1
|
Xiao J, Wang L, Zhang B, Hou A. Cell death in acute lung injury: caspase-regulated apoptosis, pyroptosis, necroptosis, and PANoptosis. Front Pharmacol 2025; 16:1559659. [PMID: 40191423 PMCID: PMC11968751 DOI: 10.3389/fphar.2025.1559659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
There has been abundant research on the variety of programmed cell death pathways. Apoptosis, pyroptosis, and necroptosis under the action of the caspase family are essential for the innate immune response. Caspases are classified into inflammatory caspase-1/4/5/11, apoptotic caspase-3/6/7, and caspase-2/8/9/10. Although necroptosis is not caspase-dependent to transmit cell death signals, it can cross-link with pyroptosis and apoptosis signals under the regulation of caspase-8. An increasing number of studies have reiterated the involvement of the caspase family in acute lung injuries caused by bacterial and viral infections, blood transfusion, and ventilation, which is influenced by noxious stimuli that activate or inhibit caspase engagement pathways, leading to subsequent lung injury. This article reviews the role of caspases implicated in diverse programmed cell death mechanisms in acute lung injury and the status of research on relevant inhibitors against essential target proteins of the described cell death mechanisms. The findings of this review may help in delineating novel therapeutic targets for acute lung injury.
Collapse
Affiliation(s)
| | | | | | - Ana Hou
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Wang J, Chen B, Shi Q, Ciampa G, Zhao W, Zhang G, Weiss RM, Peng T, Hall DD, Song LS. Preventing Site-Specific Calpain Proteolysis of Junctophilin-2 Protects Against Stress-Induced Excitation-Contraction Uncoupling and Heart Failure Development. Circulation 2025; 151:171-187. [PMID: 39291390 PMCID: PMC11729472 DOI: 10.1161/circulationaha.124.069329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Excitation-contraction (E-C) coupling processes become disrupted in heart failure (HF), resulting in abnormal Ca2+ homeostasis, maladaptive structural and transcriptional remodeling, and cardiac dysfunction. Junctophilin-2 (JP2) is an essential component of the E-C coupling apparatus but becomes site-specifically cleaved by calpain, leading to disruption of E-C coupling, plasmalemmal transverse tubule degeneration, abnormal Ca2+ homeostasis, and HF. However, it is not clear whether preventing site-specific calpain cleavage of JP2 is sufficient to protect the heart against stress-induced pathological cardiac remodeling in vivo. METHODS Calpain-resistant JP2 knock-in mice (JP2CR) were generated by deleting the primary JP2 calpain cleavage site. Stress-dependent JP2 cleavage was assessed through in vitro cleavage assays and in isolated cardiomyocytes treated with 1 μmol/L isoproterenol by immunofluorescence. Cardiac outcomes were assessed in wild-type and JP2CR mice 5 weeks after transverse aortic constriction compared with sham surgery using echocardiography, histology, and RNA-sequencing methods. E-C coupling efficiency was measured by in situ confocal microscopy. E-C coupling proteins were evaluated by calpain assays and Western blotting. The effectiveness of adeno-associated virus gene therapy with JP2CR, JP2, or green fluorescent protein to slow HF progression was evaluated in mice with established cardiac dysfunction. RESULTS JP2 proteolysis by calpain and in response to transverse aortic constriction and isoproterenol was blocked in JP2CR cardiomyocytes. JP2CR hearts are more resistant to pressure-overload stress, having significantly improved Ca2+ homeostasis and transverse tubule organization with significantly attenuated cardiac dysfunction, hypertrophy, lung edema, fibrosis, and gene expression changes relative to wild-type mice. JP2CR preserves the integrity of calpain-sensitive E-C coupling-related proteins, including ryanodine receptor 2, CaV1.2, and sarcoplasmic reticulum calcium ATPase 2a, by attenuating transverse aortic constriction-induced increases in calpain activity. Furthermore, JP2CR gene therapy after the onset of cardiac dysfunction was found to be effective at slowing the progression of HF and superior to wild-type JP2. CONCLUSIONS The data presented here demonstrate that preserving JP2-dependent E-C coupling by prohibiting the site-specific calpain cleavage of JP2 offers multifaceted beneficial effects, conferring cardiac protection against stress-induced proteolysis, hypertrophy, and HF. Our data also indicate that specifically targeting the primary calpain cleavage site of JP2 by gene therapy approaches holds great therapeutic potential as a novel precision medicine for treating HF.
Collapse
Affiliation(s)
- Jinxi Wang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qian Shi
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Grace Ciampa
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Weiyang Zhao
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Guangqin Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Robert M. Weiss
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| | - Tianqing Peng
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 4S2, Canada
| | - Duane D. Hall
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA 52242, USA
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
3
|
Li H, Ma Y, Li T, Zeng Z, Luo L, Liu X, Li Y, Chen Y. CAPN5 attenuates cigarette smoke extract-induced apoptosis and inflammation in BEAS-2B cells. Tob Induc Dis 2024; 22:TID-22-65. [PMID: 38650847 PMCID: PMC11033979 DOI: 10.18332/tid/186183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 11/05/2023] [Accepted: 03/17/2024] [Indexed: 04/25/2024] Open
Abstract
INTRODUCTION Apoptosis and chronic inflammation are the main phenotypes in chronic obstructive pulmonary disease (COPD) pathogenesis. Cigarette smoke exposure is the leading risk factor for COPD, which causes aberrant airway epithelial structure and function. As a non-classical calpain, the molecular function of calpain5 (CAPN5) in COPD remains unclear. This study investigated the role of CAPN5 in mediating cigarette smoke extract (CSE)-induced apoptosis and inflammation. METHODS Immunohistochemistry (IHC) and Western blotting (WB) were performed to detect the location and expression of CAPN5. In vitro, BEAS-2B cells were transfected with CAPN5 siRNA or CAPN5 plasmid, followed by phosphate-buffered saline (PBS) or cigarette smoke extract (CSE) treatment. The protein expression levels of CAPN5, NF-κB p65, p-p65, IκBα, p-IκBα and apoptosis proteins (BCL-2, BAX) were measured by WB. Flow cytometry (FCM) was performed to analyze the cell apoptosis index. RESULTS CAPN5 was mainly expressed in the airway epithelium and significantly decreased in the COPD-smoker and emphysema-mouse groups. Silencing CAPN5 significantly decreased the protein expression of BCL-2, IκBα, and increased p-p65 and BAX protein expression. Additionally, an increased apoptosis index was detected after silencing CAPN5. Moreover, overexpression of CAPN5 partly inhibited IκBα degradation and p65 activation, and reduced CSE-induced inflammation and apoptosis. CONCLUSIONS These combined results indicate that CAPN5 could protect against CSE-induced apoptosis and inflammation, which may provide a potential therapeutic target for smoking-related COPD.
Collapse
Affiliation(s)
- Herui Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yiming Ma
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Tiao Li
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Zihang Zeng
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Lijuan Luo
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Xiangming Liu
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| | - Yi Li
- Department of Infectious Disease, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Chen
- Department of Respiratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Unit of Respiratory Diseases, Central South University, Changsha, China
- Clinical Medical Research Center for Respiratory and Critical Care Medicine in Hunan Province, Changsha, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, China
| |
Collapse
|
4
|
Kerzonkuf M, Verneuil J, Brocard C, Dingu N, Trouplin V, Ramirez Franco JJ, Bartoli M, Brocard F, Bras H. Knockdown of calpain1 in lumbar motoneurons reduces spasticity after spinal cord injury in adult rats. Mol Ther 2024; 32:1096-1109. [PMID: 38291756 PMCID: PMC11163198 DOI: 10.1016/j.ymthe.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/23/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Spasticity, affecting ∼75% of patients with spinal cord injury (SCI), leads to hyperreflexia, muscle spasms, and cocontractions of antagonist muscles, greatly affecting their quality of life. Spasticity primarily stems from the hyperexcitability of motoneurons below the lesion, driven by an upregulation of the persistent sodium current and a downregulation of chloride extrusion. This imbalance results from the post-SCI activation of calpain1, which cleaves Nav1.6 channels and KCC2 cotransporters. Our study was focused on mitigating spasticity by specifically targeting calpain1 in spinal motoneurons. We successfully transduced lumbar motoneurons in adult rats with SCI using intrathecal administration of adeno-associated virus vector serotype 6, carrying a shRNA sequence against calpain1. This approach significantly reduced calpain1 expression in transduced motoneurons, leading to a noticeable decrease in spasticity symptoms, including hyperreflexia, muscle spasms, and cocontractions in hindlimb muscles, which are particularly evident in the second month post-SCI. In addition, this decrease, which prevented the escalation of spasticity to a severe grade, paralleled the restoration of KCC2 levels in transduced motoneurons, suggesting a reduced proteolytic activity of calpain1. These findings demonstrate that inhibiting calpain1 in motoneurons is a promising strategy for alleviating spasticity in SCI patients.
Collapse
Affiliation(s)
- Marjorie Kerzonkuf
- Institut des Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| | - Jérémy Verneuil
- Institut des Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| | - Cécile Brocard
- Institut des Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| | - Nejada Dingu
- Institut des Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| | - Virginie Trouplin
- Institut des Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| | - Jose Jorge Ramirez Franco
- Institut des Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France
| | - Marc Bartoli
- Institut Marseille Maladies Rares (MarMaRa), Aix-Marseille Université and INSERM, Marseille, France
| | - Frédéric Brocard
- Institut des Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France.
| | - Hélène Bras
- Institut des Neurosciences de la Timone (UMR7289), Aix-Marseille Université and CNRS, Marseille, France.
| |
Collapse
|
5
|
Zhao R, Teng X, Yang Y. Calpain as a Therapeutic Target for Hypoxic-Ischemic Encephalopathy. Mol Neurobiol 2024; 61:533-540. [PMID: 37642934 DOI: 10.1007/s12035-023-03594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a complex pathophysiological process with multiple links and factors. It involves the interaction of inflammation, oxidative stress, and glucose metabolism, and results in acute and even long-term brain damage and impairment of brain function. Calpain is a family of Ca2+-dependent cysteine proteases that regulate cellular function. Calpain activation is involved in cerebral ischemic injury, and this involvement is achieved by the interaction among Ca2+, substrates, organelles, and multiple proteases in the neuronal necrosis and apoptosis pathways after cerebral ischemia. Many calpain inhibitors have been developed and tested in the biochemical and biomedical fields. This study reviewed the potential role of calpain in the treatment of HIE and related mechanism, providing new insights for future research on HIE.
Collapse
Affiliation(s)
- Ruiyang Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Xiufei Teng
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
| | - Yanchao Yang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
6
|
Salemkour Y, Yildiz D, Dionet L, ‘t Hart DC, Verheijden KA, Saito R, Mahtal N, Delbet JD, Letavernier E, Rabant M, Karras A, van der Vlag J, Nijenhuis T, Tharaux PL, Lenoir O. Podocyte Injury in Diabetic Kidney Disease in Mouse Models Involves TRPC6-mediated Calpain Activation Impairing Autophagy. J Am Soc Nephrol 2023; 34:1823-1842. [PMID: 37678257 PMCID: PMC10631601 DOI: 10.1681/asn.0000000000000212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 09/09/2023] Open
Abstract
SIGNIFICANCE STATEMENT Autophagy protects podocytes from injury in diabetic kidney disease (DKD). Restoring glomerular autophagy is a promising approach to limit DKD. This study demonstrates a novel regulatory mechanism of autophagy that blocks this critical protection of the glomerular filtration barrier. We demonstrated that TRPC6 induced in podocytes in mouse models of diabetes mediates calpain activation, thereby impairing podocyte autophagy, causing injury and accelerating DKD. Furthermore, this study provides proof of principle for druggable targets for DKD because restoration of podocyte autophagy by calpain inhibitors effectively limits glomerular destruction. BACKGROUND Diabetic kidney disease is associated with impaired podocyte autophagy and subsequent podocyte injury. The regulation of podocyte autophagy is unique because it minimally uses the mTOR and AMPK pathways. Thus, the molecular mechanisms underlying the impaired autophagy in podocytes in diabetic kidney disease remain largely elusive. METHODS This study investigated how the calcium channel TRPC6 and the cysteine protease calpains deleteriously affect podocyte autophagy in diabetic kidney disease in mice. We demonstrated that TRPC6 knockdown in podocytes increased the autophagic flux because of decreased cysteine protease calpain activity. Diabetic kidney disease was induced in vivo using streptozotocin with unilateral nephrectomy and the BTBR ob/ob mouse models. RESULTS Diabetes increased TRPC6 expression in podocytes in vivo with decreased podocyte autophagic flux. Transgenic overexpression of the endogenous calpain inhibitor calpastatin, as well as pharmacologic inhibition of calpain activity, normalized podocyte autophagic flux, reduced nephrin loss, and prevented the development of albuminuria in diabetic mice. In kidney biopsies from patients with diabetes, we further confirmed that TRPC6 overexpression in podocytes correlates with decreased calpastatin expression, autophagy blockade, and podocyte injury. CONCLUSIONS Overall, we discovered a new mechanism that connects TRPC6 and calpain activity to impaired podocyte autophagy, increased podocyte injury, and development of proteinuria in the context of diabetic kidney disease. Therefore, targeting TRPC6 and/or calpain to restore podocyte autophagy might be a promising therapeutic strategy for diabetic kidney disease.
Collapse
Affiliation(s)
| | - Dilemin Yildiz
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Léa Dionet
- Université Paris Cité, Inserm, PARCC, Paris, France
| | - Daan C. ‘t Hart
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kim A.T. Verheijden
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ryuta Saito
- Discovery Technology Laboratories, Sohyaku, Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, Yokohama, Japan
| | | | - Jean-Daniel Delbet
- Université Paris Cité, Inserm, PARCC, Paris, France
- Pediatric Nephrology Department, Armand Trousseau Hospital, DMU Origyne, APHP, Paris and French Reference Center for Rare Diseases MARHEA, Paris, France
| | - Emmanuel Letavernier
- Sorbonne Université, Hôpital Tenon, Paris, France
- INSERM UMR S 1155, Hôpital Tenon, Paris, France
- Explorations Fonctionnelles Multidisciplinaires, AP-HP, Hôpital Tenon, Paris, France
| | - Marion Rabant
- Pathology Department, Necker-Enfants Malades Hospital - Paris, Paris, France
| | - Alexandre Karras
- Université Paris Cité, Inserm, PARCC, Paris, France
- Nephrology Unit, Georges Pompidou European Hospital - Paris, Paris, France
| | - Johan van der Vlag
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Tom Nijenhuis
- Department of Nephrology, Research Institute of Medical Innovations, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | |
Collapse
|
7
|
Knaryan VH, Sarukhanyan FP. [Ca2+-regulated enzymes calpain and calcineurin in neurodegenerative processes and prospects for neuroprotective pharmacotherapy]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:32-40. [PMID: 37490663 DOI: 10.17116/jnevro202312307132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Calcium (Ca2+) and Ca2+-regulated enzymes calpain and calcineurin are the key molecules of signaling mechanisms in neurons and ensure the normal course of intracellular neurochemical and neurophysiological processes. The imbalance and increase in the intracellular level of Ca2+ correlates with the activation of calpain and calcineurin. Inactivation of endogenous inhibitors and/or absence of exogenous pharmacological inhibitors of these enzymes may induce a cascade of intracellular mechanisms that are detrimental to the structural integrity and functional activity of neurons. The interrelated processes of Ca2+ imbalance, dysregulation of calpain and calcineurin are directly related to the development of intracellular pathophysiological reactions leading to the degeneration and death of selective neuronal populations in neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The review briefly presents the characteristics of calpain and calcineurin, their interrelated role in the neurodegeneration processes. Data on the efficiency of the exogenous inhibitors (in vivo, in vitro) point out the potential role of pharmacological regulation of calpain and calcineurin for neuroprotection.
Collapse
Affiliation(s)
- V H Knaryan
- Buniatian Institute of Biochemistry NAS RA, Yerevan, Armenia
| | - F P Sarukhanyan
- Buniatian Institute of Biochemistry NAS RA, Yerevan, Armenia
| |
Collapse
|
8
|
Aluja D, Delgado-Tomás S, Ruiz-Meana M, Barrabés JA, Inserte J. Calpains as Potential Therapeutic Targets for Myocardial Hypertrophy. Int J Mol Sci 2022; 23:ijms23084103. [PMID: 35456920 PMCID: PMC9032729 DOI: 10.3390/ijms23084103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/26/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Despite advances in its treatment, heart failure remains a major cause of morbidity and mortality, evidencing an urgent need for novel mechanism-based targets and strategies. Myocardial hypertrophy, caused by a wide variety of chronic stress stimuli, represents an independent risk factor for the development of heart failure, and its prevention constitutes a clinical objective. Recent studies performed in preclinical animal models support the contribution of the Ca2+-dependent cysteine proteases calpains in regulating the hypertrophic process and highlight the feasibility of their long-term inhibition as a pharmacological strategy. In this review, we discuss the existing evidence implicating calpains in the development of cardiac hypertrophy, as well as the latest advances in unraveling the underlying mechanisms. Finally, we provide an updated overview of calpain inhibitors that have been explored in preclinical models of cardiac hypertrophy and the progress made in developing new compounds that may serve for testing the efficacy of calpain inhibition in the treatment of pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- David Aluja
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Sara Delgado-Tomás
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - José A. Barrabés
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (D.A.); (S.D.-T.); (M.R.-M.); (J.A.B.)
- Centro de Investigación en Red de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-934894038
| |
Collapse
|
9
|
Kong L, Chen S, Zeng X, Zhao L, Chen Z. Calpain inhibitors inhibit mitochondrial calpain activity to ameliorate apoptosis of cocultured myoblast. CHINESE J PHYSIOL 2022; 65:226-232. [DOI: 10.4103/0304-4920.359797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res 2021; 172:105807. [PMID: 34389456 DOI: 10.1016/j.phrs.2021.105807] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Weihua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Nuoqi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
11
|
Manhas FM, Raheem S, Kumar J, Thakur P, Rizvi MA. A photosensitized metal free approach to α‐ketoamides:sequential oxidative amidationdiketonization of terminal alkynes. ChemistrySelect 2021. [DOI: 10.1002/slct.202101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Farah Manzer Manhas
- Department of Chemistry Shoolini University Solan, Himachal Pradesh 173212 India
| | - Shabnam Raheem
- Department of Chemistry University of Kashmir Srinagar 190006, J&K India
| | - Jaswant Kumar
- Natural Product and Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
| | - Pankaj Thakur
- Department of Environmental Sciences Central University of Himachal Pradesh Dharmshala 176215 India
| | - Masood Ahmad Rizvi
- Department of Chemistry University of Kashmir Srinagar 190006, J&K India
| |
Collapse
|
12
|
Shi H, Yu Y, Wang Y, Liu X, Yu Y, Li M, Zou Y, Chen R, Ge J. Inhibition of Calpain Alleviates Apoptosis in Coxsackievirus B3-induced Acute Virus Myocarditis Through Suppressing Endoplasmic Reticulum Stress. Int Heart J 2021; 62:900-909. [PMID: 34234076 DOI: 10.1536/ihj.20-803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Virus myocarditis (VMC) is a common cardiovascular disease and a major cause of sudden death in young adults. However, there is still a lack of effective treatments. Our previous studies found that calpain activation was involved in VMC pathogenesis. This study aims to explore the underlying mechanisms further. Neonatal rat cardiomyocytes (NRCMs) and transgenic mice overexpressing calpastatin (Tg-CAST), the endogenous calpain inhibitor, were used to establish VMC model. Hematoxylin and eosin and Masson staining revealed inflammatory cell infiltration and fibrosis. An ELISA array detected myocardial injury. Cardiac function was measured using echocardiography. CVB3 replication was assessed by capsid protein VP1. Apoptosis was measured by TUNEL staining, flow cytometry, and western blot. The endoplasmic reticulum (ER) stress-related proteins were detected by western blot. Our data showed that CVB3 infection resulted in cardiac injury, as evidenced by increased inflammatory responses and fibrosis, which induced myocardial apoptosis. Inhibiting calpain, both by PD150606 and calpastatin overexpression, could attenuate these effects. Furthermore, ER stress was activated during CVB3 infection. However, calpain inhibition could downregulate some ER stress-associated protein levels such as GRP78, pancreatic ER kinase-like ER kinase (PERK), and inositol-requiring enzyme-1α (IRE-1α), and ER stress-related apoptotic factors, during CVB3 infection. In conclusion, calpain inhibition attenuated CVB3-induced myocarditis by suppressing ER stress, thereby inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Hui Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Ying Yu
- Department of General Practice, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yucheng Wang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Xiaoxiao Liu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yong Yu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Minghui Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Yunzeng Zou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Ruizhen Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Shanghai Medical College of Fudan University
| |
Collapse
|
13
|
Flores-Toro J, Chun SK, Shin JK, Campbell J, Lichtenberger M, Chapman W, Zendejas I, Behrns K, Leeuwenburgh C, Kim JS. Critical Roles of Calpastatin in Ischemia/Reperfusion Injury in Aged Livers. Cells 2021; 10:1863. [PMID: 34440632 PMCID: PMC8394464 DOI: 10.3390/cells10081863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/02/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury unavoidably occurs during hepatic resection and transplantation. Aged livers poorly tolerate I/R during surgical treatment. Although livers have a powerful endogenous inhibitor of calpains, calpastatin (CAST), I/R activates calpains, leading to impaired autophagy, mitochondrial dysfunction, and hepatocyte death. It is unknown how I/R in aged livers affects CAST. Human and mouse liver biopsies at different ages were collected during in vivo I/R. Hepatocytes were isolated from 3-month- (young) and 26-month-old (aged) mice, and challenged with short in vitro simulated I/R. Cell death, protein expression, autophagy, and mitochondrial permeability transition (MPT) between the two age groups were compared. Adenoviral vector was used to overexpress CAST. Significant cell death was observed only in reperfused aged hepatocytes. Before the commencement of ischemia, CAST expression in aged human and mouse livers and mouse hepatocytes was markedly greater than that in young counterparts. However, reperfusion substantially decreased CAST in aged human and mouse livers. In hepatocytes, reperfusion rapidly depleted aged cells of CAST, cleaved autophagy-related protein 5 (ATG5), and induced defective autophagy and MPT onset, all of which were blocked by CAST overexpression. Furthermore, mitochondrial morphology was shifted toward an elongated shape with CAST overexpression. In conclusion, CAST in aged livers is intrinsically short-lived and lost after short I/R. CAST depletion contributes to age-dependent liver injury after I/R.
Collapse
Affiliation(s)
- Joseph Flores-Toro
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
| | - Sung-Kook Chun
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
| | - Jun-Kyu Shin
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
| | - Joan Campbell
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
| | - Melissa Lichtenberger
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
| | - William Chapman
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
| | - Ivan Zendejas
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
| | - Kevin Behrns
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, University of Florida, Gainesville, FL 32610, USA;
| | - Jae-Sung Kim
- Department of Surgery, University of Florida, Gainesville, FL 32610, USA; (J.F.-T.); (S.-K.C.); (I.Z.); (K.B.)
- Department of Surgery, Washington University in St. Louis, St. Louis, MO 63110, USA; (J.-K.S.); (J.C.); (M.L.); (W.C.)
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Spinozzi S, Albini S, Best H, Richard I. Calpains for dummies: What you need to know about the calpain family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140616. [PMID: 33545367 DOI: 10.1016/j.bbapap.2021.140616] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/17/2022]
Abstract
This review was written in memory of our late friend, Dr. Hiroyuki Sorimachi, who, following the steps of his mentor Koichi Suzuki, a pioneer in calpain research, has made tremendous contributions to the field. During his career, Hiro also wrote several reviews on calpain, the last of which, published in 2016, was comprehensive. In this manuscript, we decided to put together a review with the basic information a novice may need to know about calpains. We also tried to avoid similarities with previous reviews and reported the most significant new findings, at the same time highlighting Hiro's contributions to the field. The review will cover a short history of calpain discovery, the presentation of the family, the life of calpain from transcription to activity, human diseases caused by calpain mutations and therapeutic perspectives.
Collapse
Affiliation(s)
- Simone Spinozzi
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Sonia Albini
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Heather Best
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France
| | - Isabelle Richard
- Genethon, 1 bis, Rue de l'Internationale - 91000 Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000, Evry, France.
| |
Collapse
|
15
|
Zeng X, Zhao L, Chen S, Li X. Inhibition of mitochondrial and cytosolic calpain attenuates atrophy in myotubes co-cultured with colon carcinoma cells. Oncol Lett 2020; 21:124. [PMID: 33552245 DOI: 10.3892/ol.2020.12385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/12/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer cachexia is a life-threatening syndrome characterized by muscle atrophy. Cancer cachectic muscle atrophy (CCMA) is associated with mitochondrial injury. Mitochondrial calpains have been reported to induce mitochondrial injury in mouse cardiomyocytes and pulmonary smooth muscle. In the present study, the presence of calpain in the mitochondria of skeletal muscle and its potential role in CCMA were investigated. Transwell plates were used to develop a myotube-carcinoma cell co-culture model to simulate the cancer cachexia environment in vitro. The calpain inhibitors, calpastatin (CAST) and calpeptin (CAPT), were used to inhibit calpain activity in myotubes during co-culture. Calpain-1, calpain-2 and CAST were found to be present in mouse myotube mitochondria. Co-culture activated calpain in both cytoplasm and mitochondria, which caused myotube atrophy. CAST and CAPT treatment prevented calpain activation in both cytoplasm and mitochondria, which inhibited myotube atrophy during co-culture. Additionally, CAST and CAPT treatment increased mitochondrial complex I activity, decreased mitochondrial permeability transition pore opening and improved mitochondrial membrane potential in myotubes during co-culture. In addition, CAST and CAPT treatment increased AKT/mTOR activity, inhibited FoxO3a activity and decreased atrogin-1 content in myotubes during co-culture. The present findings provide new insights to understand the mechanism of CCMA and further help the development of focused approaches to treat CCMA by manipulating the mitochondrial and cytosolic calpain activity.
Collapse
Affiliation(s)
- Xianliang Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Li Zhao
- Department of Dermatology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Sizeng Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Xiantao Li
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
16
|
Iwaniak A, Minkiewicz P, Pliszka M, Mogut D, Darewicz M. Characteristics of Biopeptides Released In Silico from Collagens Using Quantitative Parameters. Foods 2020; 9:E965. [PMID: 32708318 PMCID: PMC7404701 DOI: 10.3390/foods9070965] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
The potential of collagens to release biopeptides was evaluated using the BIOPEP-UWM-implemented quantitative criteria including the frequency of the release of fragments with a given activity by selected enzyme(s) (AE), relative frequency of release of fragments with a given activity by selected enzyme(s) (W), and the theoretical degree of hydrolysis (DHt). Cow, pig, sheep, chicken, duck, horse, salmon, rainbow trout, goat, rabbit, and turkey collagens were theoretically hydrolyzed using: stem bromelain, ficin, papain, pepsin, trypsin, chymotrypsin, pepsin+trypsin, and pepsin+trypsin+chymotrypsin. Peptides released from the collagens having comparable AE and W were estimated for their likelihood to be bioactive using PeptideRanker Score. The collagens tested were the best sources of angiotensin I-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV) inhibitors. AE and W values revealed that pepsin and/or trypsin were effective producers of such peptides from the majority of the collagens examined. Then, the SwissTargetPrediction program was used to estimate the possible interactions of such peptides with enzymes and proteins, whereas ADMETlab was applied to evaluate their safety and drug-likeness properties. Target prediction revealed that the collagen-derived peptides might interact with several human proteins, especially proteinases, but with relatively low probability. In turn, their bioactivity may be limited by their short half-life in the body.
Collapse
Affiliation(s)
- Anna Iwaniak
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Piotr Minkiewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Monika Pliszka
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Damir Mogut
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| | - Małgorzata Darewicz
- University of Warmia and Mazury in Olsztyn, Faculty of Food Science, Chair of Food Biochemistry, Pl. Cieszyński 1, 10-719 Olsztyn-Kortowo, Poland
| |
Collapse
|