1
|
Sheoran S, Stavropoulos-Kalinoglou A, Simpson C, Ashby M, Webber E, Weaving D. Exercise intensity measurement using fractal analysis of heart rate variability: Reliability, agreement and influence of sex and cardiorespiratory fitness. J Sports Sci 2024; 42:2012-2020. [PMID: 39488502 DOI: 10.1080/02640414.2024.2421691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024]
Abstract
The study aimed to establish the test-retest reliability of detrended fluctuation analysis of heart rate variability (DFA-α1) based exercise intensity thresholds, assess its agreement with ventilatory- and lactate-derived thresholds and the moderating effect of sex and cardiorespiratory fitness (CRF) on the agreement. Intensity thresholds for thirty-seven participants (17 females) based on blood lactate (LT1/LT2), gas-exchange (VT1/VT2) and DFA-α1 (αTh1/αTh2) were assessed. Heart rate (HR) at αTh1 and αTh2 showed good test-retest reliability (coefficient of variation [CV] < 6%), and moderate to high agreement with LTs (r = 0.40 - 0.57) and VTs (r = 0.61 - 0.66) respectively. Mixed effects models indicated bias magnitude depended on CRF, with DFA-α1 overestimating thresholds versus VTs for lower fitness levels (speed at VT1 <8.5 km⋅hr-1), while underestimating for higher fitness levels (speed at VT2 >15 km⋅hr-1; VO2max >55 mL·kg-1·min-1). Controlling for CRF, sex significantly affected bias magnitude only at first threshold, with males having higher mean bias (+2.41 bpm) than females (-1.26 bpm). DFA-α1 thresholds are practical and reliable intensity measures, however it is unclear if they accurately represent LTs/VTs from the observed limits of agreement and unexplained variance. To optimise DFA-α1 threshold estimation across different populations, bias should be corrected based on sex and CRF.
Collapse
Affiliation(s)
- Samrat Sheoran
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | | | | | | | - Elliot Webber
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
| | - Dan Weaving
- Centre for Human Performance, Carnegie School of Sport, Leeds Beckett University, Leeds, UK
- Applied Sports Science and Exercise Testing Laboratory, The University of Newcastle, Ourimbah, Australia
- Department of Physical Activity and Sport, Faculty of Arts and Sciences, Edge Hill University, Ormskirk, UK
| |
Collapse
|
2
|
Tanner V, Millet GP, Bourdillon N. Agreement Between Heart Rate Variability - Derived vs. Ventilatory and Lactate Thresholds: A Systematic Review with Meta-Analyses. SPORTS MEDICINE - OPEN 2024; 10:109. [PMID: 39379776 PMCID: PMC11461412 DOI: 10.1186/s40798-024-00768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Determining thresholds by measuring blood lactate levels (lactate thresholds) or gas exchange (ventilatory thresholds) that delineate the different exercise intensity domains is crucial for training prescription. This systematic review with meta-analyses aims to assess the overall validity of the first and second heart rate variability - derived threshold (HRVT1 and HRVT2, respectively) by computing global effect sizes for agreement and correlation between HRVTs and reference - lactate and ventilatory (LT-VTs) - thresholds. Furthermore, this review aims to assess the impact of subjects' characteristics, HRV methods, and study protocols on the agreement and correlation between LT-VTs and HRVTs. METHODS Systematic computerised searches for studies determining HRVTs during incremental exercise in humans were conducted. The agreements and correlations meta-analyses were conducted using a random-effect model. Causes of heterogeneity were explored by subgroup analysis and meta-regression with subjects' characteristics, incremental exercise protocols, and HRV methods variables. The methodological quality was assessed using QUADAS-2 and STARDHRV tools. The risk of bias was assessed by funnel plots, fail-safe N test, Egger's test of the intercept, and the Begg and Mazumdar rank correlation test. RESULTS Fifty included studies (1160 subjects) assessed 314 agreements (95 for HRVT1, 219 for HRVT2) and 246 correlations (82 for HRVT1, 164 for HRVT2) between LT-VTs and HRVTs. The standardized mean differences were trivial between HRVT1 and LT1-VT1 (SMD = 0.08, 95% CI -0.04-0.19, n = 22) and between HRVT2 and LT2-VT2 (SMD = -0.06, 95% CI -0.15-0.03, n = 42). The correlations were very strong between HRVT1 and LT1-VT1 (r = 0.85, 95% CI 0.75-0.91, n = 22), and between HRVT2 and LT2-VT2 (r = 0.85, 95% CI 0.80-0.89, n = 41). Moreover, subjects' characteristics, type of ergometer, or initial and incremental workload had no impact on HRVTs determination. CONCLUSION HRVTs showed trivial differences and very strong correlations with LT-VTs and might thus serve as surrogates. These results emphasize the usefulness of HRVTs as promising, accessible, and cost-effective means for exercise and clinical prescription purposes.
Collapse
Affiliation(s)
- Valérian Tanner
- Quartier UNIL-Centre, Institute of Sport Sciences, University of Lausanne, Bâtiment Synathlon, Lausanne, 1015, Switzerland.
| | - Grégoire P Millet
- Quartier UNIL-Centre, Institute of Sport Sciences, University of Lausanne, Bâtiment Synathlon, Lausanne, 1015, Switzerland
| | - Nicolas Bourdillon
- Quartier UNIL-Centre, Institute of Sport Sciences, University of Lausanne, Bâtiment Synathlon, Lausanne, 1015, Switzerland
| |
Collapse
|
3
|
Sempere-Ruiz N, Sarabia JM, Baladzhaeva S, Moya-Ramón M. Reliability and validity of a non-linear index of heart rate variability to determine intensity thresholds. Front Physiol 2024; 15:1329360. [PMID: 38375458 PMCID: PMC10875128 DOI: 10.3389/fphys.2024.1329360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
Exercise intensity distribution is crucial for exercise individualization, prescription, and monitoring. As traditional methods to determine intensity thresholds present limitations, heart rate variability (HRV) using DFA a1 has been proposed as a biomarker for exercise intensity distribution. This index has been associated with ventilatory and lactate thresholds in previous literature. This study aims to assess DFA a1's reliability and validity in determining intensity thresholds during an incremental cycling test in untrained healthy adults. Sixteen volunteers (13 males and 3 females) performed two identical incremental cycling stage tests at least 1 week apart. First and second ventilatory thresholds, lactate thresholds, and HRV thresholds (DFA a1 values of 0.75 and 0.5 for HRVT1 and HRVT2, respectively) were determined in heart rate (HR), relative oxygen uptake (VO2rel), and power output (PO) values for both tests. We used intraclass correlation coefficient (ICC), change in mean, and typical error for the reliability analysis, and paired t-tests, correlation coefficients, ICC, and Bland-Altman analysis to assess the agreement between methods. Regarding reliability, HRV thresholds showed the best ICCs when measured in PO (HRVT1: ICC = .87; HRVT2: ICC = .97), comparable to ventilatory and lactate methods. HRVT1 showed the strongest agreement with LA 2.5 in PO (p = 0.09, r = .93, ICC = .93, bias = 9.9 ± 21.1), while HRVT2 reported it with VT2 in PO (p = 0.367, r = .92, ICC = .92, bias = 5.3 ± 21.9). DFA a1 method using 0.75 and 0.5 values is reliable and valid to determine HRV thresholds in this population, especially in PO values.
Collapse
Affiliation(s)
- Noemí Sempere-Ruiz
- Department of Sport Sciences, Sport Research Centre, Miguel Hernandez University, Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - José Manuel Sarabia
- Department of Sport Sciences, Sport Research Centre, Miguel Hernandez University, Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Sabina Baladzhaeva
- Department of Sport Sciences, Sport Research Centre, Miguel Hernandez University, Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| | - Manuel Moya-Ramón
- Department of Sport Sciences, Sport Research Centre, Miguel Hernandez University, Elche, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
| |
Collapse
|
4
|
Kaufmann S, Gronwald T, Herold F, Hoos O. Heart Rate Variability-Derived Thresholds for Exercise Intensity Prescription in Endurance Sports: A Systematic Review of Interrelations and Agreement with Different Ventilatory and Blood Lactate Thresholds. SPORTS MEDICINE - OPEN 2023; 9:59. [PMID: 37462761 DOI: 10.1186/s40798-023-00607-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Exercise intensities are prescribed using specific intensity zones (moderate, heavy, and severe) determined by a 'lower' and a 'higher' threshold. Typically, ventilatory (VT) or blood lactate thresholds (LT), and critical power/speed concepts (CP/CS) are used. Various heart rate variability-derived thresholds (HRVTs) using different HRV indices may constitute applicable alternatives, but a systematic review of the proximity of HRVTs to established threshold concepts is lacking. OBJECTIVE This systematic review aims to provide an overview of studies that determined HRVTs during endurance exercise in healthy adults in comparison with a reference VT and/or LT concept. METHODS A systematic literature search for studies determining HRVTs in healthy individuals during endurance exercise and comparing them with VTs or LTs was conducted in Scopus, PubMed and Web of Science (until January 2022). Studies claiming to describe similar physiological boundaries to delineate moderate from heavy (HRVTlow vs. VTlow and/or LTlow), and heavy from severe intensity zone (HRVThigh vs. VThigh and/or LThigh) were grouped and their results synthesized. RESULTS Twenty-seven included studies (461 participants) showed a mean difference in relative HR between HRVTlow and VTlow of - 0.6%bpm in weighted means and 0.02%bpm between HRVTlow and LTlow. Bias between HR at HRVTlow and VTlow was 1 bpm (limits of agreement (LoA): - 10.9 to 12.8 bpm) and 2.7 bpm (LoA: - 20.4 to 25.8 bpm) between HRVTlow and LTlow. Mean difference in HR between HRVThigh and VThigh was 0.3%bpm in weighted means and 2.9%bpm between HRVThigh and LThigh while bias between HR at HRVThigh and VThigh was - 4 bpm (LoA: - 17.9 to 9.9 bpm) and 2.5 bpm (LoA: - 12.1 to 17.1 bpm) between HRVThigh and LThigh. CONCLUSION HRVTlow seems to be a promising approach for the determination of a 'lower' threshold comparable to VTlow and potentially for HRVThigh compared to VThigh, although the latter needs further empirical evaluation. LoA for both intensity zone boundaries indicates bias of HRVTs on an individual level. Taken together, HRVTs can be a promising alternative for prescribing exercise intensity in healthy, male athletes undertaking endurance activities but due to the heterogeneity of study design, threshold concepts, standardization, and lack of female participants, further research is necessary to draw more robust and nuanced conclusions.
Collapse
Affiliation(s)
- Sebastian Kaufmann
- Center for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Am Hubland/Sports Center, 97074, Würzburg, Germany.
| | - Thomas Gronwald
- Institute of Interdisciplinary Exercise Science and Sports Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Fabian Herold
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, Germany
| | - Olaf Hoos
- Center for Sports and Physical Education, Faculty of Human Sciences, Julius-Maximilians-University Wuerzburg, Am Hubland/Sports Center, 97074, Würzburg, Germany
| |
Collapse
|
5
|
Schöffl VR, Zimmermann P, Küpper T, Lutter C. Ski Mountaineering-Scientific Knowledge of This New Olympic Sport: A Narrative Review. Curr Sports Med Rep 2023; 22:61-66. [PMID: 36757125 DOI: 10.1249/jsr.0000000000001038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
ABSTRACT Ski mountaineering (skimo) has been accepted as a new sport for the 2026 Milan-Cortina Olympics. The equipment used in this competitive ski mountaineering varies from leisure ski mountaineering equipment mainly in one point: the minimal weight. At the elite athlete level, skimo demands both maximal endurance performance and a high-intensity anaerobic capacity for the sprint and vertical races. Race time significantly correlates to V˙O2max, body mass index and racing gear mass. Available literature only rarely comments on competitive skimo injuries. Injuries are not only due to falls in downhill skiing but also can result from external hazards, such as avalanches and cold. The high training load of athletes in combination with a low body weight, low body fat, and exposure to cold cause high rates of respiratory infections in athletes. The inclusion of skimo into the Olympic program is expected to result in certain changes, such as higher training loads for the athletes and increased scientific interest into training methods.
Collapse
Affiliation(s)
| | | | - Thomas Küpper
- Institute of Occupational & Social Medicine, RWTH Aachen Technical University, Aachen, FRG, GERMANY
| | | |
Collapse
|
6
|
Neves LNS, Gasparini Neto VH, Araujo IZ, Barbieri RA, Leite RD, Carletti L. Is There Agreement and Precision between Heart Rate Variability, Ventilatory, and Lactate Thresholds in Healthy Adults? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14676. [PMID: 36429395 PMCID: PMC9690603 DOI: 10.3390/ijerph192214676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
This study aims to analyze the agreement and precision between heart rate variability thresholds (HRVT1/2) with ventilatory and lactate thresholds 1 and 2 (VT1/2 and LT1/2) on a treadmill. Thirty-four male students were recruited. Day 1 consisted of conducting a health survey, anthropometrics, and Cardiopulmonary Exercise Test (CPx). On Day 2, after 48 h, a second incremental test was performed, the Cardiopulmonary Stepwise Exercise Test consisting of 3 min stages (CPxS), to determine VT1/2, LT1/2, and HRVT1/2. One-way repeated-measures ANOVA and effect size (ηp2) were used, followed by Sidak's post hoc. The Coefficient of Variation (CV) and Typical Error (TE) were applied to verify the precision. Bland Altman and the Intraclass Correlation Coefficient (ICC) were applied to confirm the agreement. HRVT1 showed different values compared to LT1 (lactate, RER, and R-R interval) and VT1 (V̇E, RER, V̇CO2, and HR). No differences were found in threshold 2 (T2) between LT2, VT2, and HRVT2. No difference was found in speed and V̇O2 for T1 and T2. The precision was low to T1 (CV > 12% and TE > 10%) and good to T2 (CV < 12% and TE < 10%). The agreement was good to fair in threshold 1 (VT1, LT1, HRVT1) and excellent to good in T2 (VT1, LT1, HRVT1). HRVT1 is not a valid method (low precision) when using this protocol to estimate LT1 and VT1. However, HRVT2 is a valid and noninvasive method that can estimate LT2 and VT2, showing good agreement and precision in healthy adults.
Collapse
Affiliation(s)
- Letícia Nascimento Santos Neves
- Laboratory of Exercise Physiology (LAFEX), Physical Education and Sports Center, Federal University of Espírito Santo (CEFD-UFES), Vitória 29075-910, Brazil
| | - Victor Hugo Gasparini Neto
- Laboratory of Exercise Physiology (LAFEX), Physical Education and Sports Center, Federal University of Espírito Santo (CEFD-UFES), Vitória 29075-910, Brazil
| | - Igor Ziviani Araujo
- Laboratory of Exercise Physiology (LAFEX), Physical Education and Sports Center, Federal University of Espírito Santo (CEFD-UFES), Vitória 29075-910, Brazil
| | - Ricardo Augusto Barbieri
- Postgraduate Program in Physical Education and Sport, School of Physical Education and Sport of Ribeirão Preto, University of São Paulo (EEFERP-USP), São Paulo 05360-160, Brazil
| | - Richard Diego Leite
- Laboratory of Exercise Physiology (LAFEX), Physical Education and Sports Center, Federal University of Espírito Santo (CEFD-UFES), Vitória 29075-910, Brazil
| | - Luciana Carletti
- Laboratory of Exercise Physiology (LAFEX), Physical Education and Sports Center, Federal University of Espírito Santo (CEFD-UFES), Vitória 29075-910, Brazil
| |
Collapse
|
7
|
Zimatore G, Gallotta MC, Campanella M, Skarzynski PH, Maulucci G, Serantoni C, De Spirito M, Curzi D, Guidetti L, Baldari C, Hatzopoulos S. Detecting Metabolic Thresholds from Nonlinear Analysis of Heart Rate Time Series: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912719. [PMID: 36232025 PMCID: PMC9564658 DOI: 10.3390/ijerph191912719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 05/03/2023]
Abstract
Heart rate time series are widely used to characterize physiological states and athletic performance. Among the main indicators of metabolic and physiological states, the detection of metabolic thresholds is an important tool in establishing training protocols in both sport and clinical fields. This paper reviews the most common methods, applied to heart rate (HR) time series, aiming to detect metabolic thresholds. These methodologies have been largely used to assess energy metabolism and to identify the appropriate intensity of physical exercise which can reduce body weight and improve physical fitness. Specifically, we focused on the main nonlinear signal evaluation methods using HR to identify metabolic thresholds with the purpose of identifying a method which can represent a useful tool for the real-time settings of wearable devices in sport activities. While the advantages and disadvantages of each method, and the possible applications, are presented, this review confirms that the nonlinear analysis of HR time series represents a solid, robust and noninvasive approach to assess metabolic thresholds.
Collapse
Affiliation(s)
- Giovanna Zimatore
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
- IMM-CNR, 40129 Bologna, Italy
- Correspondence: (G.Z.); (G.M.)
| | - Maria Chiara Gallotta
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Roma, Italy
| | - Matteo Campanella
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | - Piotr H. Skarzynski
- Department of Teleaudiology and Screening, World Hearing Center, Institute of Physiology and Pathology of Hearing, 02-042 Warsaw, Poland
- Heart Failure and Cardiac Rehabilitation Department, Faculty of Medicine, Medical University of Warsaw, 03-042 Warsaw, Poland
- Institute of Sensory Organs, 05-830 Warsaw, Poland
| | - Giuseppe Maulucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (G.Z.); (G.M.)
| | - Cassandra Serantoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Neuroscience Department, Biophysics Section, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Davide Curzi
- Department Unicusano, Niccolò Cusano University, 00166 Rome, Italy
| | - Laura Guidetti
- Department Unicusano, Niccolò Cusano University, 00166 Rome, Italy
| | - Carlo Baldari
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
| | | |
Collapse
|
8
|
Physiological Effects of Training in Elite German Winter Sport Athletes: Sport Specific Remodeling Determined Using Echocardiographic Data and CPET Performance Parameters. J Cardiovasc Dev Dis 2022; 9:jcdd9080235. [PMID: 35893224 PMCID: PMC9332285 DOI: 10.3390/jcdd9080235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Nine ski mountaineering (Ski-Mo), ten Nordic-cross country (NCC), and twelve world elite biathlon (Bia) athletes were evaluated for cardiopulmonary exercise test (CPET) performance and pronounced echocardiographic physiological cardiac remodeling as a primary aim of our descriptive preliminary report. In this context, a multicenter retrospective analysis of two-dimensional echocardiographic data including speckle tracking of the left ventricle (LV-GLS) and CPET performance analysis was performed in 31 elite world winter sports athletes, which were obtained during the annual sports medicine examination between 2020 and 2021. The matched data of the elite winter sports athletes (14 women, 17 male athletes, age: 18–32 years) were compared for different CPET and echocardiographic parameters, anthropometric data, and sport-specific training schedules. Significant differences could be revealed for left atrial (LA) remodeling by LA volume index (LAVI, p = 0.0052), LV-GLS (p = 0.0003), and LV mass index (LV Mass index, p = 0.0078) between the participating disciplines. All participating athletes showed excellent performance data in the CPET analyses, whereby significant differences were revealed for highest maximum respiratory minute volume (VE maximum) and the maximum oxygen pulse level across the participating athletes. This study on sport specific physiological demands in elite winter sport athletes provides new evidence that significant differences in CPET and cardiac remodeling of the left heart can be identified based on the individual athlete’s training schedule, frequency, and physique.
Collapse
|
9
|
Zimmermann P, Wüstenfeld J, Zimmermann L, Schöffl V, Schöffl I. Physiological Aspects of World Elite Competitive German Winter Sport Athletes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095620. [PMID: 35565006 PMCID: PMC9101905 DOI: 10.3390/ijerph19095620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022]
Abstract
Nine Ski mountaineering (Ski-Mo), ten Nordic-Cross Country (NCC) and twelve world elite biathlon (Bia) athletes were evaluated for cardiopulmonary exercise test (CPET) performance as the primary aim of our descriptive preliminary report. A multicenter retrospective analysis of CPET data was performed in 31 elite winter sports athletes, which were obtained in 2021 during the annual medical examination. The matched data of the elite winter sports athletes (14 women, 17 male athletes, age: 18–32 years) were compared for different CPET parameters, and athlete’s physique data and sport-specific training schedules. All athletes showed, as estimated in elite winter sport athletes, excellent performance data in the CPET analyses. Significant differences were revealed for VE VT2 (respiratory minute volume at the second ventilatory threshold (VT2)), highest maximum respiratory minute volume (VEmaximum), the indexed ventilatory oxygen uptake (VO2) at VT2 (VO2/kg VT2), the oxygen pulse at VT2, and the maximum oxygen pulse level between the three professional winter sports disciplines. This report provides new evidence that in different world elite winter sport professionals, significant differences in CPET parameters can be demonstrated, against the background of athlete’s physique as well as training control and frequency.
Collapse
Affiliation(s)
- Paul Zimmermann
- Department of Cardiology, Klinikum Bamberg, 96049 Bamberg, Germany
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany; (L.Z.); (V.S.); (I.S.)
- Division of Exercise Physiology and Metabolism, Department of Sport Science, University of Bayreuth, 95447 Bayreuth, Germany
- Correspondence: ; Tel.: +49-951-503-12301
| | - Jan Wüstenfeld
- Institut of Applied Training Science, Leipzig, 04109 Leipzig, Germany;
| | - Lukas Zimmermann
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany; (L.Z.); (V.S.); (I.S.)
| | - Volker Schöffl
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany; (L.Z.); (V.S.); (I.S.)
- Department of Orthopedic and Trauma Surgery, Klinikum Bamberg, 96049 Bamberg, Germany
- Department of Orthopedic and Trauma Surgery, Friedrich-Alexander University Erlangen-Nurnberg, 91054 Erlangen, Germany
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds LS1 3HE, UK
- Section of Wilderness Medicine, Departement of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Isabelle Schöffl
- Interdisciplinary Center of Sportsmedicine Bamberg, Klinikum Bamberg, 96049 Bamberg, Germany; (L.Z.); (V.S.); (I.S.)
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds LS1 3HE, UK
- Department of Pediatric Cardiology, Friedrich-Alexander-University Erlangen-Nurnberg, 91054 Erlangen, Germany
| |
Collapse
|
10
|
Bortolan L, Savoldelli A, Pellegrini B, Modena R, Sacchi M, Holmberg HC, Supej M. Ski Mountaineering: Perspectives on a Novel Sport to Be Introduced at the 2026 Winter Olympic Games. Front Physiol 2021; 12:737249. [PMID: 34744777 PMCID: PMC8566874 DOI: 10.3389/fphys.2021.737249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Ski mountaineering is a rapidly growing winter sport that involves alternately climbing and descending slopes and various racing formats that differ in length and total vertical gain, as well as their distribution of downhill and uphill sections. In recent years, both participation in and media coverage of this sport have increased dramatically, contributing, at least in part, to its inclusion in the 2026 Winter Olympics in Milano-Cortina. Here, our aim has been to briefly describe the major characteristics of ski mountaineering, its physiological and biomechanical demands, equipment, and training/testing, as well as to provide some future perspectives. Despite its popularity, research on this discipline is scarce, but some general characteristics are already emerging. Pronounced aerobic capacity is an important requirement for success, as demonstrated by positive correlations between racing time and maximal oxygen uptake and oxygen uptake at the second ventilatory threshold. Moreover, due to the considerable mechanical work against gravity on demanding uphill terrain, the combined weight of the athlete and equipment is inversely correlated with performance, prompting the development of both lighter and better equipment in recent decades. In ski mountaineering, velocity uphill is achieved primarily by more frequent (rather than longer) strides due primarily to high resistive forces. The use of wearable technologies, designed specifically for analysis in the field (including at elevated altitudes and cold temperatures) and more extensive collaboration between researchers, industrial actors, and coaches/athletes, could further improve the development of this sport.
Collapse
Affiliation(s)
- Lorenzo Bortolan
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | - Aldo Savoldelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | - Barbara Pellegrini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | - Roberto Modena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,CeRiSM, Sport Mountain and Health Research Centre, University of Verona, Rovereto, Italy
| | | | | | - Matej Supej
- Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
11
|
Zimatore G, Falcioni L, Gallotta MC, Bonavolontà V, Campanella M, De Spirito M, Guidetti L, Baldari C. Recurrence quantification analysis of heart rate variability to detect both ventilatory thresholds. PLoS One 2021; 16:e0249504. [PMID: 34618821 PMCID: PMC8496840 DOI: 10.1371/journal.pone.0249504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/23/2021] [Indexed: 12/01/2022] Open
Abstract
Aims of this study were: to verify if Recurrence Quantification Analysis (RQA) of Heart Rate Variability (HRV) time series could determine both ventilatory thresholds in individuals with different fitness levels, and to assess the validity of RQA method compared to gas-exchange method (GE). The two thresholds were estimated in thirty young individuals during incremental exercise on cycle-ergometer: Heart rate (HR), Oxygen consumption (VO2) and Workload were measured by the two methods (RQA and GE). Repeated measures ANOVA was used to assess main effects of methods and methods-by-groups interaction effects for HR, VO2 and Workload at aerobic (AerT) and anaerobic (AnT) thresholds. Validity of RQA at both thresholds was assessed for HR, VO2 and Workload by Ordinary Least Products (OLP) regression, Typical Percentage Error (TE), Intraclass Correlation Coefficients (ICC) and the Bland Altman plots. No methods-by-groups interaction effects were detected for HR, VO2 and Workload at AerT and AnT. The OLP analysis showed that at both thresholds RQA and GE methods had very strong correlations (r >0.8) in all variables (HR, VO2 and Workload). Slope and intercept values always included the 1 and the 0, respectively. At AerT the TE ranged from 4.02% (5.48 bpm) to 10.47% (8.53 Watts) (HR and Workload, respectively) and in all variables ICC values were excellent (≥0.85). At AnT the TE ranged from 2.53% (3.98 bpm) to 6.64% (7.81 Watts) (HR and Workload, respectively) and in all variables ICC values were excellent (≥0.90). Therefore, RQA of HRV time series is a new valid approach to determine both ventilatory thresholds in individuals with different physical fitness levels, it can be used when gas analysis is not possible or not convenient.
Collapse
Affiliation(s)
- Giovanna Zimatore
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (CO), Italy
- IMM-CNR, Bologna, Italy
- * E-mail: ,
| | - Lavinia Falcioni
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Rome, Italy
| | - Maria Chiara Gallotta
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Valerio Bonavolontà
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University “Aldo Moro”, Bari, Italy
| | - Matteo Campanella
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (CO), Italy
| | - Marco De Spirito
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore Rome, Rome, Italy
| | | | - Carlo Baldari
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate (CO), Italy
| |
Collapse
|
12
|
Assessment of Maximal Aerobic Capacity in Ski Mountaineering: A Laboratory-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18137002. [PMID: 34208925 PMCID: PMC8297253 DOI: 10.3390/ijerph18137002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/16/2022]
Abstract
This study aims to evaluate the agreement in maximum oxygen consumption (V˙O2max) between a running protocol and a ski mountaineering (SKIMO) protocol. Eighteen (eleven males, seven females) ski mountaineers (age: 25 ± 3 years) participated in the study. V˙O2max, maximum heart rate (HRmax), and maximum blood lactate concentration (BLAmax) were determined in an incremental uphill running test and an incremental SKIMO-equipment-specific test. V˙O2max did not differ between the SKIMO and uphill running protocols (p = 0.927; mean difference -0.07 ± 3.3 mL/min/kg), nor did HRmax (p = 0.587, mean difference -0.7 ± 5.1 bpm). A significant correlation was found between V˙O2max SKIMO and V˙O2max running (p ≤ 0.001; ICC = 0.862 (95% CI: 0.670-0.946)). The coefficient of variation was 4.4% (95% CI: 3.3-6.5). BLAmax was significantly lower for SKIMO compared to running (12.0 ± 14.1%; p = 0.002). This study demonstrates that V˙O2max determined with a traditional uphill running protocol demonstrates good agreement with an equipment-specific SKIMO protocol.
Collapse
|
13
|
Stergiopoulos DC, Kounalakis SN, Miliotis PG, Geladas ND. Second Ventilatory Threshold Assessed by Heart Rate Variability in a Multiple Shuttle Run Test. Int J Sports Med 2020; 42:48-55. [PMID: 32770536 DOI: 10.1055/a-1214-6309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many studies have focused on heart rate variability in association with ventilatory thresholds. The purpose of the current study was to consider the ECG-derived respiration and the high frequency product of heart rate variability as applicable methods to assess the second ventilatory threshold (VT2). Fifteen healthy young soccer players participated in the study. Respiratory gases and ECGs were collected during an incremental laboratory test and in a multistage shuttle run test until exhaustion. VΤ2 was individually calculated using the deflection point of ventilatory equivalents. In addition, VT2 was assessed both by the deflection point of ECG-derived respiration and high frequency product. Results showed no statistically significant differences between VT2, and the threshold as determined with high frequency product and ECG-derived respiration (F(2,28)=0.83, p=0.45, η2=0.05). A significant intraclass correlation was observed for ECG-derived respiration (r=0.94) and high frequency product (r=0.95) with VT2. Similarly, Bland Altman analysis showed a considerable agreement between VT2 vs. ECG-derived respiration (mean difference of -0.06 km·h-1, 95% CL: ±0.40) and VT2 vs. high frequency product (mean difference of 0.02 km·h-1, 95% CL: ±0.38). This study suggests that, high frequency product and ECG-derived respiration are indeed reliable heart rate variability indices determining VT2 in a field shuttle run test.
Collapse
Affiliation(s)
- Dimitrios C Stergiopoulos
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athinon, Greece
| | | | - Panagiotis G Miliotis
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athinon, Greece
| | - Nikolaos D Geladas
- School of Physical Education and Sports Science, National and Kapodistrian University of Athens, Athinon, Greece
| |
Collapse
|
14
|
Sustainable Sport: Cardio-Differentiated Planning of Fitness Programs for High School Boys Engaged in Speed Skiing. SUSTAINABILITY 2019. [DOI: 10.3390/su11216077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In speed skiing, an athlete’s functional readiness is tested by means of a bicycle ergometer (EGM). The purpose of this research is to make various mesocycle plans for high school boys, engaged in speed skiing, with due account for their cardio-functional indicators obtained by means of the EGM. The study was attended by the 16–17 years old, first-category and sub-master racing skiers, included in the junior regional teams of the Russian Federation (Republic of Tatarstan and Udmurtia). The total number of subjects included eight men. In training young racing skiers, a differentiated approach combined with leg muscle testing will allow an improvement in sports results more effectively at different stages, as well as monitoring the young athlete’s response to the cardiovascular load. Low cardiac capacity indices have a negative impact on the racing skier’s performance. EGM testing allows determining the maximum cardiac capacity by measuring the amount of oxygen delivered to the working muscles at the HR of 190 beats per minute. Therefore, case-specific aerobic load was planned for each mesocycle according to these data. Based on the cardiac capacity growth, such means of physical training as interval, high-speed, and tempo training were planned.
Collapse
|
15
|
Applicability of Dmax Method on Heart Rate Variability to Estimate the Lactate Thresholds in Male Runners. JOURNAL OF SPORTS MEDICINE 2019; 2019:2075371. [PMID: 31641671 PMCID: PMC6770371 DOI: 10.1155/2019/2075371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/20/2019] [Accepted: 07/03/2019] [Indexed: 11/17/2022]
Abstract
Introduction The purpose of this study was to evaluate the application of the Dmax method on heart rate variability (HRV) to estimate the lactate thresholds (LT), during a maximal incremental running test (MIRT). Methods Nineteen male runners performed two MIRTs, with the initial speed at 8 km·h-1 and increments of 1 km·h-1 every 3 minutes, until exhaustion. Measures of HRV and blood lactate concentrations were obtained, and lactate (LT1 and LT2) and HRV (HRVTDMAX1 and HRVTDMAX2) thresholds were identified. ANOVA with Scheffe's post hoc test, effect sizes (d), the bias ± 95% limits of agreement (LoA), standard error of the estimate (SEE), Pearson's (r), and intraclass correlation coefficient (ICC) were calculated to assess validity. Results No significant differences were observed between HRVTDMAX1 and LT1 when expressed for speed (12.1 ± 1.4 km·h-1 and 11.2 ± 2.1 km·h-1; p=0.55; d = 0.45; r = 0.46; bias ± LoA = 0.8 ± 3.7 km·h-1; SEE = 1.2 km·h-1 (95% CI, 0.9-1.9)). Significant differences were observed between HRVTDMAX2 and LT2 when expressed for speed (12.0 ± 1.2 km·h-1 and 14.1 ± 2.5 km·h-1; p=0.00; d = 1.21; r = 0.48; bias ± LoA = -1.0 ± 1.8 km·h-1; SEE = 1.1 km·h-1 (95% CI, 0.8-1.6)), respectively. Reproducibility values were found for the LT1 (ICC = 0.90; bias ± LoA = -0.7 ± 2.0 km·h-1), LT2 (ICC = 0.97; bias ± LoA = -0.1 ± 1.1 km·h-1), HRVTDMAX1 (ICC = 0.48; bias ± LoA = -0.2 ± 3.4 km·h-1), and HRVTDMAX2 (ICC = 0.30; bias ± LoA = 0.3 ± 3.5 km·h-1). Conclusions The Dmax method applied over a HRV dataset allowed the identification of LT1 that is close to aerobic threshold, during a MIRT.
Collapse
|
16
|
Accuracy of the Garmin 920 XT HRM to perform HRV analysis. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2017; 40:831-839. [PMID: 29058222 DOI: 10.1007/s13246-017-0593-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 10/12/2017] [Indexed: 11/27/2022]
Abstract
Heart rate variability (HRV) analysis is widely used to investigate autonomous cardiac drive. This method requires periodogram measurement, which can be obtained by an electrocardiogram (ECG) or from a heart rate monitor (HRM), e.g. the Garmin 920 XT device. The purpose of this investigation was to assess the accuracy of RR time series measurements from a Garmin 920 XT HRM as compared to a standard ECG, and to verify whether the measurements thus obtained are suitable for HRV analysis. RR time series were collected simultaneously with an ECG (Powerlab system, AD Instruments, Castell Hill, Australia) and a Garmin XT 920 in 11 healthy subjects during three conditions, namely in the supine position, the standing position and during moderate exercise. In a first step, we compared RR time series obtained with both tools using the Bland and Altman method to obtain the limits of agreement in all three conditions. In a second step, we compared the results of HRV analysis between the ECG RR time series and Garmin 920 XT series. Results show that the accuracy of this system is in accordance with the literature in terms of the limits of agreement. In the supine position, bias was 0.01, - 2.24, + 2.26 ms; in the standing position, - 0.01, - 3.12, + 3.11 ms respectively, and during exercise, - 0.01, - 4.43 and + 4.40 ms. Regarding HRV analysis, we did not find any difference for HRV analysis in the supine position, but the standing and exercise conditions both showed small modifications.
Collapse
|
17
|
Hosseinzadeh J, Maghsoudi Z, Abbasi B, Daneshvar P, Hojjati A, Ghiasvand R. Evaluation of Dietary Intakes, Body Composition, and Cardiometabolic Parameters in Adolescent Team Sports Elite Athletes: A Cross-sectional Study. Adv Biomed Res 2017; 6:107. [PMID: 28904935 PMCID: PMC5590404 DOI: 10.4103/2277-9175.213667] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background: Nutritional intake is an important issue in adolescent athletes. Proper athletes’ performance is a multifactorial outcome of good training, body composition, and nutritional status. The aim of the present study was to assess nutritional status, body composition, and cardiometabolic factors in adolescent elite athlete's province of Isfahan, Iran. Materials and Methods: In this cross-sectional study, 100 adolescent elite athletes from volleyball, basketball, and soccer teams were selected for the study. Demographic, anthropometric, and cardiometabolic parameters were assessed. Nutritional intakes of participants were recorded using three 24-h recall questioners. Results: Thirty-four female athletes and 66 male athletes participated in this study. Body mass index had not significantly different between the sexes. Energy, protein, carbohydrate, iron, and fat intakes were significantly higher in male athletes (P = 0.02), but calcium and folic acid intakes were not significantly different between the sexes, and Vitamin D intake was significantly higher in females (P = 0.01). Systolic and diastolic blood pressure was significantly higher in males (P = 0.04) and heart rate had not significantly different between the sexes (P = 0.09). Heart murmurs and heart sounds in the majority of participants were normal. Conclusion: All the evaluated anthropometric and cardiometabolic parameters were in normal range in the majority of participants. The results showed that dietary intake in these athletes is approximately normal but micronutrients intake status in these athletes needs to be investigated further and longer.
Collapse
Affiliation(s)
- Javad Hosseinzadeh
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Maghsoudi
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnood Abbasi
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pooya Daneshvar
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefeh Hojjati
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Ghiasvand
- Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Grannell A, De Vito G. An investigation into the relationship between heart rate variability and the ventilatory threshold in healthy moderately trained males. Clin Physiol Funct Imaging 2017; 38:455-461. [PMID: 28471041 DOI: 10.1111/cpf.12437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/24/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND During incremental exercise, heart rate variability (HRV) has been shown to display distinct stabilization and inflection points, which have been used to indirectly detect the ventilatory threshold (VT). METHODS Ten moderately trained males (26·5 ± 5·9 years: VO2peak 48·7 ± 4·1 ml min-1 kg-1 ) performed an incremental test on a cycle ergometer until volitional exhaustion with both R-R intervals and respiratory indices recorded. HRV was quantified using both nonlinear (Poincare plot; short-term variability SD1) and spectral analysis of the R-R intervals (high-frequency component; HFp). The VT was identified using the V-slope method. The relationship between HRV parameters and the VT was assessed using both a paired t-test and Pearson's product correlation. In addition, Bland and Altman plots were used to quantify the mean difference along with a 95% confidence interval. RESULTS When expressed as the corresponding heart rate values, both the SD1 and the HFp stabilization points revealed a strong (r = 0·86 and 0·087, respectively) correlation with the VT. However, only for SD1 this relationship was different to the VT (t-test). The Bland-Altman plots supported these findings showing wide limits of agreement present for SD1 and the VT whilst the relationship between HFp and the VT revealed narrower limits. CONCLUSION There does not appear to be a relationship present between the VT and the SD1 stabilization point in moderately trained healthy males, whereas the HFp stabilization point revealed a strong relationship with the VT when expressed as heart rate.
Collapse
Affiliation(s)
| | - Giuseppe De Vito
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Assessment of Heart Rate Variability Thresholds from Incremental Treadmill Tests in Five Cross-Country Skiing Techniques. PLoS One 2016; 11:e0145875. [PMID: 26727112 PMCID: PMC4699693 DOI: 10.1371/journal.pone.0145875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 12/09/2015] [Indexed: 11/27/2022] Open
Abstract
The assessment of heart rate variability (HRV) thresholds (HRVTs) as an alternative of Ventilatory thresholds (VTs) is a relatively new approach with increasing popularity which has not been conducted in cross-country (XC) skiing yet. The main purpose of the present study was to assess HRVTs in the five main XC skiing-related techniques, double poling (DP), diagonal striding (DS), Nordic walking (NW), V1 skating (V1), and V2 skating (V2).Ten competitive skiers completed these incremental treadmill tests until exhaustion with a minimum of one to two recovery days in between each test. Ventilatory gases, HRV and poling frequencies were measured. The first HRV threshold (HRVT1) was assessed using two time-domain analysis methods, and the second HRV threshold (HRVT2) was assessed using two non-time varying frequency-domain analysis methods. HRVT1 was assessed by plotting the mean successive difference (MSD) and standard deviation (SD) of normalized R-R intervals to workload. HRVT1 was assessed by plotting high frequency power (HFP) and the HFP relative to respiratory sinus arrhythmia (HFPRSA) with workload. HRVTs were named after their methods (HRVT1-SD; HRVT1-MSD; HRVT2-HFP; HRVT2-HFP-RSA). The results showed that the only cases where the proposed HRVTs were good assessors of VTs were the HRVT1-SD of the DS test, the HRVT1-MSD of the DS and V2 tests, and the HRVT2-HFP-RSA of the NW test. The lack of a wider success of the assessment of HRVTs was reasoned to be mostly due to the high entrainment between the breathing and poling frequencies. As secondary finding, a novel Cardiolocomotor coupling mode was observed in the NW test. This new Cardiolocoomtor coupling mode corresponded to the whole bilateral poling cycle instead of corresponding to each poling action as it was reported to the date by the existing literature.
Collapse
|