected in serum and active brain lesion samples of MS patients, which was linked to impaired expression of the enzymes involved in the biosynthetic pathways of SPMs. We demonstrate that exogenous administration of MaR1 in EAE mice suppressed the protein levels of various pro-inflammatory cytokines and reduced immune cells counts in the spinal cord and blood. MaR1 also decreased the numbers of Th1 cells but increased the accumulation of regulatory T cells and drove macrophage polarization towards an anti-inflammatory phenotype. Importantly, we provide clear evidence that administration of MaR1 in mice with clinical signs of EAE enhanced neurological outcomes and protected from demyelination. CONCLUSIONS This study reveals that there is an imbalance in the production of SPMs in MS patients and in EAE mice, and that increasing the bioavailability of SPMs, such as MaR1, minimizes inflammation and mediates therapeutic actions. Thus, these data suggest that immunoresolvent therapies, such as MaR1, could be a novel avenue for the treatment of MS.
Collapse
Affiliation(s)
- Alba Sánchez-Fernández
- Institut de Neurociencies and Departament de Biologia Cel lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain
| | - Stephanie Zandee
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Mauricio Mastrogiovanni
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Homero Rubbo
- Departamento de Bioquímica, Facultad de Medicina and Centro de Investigaciones Biomédicas (CEINBIO), Universidad de La República, Montevideo, Uruguay
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, Québec, Canada
| | - Rubèn López-Vales
- Institut de Neurociencies and Departament de Biologia Cel lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autonoma de Barcelona, 08193, Bellaterra, Catalonia, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain.
| |
Collapse
|
8
|
Azimzadeh M, Möhn N, Ghane Ezabadi S, Moghimi Esfandabadi Z, Soleimani A, Ranjbar E, Jahromi M, Seyedebrahimi R, Skripuletz T, Moharrami Kasmaie F. The Immunological Therapeutic Strategies for Controlling Multiple Sclerosis: Considerations during the COVID-19 Pandemic. Biomolecules 2021; 11:1372. [PMID: 34572585 PMCID: PMC8470206 DOI: 10.3390/biom11091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
A growing body of evidence initially suggested that patients with multiple sclerosis (MS) might be more susceptible to coronavirus disease 2019 (COVID-19). Moreover, it was speculated that patients with MS treated with immunosuppressive drugs might be at risk to develop a severe diseases course after infection with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV2). However, the recently published data have shown that MS patients do not have a higher risk for severe COVID-19. Although there is no indication that patients with MS and immunomodulatory/immunosuppressive therapy are generally at a higher risk of severe COVID-19, it is currently being emphasized that the hazards of poorly treated MS may outweigh the putative COVID-19 dangers. In this review, we discuss the challenges and considerations for MS patients in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maryam Azimzadeh
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran;
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Sajjad Ghane Ezabadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran;
| | | | - Alireza Soleimani
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran;
| | - Elaheh Ranjbar
- Department of Paramedical Sciences, Gonabad University of Medical Sciences, Gonabad, Iran;
| | - Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran;
| | - Reihaneh Seyedebrahimi
- Department of Anatomical Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran;
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Farshad Moharrami Kasmaie
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
| |
Collapse
|
9
|
Acharya B, Meka RR, Venkatesha SH, Lees JR, Teesalu T, Moudgil KD. A novel CNS-homing peptide for targeting neuroinflammatory lesions in experimental autoimmune encephalomyelitis. Mol Cell Probes 2020; 51:101530. [PMID: 32035108 DOI: 10.1016/j.mcp.2020.101530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Using phage peptide library screening, we identified peptide-encoding phages that selectively home to the inflamed central nervous system (CNS) of mice with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis (MS). A phage peptide display library encoding cyclic 9-amino-acid random peptides was first screened ex-vivo for binding to the CNS tissue of EAE mice, followed by in vivo screening in the diseased mice. Phage insert sequences that were present at a higher frequency in the CNS of EAE mice than in the normal (control) mice were identified by DNA sequencing. One of the phages selected in this manner, denoted as MS-1, was shown to selectively recognize CNS tissue in EAE mice. Individually cloned phages with this insert preferentially homed to EAE CNS after an intravenous injection. Similarly, systemically-administered fluorescence-labeled synthetic MS-1 peptide showed selective accumulation in the spinal cord of EAE mice. We suggest that peptide MS-1 might be useful for targeted drug delivery to CNS in EAE/MS.
Collapse
Affiliation(s)
- Bodhraj Acharya
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Rakeshchandra R Meka
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Shivaprasad H Venkatesha
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Jason R Lees
- Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, USA
| | - Tambet Teesalu
- Institute of Biomedicine and Translational Medicine, University of Tartu (UT), Estonia; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kamal D Moudgil
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA. https://webmail.umaryland.edu/src/compose.php?send_to=kmoud001%40umaryland.edu
| |
Collapse
|
10
|
Cladribine for people with multiple sclerosis. Hippokratia 2020. [DOI: 10.1002/14651858.cd013524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Sánchez-Fernández A, Skouras DB, Dinarello CA, López-Vales R. OLT1177 (Dapansutrile), a Selective NLRP3 Inflammasome Inhibitor, Ameliorates Experimental Autoimmune Encephalomyelitis Pathogenesis. Front Immunol 2019; 10:2578. [PMID: 31736980 PMCID: PMC6839275 DOI: 10.3389/fimmu.2019.02578] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/17/2019] [Indexed: 01/05/2023] Open
Abstract
IL-1β and IL-18 are pro-inflammatory cytokines that are linked to inflammation. Activation of the NOD-like receptor protein 3 (NLRP3) inflammasome is involved in the maturation and secretion of IL-1β and IL-18 and, thus, plays a key role in the pathogenesis of many inflammatory conditions, including multiple sclerosis (MS). OLT1177™ (Dapansutrile) is a newly developed drug that is safe in humans and inhibits specifically the NLRP3 inflammasome. In the present study, we investigated whether OLT1177 exerts therapeutic effects in experimental autoimmune encephalomyelitis (EAE), a mouse model of MS. We found that EAE mice fed an OLT1177-enriched diet prophylactically were significantly protected against functional deficits and demyelination in the spinal cord. We also demonstrated that prophylactic oral administration of OLT1177 led to marked reduction (~2- to 3-fold) in the protein levels of IL-1β and IL-18, as well as, IL-6 and TNFα, in the spinal cord of EAE mice. Moreover, prophylactic oral administration of OLT1177 significantly attenuated the infiltration of CD4 T cells and macrophages in the spinal cord. We also demonstrated that oral administration of OLT1177, starting at disease onset, resulted in significant amelioration of the clinical signs of EAE. Overall, these first data suggest that OLT1177 could have clinical benefit for the treatment of MS in humans.
Collapse
Affiliation(s)
- Alba Sánchez-Fernández
- Institut de Neurociencies and Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | | | - Charles A Dinarello
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States.,Department of Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rubèn López-Vales
- Institut de Neurociencies and Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autonoma de Barcelona, Bellaterra, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
12
|
Probst Y, Mowbray E, Svensen E, Thompson K. A Systematic Review of the Impact of Dietary Sodium on Autoimmunity and Inflammation Related to Multiple Sclerosis. Adv Nutr 2019; 10:902-910. [PMID: 31079157 PMCID: PMC6743836 DOI: 10.1093/advances/nmz032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/14/2019] [Accepted: 03/11/2019] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system. Current research into potential causes, risk factors, and treatment is largely based around the immune response involved in the pathophysiology of the disease, including factors that contribute to the augmentation of this immune response. This review aimed to determine the role of sodium as a risk factor for increased autoimmunity and inflammation in relation to MS pathogenesis. This systematic review searched the Scopus, MEDLINE, and PubMed scientific databases for studies related to MS and sodium. Studies were included if they addressed sodium intake and MS but were not limited to a disease type or to a study design. Study quality was assessed through the use of the quality rating checklist of the Academy of Nutrition and Dietetics. A total of 12 studies were included in the review, including human, animal, and cellular studies. The studies related to the proinflammatory effect of sodium, the blood-brain barrier, and an effect on autoimmunity. The data presented throughout this review provide insight into the emerging evidence base for sodium intake as a risk factor for MS disease progression and potentially onset of disease. More studies are needed to determine if the influence of sodium is as a single nutrient or has a combined effect as part of an overall eating pattern. This review was registered at PROSPERO as CRD42016039174.
Collapse
Affiliation(s)
- Yasmine Probst
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Erin Mowbray
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Erika Svensen
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Keats Thompson
- School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
13
|
Venkatesha SH, Moudgil KD. Celastrol suppresses experimental autoimmune encephalomyelitis via MAPK/SGK1-regulated mediators of autoimmune pathology. Inflamm Res 2019; 68:285-296. [PMID: 30820608 DOI: 10.1007/s00011-019-01219-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/10/2019] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE AND DESIGN Multiple sclerosis (MS) is a debilitating autoimmune disease involving immune dysregulation of the pathogenic T helper 17 (Th17) versus protective T regulatory (Treg) cell subsets, besides other cellular aberrations. Studies on the mechanisms underlying these changes have unraveled the involvement of mitogen-activated protein kinase (MAPK) pathway in the disease process. We describe here a gene expression- and bioinformatics-based study showing that celastrol, a natural triterpenoid, acting via MAPK pathway regulates the downstream genes encoding serum/glucocorticoid regulated kinase 1 (SGK1), which plays a vital role in Th17/Treg differentiation, and brain-derived neurotrophic factor (BDNF), which is a neurotrophic factor, thereby offering protection against experimental autoimmune encephalomyelitis (EAE) in mice. METHODS We first tested the gene expression profile of splenocytes of EAE mice in response to the disease-related antigen, myelin oligodendrocyte glycoprotein (MOG), and then examined the effect of celastrol on that profile. RESULTS Interestingly, celastrol reversed the expression of many MOG-induced genes involved in inflammation and immune pathology. The MAPK pathway involving p38MAPK and ERK was identified as one of the mediators of celastrol action. It involved suppression of SGK1 but upregulation of BDNF, which then contributed to protection against EAE. CONCLUSION Our results not only provide novel insights into disease pathogenesis, but also offer promising therapeutic targets for MS.
Collapse
Affiliation(s)
- Shivaprasad H Venkatesha
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.,Baltimore VA Medical Center, Baltimore, MD, 21201, USA
| | - Kamal D Moudgil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Baltimore VA Medical Center, Baltimore, MD, 21201, USA. .,Division of Rheumatology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, HSF-1, Suite-380, Baltimore, MD, 21201, USA.
| |
Collapse
|
14
|
Therapeutic Potential of Pien Tze Huang on Experimental Autoimmune Encephalomyelitis Rat. J Immunol Res 2018; 2018:2952471. [PMID: 29682587 PMCID: PMC5848133 DOI: 10.1155/2018/2952471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/31/2017] [Indexed: 01/31/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). There is still lack of commercially viable treatment currently. Pien Tze Huang (PZH), a traditional Chinese medicine, has been proved to have anti-inflammatory, neuroprotective, and immunoregulatory effects. This study investigated the possible therapeutic effects of PZH on experimental autoimmune encephalomyelitis (EAE) rats, a classic animal model of MS. Male Lewis rats were immunized with myelin basic protein (MBP) peptide to establish an EAE model and then treated with three doses of PZH. Clinical symptoms, organ coefficient, histopathological features, levels of proinflammatory cytokines, and chemokines as well as MBP and Olig2 were analyzed. The results indicated that PZH ameliorated the clinical severity of EAE rats. It also remarkably reduced inflammatory cell infiltration in the CNS of EAE rats. Furthermore, the levels of IL-17A, IL-23, CCL3, and CCL5 in serum and the CNS were significantly decreased; the p-P65 and p-STAT3 levels were also downregulated in the CNS, while MBP and Olig2 in the CNS of EAE rats had a distinct improvement after PZH treatment. In addition, PZH has no obvious toxicity at the concentration of 0.486 g/kg/d. This study demonstrated that PZH could be used to treat MS.
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
16
|
Zhong SS, Xiang YJ, Liu PJ, He Y, Yang TT, Wang YY, Rong A, Zhang J, Liu GZ. Effect of Cordyceps sinensis on the Treatment of Experimental Autoimmune Encephalomyelitis: A Pilot Study on Mice Model. Chin Med J (Engl) 2017; 130:2296-2301. [PMID: 28937034 PMCID: PMC5634078 DOI: 10.4103/0366-6999.215335] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background: As a traditional Chinese medicine, Cordyceps sinensis (CS) possesses a variety of immunoregulatory properties. This study aimed to explore the therapeutic potential of CS in a mice model of multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE). Methods: Female C57BL/6 mice were immunized with myelin oligodendrocyte glycoprotein35–55 to induce EAE, followed by an instant intragastric feeding with a low dosage of CS (low-CS group, n = 5), high dosage of CS (high-CS group, n = 5), or the same volume of normal saline (control group, n = 5). All the mice were observed for clinical assessment. Over the 30 days of CS treatment, flow cytometry was used to detect the frequency of helper T-cell (Th) subsets, Th1 and Th17, and CD4+ CD25+ regulatory T cells in the spleen and lymph nodes. Meanwhile, pathological changes in brain were determined using both hematoxylin-eosin and luxol fast blue staining. Data were analyzed using the one-way analysis of variance (ANOVA). Results: Over the 15 and 30 days of CS treatment, the clinical assessment for EAE demonstrated that both high-CS group (2.51 ± 0.31 and 2.26 ± 0.39 scores, respectively) and low-CS group (2.99 ± 0.40 and 2.69 ± 0.46, respectively) had lower disease severity scores than those of control group (3.57 ± 0.53 and 3.29 ± 0.53, all P < 0.01, respectively). Meanwhile, after 15 and 30 days, the high-CS group (19.18 ± 1.34 g and 20.41 ± 1.56 g, respectively) and low-CS group (18.07 ± 1.18 g and 19.48 ± 1.69 g, respectively) had a lower body weight, as compared with control group (16.85 ± 1.15 g and 18.22 ± 1.63 g, all P < 0.01, respectively). At 30 days post-CS treatment, there was a lower Th1 frequency in the lymph nodes (2.85 ± 1.54% and 2.77 ± 1.07% vs. 5.35 ± 1.34%, respectively; P < 0.05) and spleens (3.96 ± 1.09% and 3.09 ± 0.84% vs. 5.07 ± 1.50%, respectively; P < 0.05) and less inflammatory infiltration and demyelination in the brain of CS-treated mice than that of control group. Conclusions: Our preliminary study demonstrated that CS efficiently alleviated EAE severity and EAE-related pathology damage and decreased the number of Th1s in the periphery, indicating its effectiveness in the treatment of murine EAE. Thus, our findings strongly support the therapeutic potential of this agent as a new traditional Chinese medicine approach in MS treatment.
Collapse
Affiliation(s)
- Shan-Shan Zhong
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - Ya-Juan Xiang
- Department of Neurology, The First Hospital of Tsinghua University, Beijing 100016, China
| | - Pen-Ju Liu
- Deptartment of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Yang He
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - Ting-Ting Yang
- Deptartment of Neurology, Tsinghua Changgung Hospital, Beijing 102218, China
| | - Yang-Yang Wang
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - A Rong
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - Jun Zhang
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| | - Guang-Zhi Liu
- Department of Neurology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
17
|
Gordon-Lipkin E, Banwell B. An update on multiple sclerosis in children: diagnosis, therapies, and prospects for the future. Expert Rev Clin Immunol 2017; 13:975-989. [PMID: 28738749 DOI: 10.1080/1744666x.2017.1360135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS), a chronic demyelinating disease of the central nervous system, is increasingly being recognized in children and adolescents. Pediatric MS follows a relapsing-remitting course at onset, with a risk for early cognitive impairment. Areas covered: In this review, we discuss the clinical features of acute demyelinating syndromes in children and risk factors that increase the likelihood of a diagnosis of MS. We also address the application of diagnostic criteria for MS in children, immunological features, therapeutic options and psychosocial considerations for children and adolescents with MS. Expert commentary: Collaborative multicenter clinical trials and research efforts are key to the advancement in understanding the pathophysiology and therapeutic strategies for multiple sclerosis across the lifespan.
Collapse
Affiliation(s)
- Eliza Gordon-Lipkin
- a Department of Neurology and Developmental Medicine , Kennedy Krieger Institute and Johns Hopkins School of Medicine , Baltimore , MD , USA
| | - Brenda Banwell
- b Children's Hospital of Philadelphia , Perelman School of Medicine, University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|