1
|
Salah AN, Hashem AH, Zaki MB, Abulsoud AI, Atta AM, Elkalla WS, Moustafa HAM, El-Dakroury WA, El-Tokhy FS, ElBoghdady JA, Rizk NI, Abdel Mageed SS, Mohammed OA, Abdel-Reheim MA, Alghamdi HO, Doghish AS. Targeted Therapies: The Role of Monoclonal Antibodies in Disease Management. J Biochem Mol Toxicol 2025; 39:e70163. [PMID: 39887821 DOI: 10.1002/jbt.70163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/28/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Monoclonal antibodies (mAbs) are a key class of biotherapeutic medicines used to treat a wide range of diseases, such as cancer, infectious diseases, autoimmune disorders, cardiovascular diseases, and hemophilia. They can be engineered for greater effectiveness and specific applications while maintaining their structural elements for immune targeting. Traditional immunoglobulin treatments have limited therapeutic uses and various adverse effects. That makes mAbs show rapid growth in the pharmaceutical market, with over 250 mAbs in clinical studies. Although mAbs offer higher specificity, they are less effective against complex antigens. They have become essential in treating diseases with limited medical options, providing innovative solutions that improve patients' quality of life through increasing survival rates, shortening the length of stay in hospitals with an improved treatment outcome, and reducing side effects. This review outlines the mechanisms, applications, and advancements of mAbs, highlighting their transformative role in modern medicine and their potential to shape future therapeutic interventions.
Collapse
Affiliation(s)
- Akram N Salah
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menofia, 32897, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Menoufia National University, km Cairo-Alexandria Agricultural Road, Menofia, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| | - Asmaa M Atta
- Pharmaceutical Chemistry Department, School of Pharmacy, Badr University in Cairo (BUC), Badr City, Egypt
| | - Wagiha S Elkalla
- Microbiology and Immunology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Hebatallah Ahmed Mohamed Moustafa
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Jasmine A ElBoghdady
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Huda O Alghamdi
- College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, 11829, Egypt
- Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231, Cairo, Egypt
| |
Collapse
|
2
|
Castro-Cordova P, Lopez-Garcia OK, Orozco J, Montes-Bravo N, Gil F, Pizarro-Guajardo M, Paredes-Sabja D. Clostridioides difficile major toxins remodel the intestinal epithelia, affecting spore adherence/internalization into intestinal tissue and their association with gut vitronectin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635439. [PMID: 39974910 PMCID: PMC11838273 DOI: 10.1101/2025.01.29.635439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The most common cause of healthcare-associated diarrhea and colitis in the U.S., is Clostridioides difficile, a spore-forming pathogen. Two toxins, TcdA and TcdB, are major virulence factors essential for disease manifestations, while C. difficile spores are essential for disease transmission and recurrence. Both toxins cause major damage to the epithelial barrier, trigger massive inflammation, and reshape the microbiome and metabolic composition, facilitating C. difficile colonization. C. difficile spores, essential for transmission and recurrence of the disease, persist adhered and internalized in the intestinal epithelia. Studies have suggested that toxin-neutralization in combination with antibiotic during CDI treatment in humans significantly reduces disease recurrence, suggesting a link between toxin-mediated damage and spore persistence. Here, we show that TcdA/TcdB-intoxication of intestinal epithelial Caco-2 cells leads to remodeling of accessible levels of fibronectin (Fn) and vitronectin (Vn) and their cognate alpha-integrin subunits. While TcdB-intoxication of intestinal tissue had no impact in accessible levels of Fn and Vn, but significantly increased levels of intracellular Vn. We observed that Fn and Vn released to the supernatant readily bind to C. difficile spores in vitro, while TcdB-intoxication of intestinal tissue led to increased association of C. difficile spores with gut Vn. Toxin-intoxication of the intestinal tissue also contributes to increased adherence and internalization of C. difficile spores. However, TcdB-intoxicated ligated loops infected of mice treated with Bezlotoxumanb (monoclonal anti-TcdB antibodies) did not prevent TcdB-mediated increased spore adherence and internalization into intestinal tissue. This study highlights the importance of studying the impact of C. difficile toxins of host tissues has in C. difficile interaction with host surfaces that may contribute to increased persistence and disease recurrence.
Collapse
Affiliation(s)
- Pablo Castro-Cordova
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Centro de Investigación e Innovación Biomédica (CiiB), Faculty of Medicine, Universidad de los Andes, Chile
| | - Osiris K. Lopez-Garcia
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX USA
- Department of Biology, Texas A&M University, College Station, TX USA
| | - Josué Orozco
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | | | - Fernando Gil
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Microbiota-Host Interactions & Clostridia Research Group, Universidad Andres Bello, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX USA
| | - Daniel Paredes-Sabja
- Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX USA
- Department of Biology, Texas A&M University, College Station, TX USA
| |
Collapse
|
3
|
Ghosh S, Erickson D, Chua MJ, Collins J, Jala VR. The microbial metabolite urolithin A reduces Clostridioides difficile toxin expression and toxin-induced epithelial damage. mSystems 2024; 9:e0125523. [PMID: 38193707 PMCID: PMC10878087 DOI: 10.1128/msystems.01255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Clostridioides difficile is a Gram-positive, anaerobic, spore-forming bacterium responsible for antibiotic-associated pseudomembranous colitis. Clostridioides difficile infection (CDI) symptoms can range from diarrhea to life-threatening colon damage. Toxins produced by C. difficile (TcdA and TcdB) cause intestinal epithelial injury and lead to severe gut barrier dysfunction, stem cell damage, and impaired regeneration of the gut epithelium. Current treatment options for intestinal repair are limited. In this study, we demonstrate that treatment with the microbial metabolite urolithin A (UroA) attenuates CDI-induced adverse effects on the colon epithelium in a preclinical model of CDI-induced colitis. Moreover, our analysis suggests that UroA treatment protects against C. difficile-induced inflammation, disruption of gut barrier integrity, and intestinal tight junction proteins in the colon of CDI mice. Importantly, UroA treatment significantly reduced the expression and release of toxins from C. difficile without inducing bacterial cell death. These results indicate the direct regulatory effects of UroA on bacterial gene regulation. Overall, our findings reveal a novel aspect of UroA activity, as it appears to act at both the bacterial and host levels to protect against CDI-induced colitis pathogenesis. This research sheds light on a promising avenue for the development of novel treatments for C. difficile infection.IMPORTANCETherapy for Clostridioides difficile infections includes the use of antibiotics, immunosuppressors, and fecal microbiota transplantation. However, these treatments have several drawbacks, including the loss of colonization resistance, the promotion of autoimmune disorders, and the potential for unknown pathogens in donor samples. To date, the potential benefits of microbial metabolites in CDI-induced colitis have not been fully investigated. Here, we report for the first time that the microbial metabolite urolithin A has the potential to block toxin production from C. difficile and enhance gut barrier function to mitigate CDI-induced colitis.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- UofL-Brown Cancer Center, Louisville, Kentucky, USA
| | - Daniel Erickson
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - Michelle J. Chua
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
| | - James Collins
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- Center for Predictive Medicine, University of Louisville, Louisville, Kentucky, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, Kentucky, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, Kentucky, USA
- UofL-Brown Cancer Center, Louisville, Kentucky, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, Kentucky, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
4
|
Bai M, Guo H, Zheng XY. Inflammatory bowel disease and Clostridium difficile infection: clinical presentation, diagnosis, and management. Therap Adv Gastroenterol 2023; 16:17562848231207280. [PMID: 38034098 PMCID: PMC10685799 DOI: 10.1177/17562848231207280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/24/2023] [Indexed: 12/02/2023] Open
Abstract
As a frequent complication of inflammatory bowel disease (IBD), Clostridium difficile infection (CDI) was confirmed to not only aggravate the symptoms of IBD but also result in unexpected outcomes, including death. With the increasing prevalence rate of IBD and the updating of CDI diagnosis, the incidence of CDI in IBD patients is also seen rising. Although a detection method consisting of glutamate dehydrogenase immunoassay or nucleic acid amplification test and then toxin A/B enzyme immunoassay was recommended and widely adopted, the diagnosis of CDI in IBD is still a challenge because of the overlap between the symptoms of CDI in IBD and CDI itself. Vancomycin and fidaxomicin are the first-line therapy for CDI in IBD; however, the treatment has different effects due to the complexity of IBD patients' conditions and the choice of different treatment schemes. Although the use of fecal microbial transplantation is now in the ascendant for IBD management, the prospects are still uncertain and the prevention and treatment of the recurrence of CDI in IBD remain a clinical challenge. In this paper, the epidemiology, pathophysiology, clinical manifestation, prevention, and therapy of CDI in IBD were summarized and presented.
Collapse
Affiliation(s)
- Mei Bai
- Department of Gastroenterology, Chongqing General Hospital, Chongqing, China
| | - Hong Guo
- Department of Gastroenterology, Chongqing General Hospital, 28 Jinshan Avenue, Yubei District, Chongqing 401147, China
| | - Xiao-Yao Zheng
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Ghosh S, Erickson D, Chua MJ, Collins J, Jala VR. The microbial metabolite Urolithin A reduces C. difficile toxin expression and repairs toxin-induced epithelial damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550342. [PMID: 37546803 PMCID: PMC10402075 DOI: 10.1101/2023.07.24.550342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Clostridioides difficile is a gram-positive, anaerobic, spore-forming bacterium that is responsible for antibiotic-associated pseudomembranous colitis. Clostridioides difficile infection (CDI) symptoms can range from diarrhea to life-threatening colon damage. Toxins produced by C. difficile (TcdA and TcdB) cause intestinal epithelial injury and lead to severe gut barrier dysfunction, stem cell damage, and impaired regeneration of the gut epithelium. Current treatment options for intestinal repair are limited. In this study, we demonstrate that treatment with the microbial metabolite urolithin A (UroA) attenuates CDI-induced adverse effects on the colon epithelium in a preclinical model of CDI-induced colitis. Moreover, our analysis suggests that UroA treatment protects against C. difficile-induced inflammation, disruption of gut barrier integrity, and intestinal tight junction proteins in the colon of CDI mice. Importantly, UroA treatment significantly reduced the expression and release of toxins from C. difficile, without inducing bacterial cell death. These results indicate the direct regulatory effects of UroA on bacterial gene regulation. Overall, our findings reveal a novel aspect of UroA activities, as it appears to act at both the bacterial and host levels to protect against CDI-induced colitis pathogenesis. This research sheds light on a promising avenue for the development of novel treatments for C. difficile infection.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
- UofL-Brown Cancer Center, Louisville, KY, USA
| | - Daniel Erickson
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Michelle J Chua
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - James Collins
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
- UofL-Brown Cancer Center, Louisville, KY, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
6
|
Stewart D, Anwar F, Vedantam G. Anti-virulence strategies for Clostridioides difficile infection: advances and roadblocks. Gut Microbes 2020; 12:1802865. [PMID: 33092487 PMCID: PMC7588222 DOI: 10.1080/19490976.2020.1802865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 02/03/2023] Open
Abstract
Clostridioides difficile infection (CDI) is a common healthcare- and antibiotic-associated diarrheal disease. If mis-diagnosed, or incompletely treated, CDI can have serious, indeed fatal, consequences. The clinical and economic burden imposed by CDI is great, and the US Centers for Disease Control and Prevention has named the causative agent, C. difficile (CD), as an Urgent Threat To US healthcare. CDI is also a significant problem in the agriculture industry. Currently, there are no FDA-approved preventives for this disease, and the only approved treatments for both human and veterinary CDI involve antibiotic use, which, ironically, is associated with disease relapse and the threat of burgeoning antibiotic resistance. Research efforts in multiple laboratories have demonstrated that non-toxin factors also play key roles in CDI, and that these are critical for disease. Specifically, key CD adhesins, as well as other surface-displayed factors have been shown to be major contributors to host cell attachment, and as such, represent attractive targets for anti-CD interventions. However, research on anti-virulence approaches has been more limited, primarily due to the lack of genetic tools, and an as-yet nascent (but increasingly growing) appreciation of immunological impacts on CDI. The focus of this review is the conceptualization and development of specific anti-virulence strategies to combat CDI. Multiple laboratories are focused on this effort, and the field is now at an exciting stage with numerous products in development. Herein, however, we focus only on select technologies (Figure 1) that have advanced near, or beyond, pre-clinical testing (not those that are currently in clinical trial), and discuss roadblocks associated with their development and implementation.
Collapse
Affiliation(s)
- David Stewart
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Farhan Anwar
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, USA
- Bio5 Institute for Collaborative Research, University of Arizona, Tucson, AZ, USA
- Southern Arizona VA Healthcare System, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
7
|
Madoff SE, Urquiaga M, Alonso CD, Kelly CP. Prevention of recurrent Clostridioides difficile infection: A systematic review of randomized controlled trials. Anaerobe 2019; 61:102098. [PMID: 31493500 DOI: 10.1016/j.anaerobe.2019.102098] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023]
Abstract
Recurrent Clostridioides (formerly Clostridium) difficile infection (rCDI) is common, and patients who have had one recurrence are more likely to have multiple recurrences. Frequent recurrences have been associated with increased morbidity and mortality, high healthcare costs, and lower quality of life. In this review, we compare the efficacy of interventions designed to prevent rCDI. We performed a systematic review of the English literature, including randomized controlled trials (RCTs) that evaluated rCDI as an outcome. Studies were included irrespective of patient demographics, disease severity, type of intervention, comparator used, or time-point of outcome evaluation. We performed a comprehensive literature search with the assistance of a research librarian. Two reviewers independently extracted data and assessed risk of bias. Our search yielded 38 RCTs (8,102 participants). Nineteen RCTs (3,743 subjects) evaluated antibiotics, eight fecal microbiota transplantation (FMT) (582 subjects), three monoclonal antibodies (MAbs) (2,805 subjects), and eight probiotics, prebiotics, or non-antibiotic polymers (972 subjects). The antibiotic and FMT therapies that demonstrated efficacy in rCDI prevention included: fidaxomicin (when compared to a ten-day vancomycin course) and FMT administered by nasogastric tube (when compared to a fourteen-day vancomycin course and a fourteen-day vancomycin course plus bowel lavage). Actoxumab (MAb against C. difficile toxin A; CDA1) plus bezlotoxumab (MAb against C. difficile toxin B; CDB1) in combination or bezlotoxumab alone appeared to be more effective in preventing rCDI compared to actoxumab alone. Of the prebiotics, probiotics, and nonantibiotic polymers, oligofructose, Saccharomyces boulardii, and the nontoxigenic C. difficile strain M3 were the most efficacious for rCDI prevention. Thirty-eight RCTs (>8,000 participants) evaluating treatment modalities for CDI were examined for efficacy in prevention of rCDI. Several CDI-specific antibiotics, FMT modalities, monoclonal antibodies, and various prebiotics and probiotics demonstrated a reduction in risk of rCDI with the greatest risk reduction observed with FMT and monoclonal antibody therapy. It is notable that the comparators in these studies were very different from one another and the relative risk reduction of rCDI may not be directly comparable from one study to the next.
Collapse
Affiliation(s)
- Sarah E Madoff
- Tufts University School of Medicine, Boston, MA, USA; Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| | - Mariana Urquiaga
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Carolyn D Alonso
- Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Ciarán P Kelly
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| |
Collapse
|
8
|
Kruger AJ, Durkin C, Mumtaz K, Hinton A, Krishna SG. Early Readmission Predicts Increased Mortality in Cirrhosis Patients After Clostridium difficile Infection. J Clin Gastroenterol 2019; 53:e322-e327. [PMID: 30045168 DOI: 10.1097/mcg.0000000000001090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
GOALS We sought to determine the impact of Clostridium difficile infections (CDI) in cirrhosis by evaluating trends and outcomes of early readmission and mortality. BACKGROUND The incidence of CDI in cirrhotics is increasing. STUDY We analyzed the Nationwide Readmissions Database (2011 to 2014) for hospitalized patients with CDI and differentiated them by presence of cirrhosis. Baseline characteristics, surgical rates, and outcomes were collected. The primary outcomes of interest included readmission and mortality rates. RESULTS Of 366,283 patients hospitalized with CDI, 12,274 (3.4%) had cirrhosis, of which 7741 (63.1%) were decompensated. Among patients with CDI, 30-day readmission rates (33% vs. 24%), index admission mortality (5% vs. 2.5%), and calendar-year mortality (9% vs. 4%) were higher in patients with cirrhosis compared with those without cirrhosis. Recurrent CDI (rCDI) (46%) and cirrhosis-related complications (34.6%) were the most common reasons for readmission. Patients with decompensated cirrhosis were more likely to be readmitted within 30-days than those with compensated cirrhosis [odds ratio (OR), 1.19; 95% confidence interval (CI), 1.03-1.36]. Multivariable analyses revealed that among patients with cirrhosis, index colectomy (OR, 6.50; 95% CI, 1.61-26.24) and decompensation (OR, 3.61; 95% CI, 2.49-5.23) predicted index admission mortality. In addition, 30-day readmission (OR, 3.71; 95% CI, 2.95-4.67) and decompensated cirrhosis (OR, 1.49; 95% CI, 1.17-1.89) independently predicted calendar-year mortality. CONCLUSIONS One-third of CDI patients with cirrhosis were readmitted within 30-days, most commonly because of rCDI. The mortality associated with CDI in patients with cirrhosis is high, with decompensation and 30-day readmission heralding a poor prognosis. Reducing rCDI-related readmissions may potentially improve these outcomes.
Collapse
Affiliation(s)
| | - Claire Durkin
- Department of Medicine, The Ohio State University College of Medicine
| | - Khalid Mumtaz
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center
| | - Alice Hinton
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH
| | - Somashekar G Krishna
- Division of Gastroenterology, Hepatology, and Nutrition, The Ohio State University Wexner Medical Center
| |
Collapse
|
9
|
Kaako A, Al-Amer M, Abdeen Y. Bezlotoxumab use as adjunctive therapy with the third fecal microbiota transplant in refractory recurrent Clostridium difficile colitis; a case report and concise literature review. Anaerobe 2018; 55:112-116. [PMID: 30521856 DOI: 10.1016/j.anaerobe.2018.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023]
Abstract
Clostridium difficile is the most commonly reported pathogen to cause nosocomial infections in the United States with a high burden affecting morbidity, mortality and healthcare expenditure. The use of Fecal Microbiota Transplantation (FMT) is one of the current standard therapies for recurrent C. difficile infection (CDIr). One emerging promising approach is the use of monoclonal antibodies that bind to and neutralize C. difficile toxins such as Bezlotoxumab. We present the first case report on combining the third FMT with bezlotoxumab after the failure of standard-of-care antibiotics and two trials of FMT alone, with subsequent success in preventing the recurrence of refractory CDI for 12 weeks following treatment. This case highlights the need for further studies and guidelines to recommend the best combination among different treatment options and modalities.
Collapse
Affiliation(s)
- Ahmad Kaako
- Mercy Clinic Hospitalist, Physician Building, 7301 Rogers Ave, Fort Smith, AR 72903, United States.
| | - Mohammad Al-Amer
- Internal Medicine Department, Ibn Alhaytham Hospital, Amman, Jordan
| | - Yazan Abdeen
- Pulmonary Department, Physician Building, 7301 Rogers Ave, Fort Smith, AR 72903, United States
| |
Collapse
|
10
|
Ciccocioppo R, Corazza GR. In-hospital mortality for toxic megacolon. Intern Emerg Med 2018; 13:837-838. [PMID: 30073474 DOI: 10.1007/s11739-018-1919-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Rachele Ciccocioppo
- Gastroenterology Unit, Department of Medicine, AOUI Policlinico G.B. Rossi, University of Verona, Piazzale L.A. Scuro, 10, 37134, Verona, Italy.
| | - Gino Roberto Corazza
- Clinica Medica I, Department of Internal Medicine, IRCCS San Matteo Hospital Foundation, University of Pavia, Pavia, 27100, Italy
| |
Collapse
|
11
|
Interaction between Insects, Toxins, and Bacteria: Have We Been Wrong So Far? Toxins (Basel) 2018; 10:toxins10070281. [PMID: 29986377 PMCID: PMC6070883 DOI: 10.3390/toxins10070281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Toxins are a major virulence factor produced by many pathogenic bacteria. In vertebrates, the response of hosts to the bacteria is inseparable from the response to the toxins, allowing a comprehensive understanding of this tripartite host-pathogen-toxin interaction. However, in invertebrates, this interaction has been investigated by two complementary but historically distinct fields of research: toxinology and immunology. In this article, I highlight how such dichotomy between these two fields led to a biased, or even erroneous view of the ecology and evolution of the interaction between insects, toxins, and bacteria. I focus on the reason behind such a dichotomy, on how to bridge the fields together, and on confounding effects that could bias the outcome of the experiments. Finally, I raise four questions at the border of the two fields on the cross-effects between toxins, bacteria, and spores that have been largely underexplored to promote a more comprehensive view of this interaction.
Collapse
|
12
|
Yang HT, Chen JW, Rathod J, Jiang YZ, Tsai PJ, Hung YP, Ko WC, Paredes-Sabja D, Huang IH. Lauric Acid Is an Inhibitor of Clostridium difficile Growth in Vitro and Reduces Inflammation in a Mouse Infection Model. Front Microbiol 2018; 8:2635. [PMID: 29387044 PMCID: PMC5776096 DOI: 10.3389/fmicb.2017.02635] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a Gram-positive, spore-forming anaerobic human gastrointestinal pathogen. C. difficile infection (CDI) is a major health concern worldwide, with symptoms ranging from diarrhea to pseudomembranous colitis, toxic megacolon, sepsis, and death. CDI onset and progression are mostly caused by intestinal dysbiosis and exposure to C. difficile spores. Current treatment strategies include antibiotics; however, antibiotic use is often associated with high recurrence rates and an increased risk of antibiotic resistance. Medium-chain fatty acids (MCFAs) have been revealed to inhibit the growth of multiple human bacterial pathogens. Components of coconut oil, which include lauric acid, have been revealed to inhibit C. difficile growth in vitro. In this study, we demonstrated that lauric acid exhibits potent antimicrobial activities against multiple toxigenic C. difficile isolates in vitro. The inhibitory effect of lauric acid is partly due to reactive oxygen species (ROS) generation and cell membrane damage. The administration of lauric acid considerably reduced biofilm formation and preformed biofilms in a dose-dependent manner. Importantly, in a mouse infection model, lauric acid pretreatment reduced CDI symptoms and proinflammatory cytokine production. Our combined results suggest that the naturally occurring MCFA lauric acid is a novel C. difficile inhibitor and is useful in the development of an alternative or adjunctive treatment for CDI.
Collapse
Affiliation(s)
- Hsiao-Ting Yang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Zhen Jiang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
- Center of Infection Control, National Cheng Kung University Hospital, Tainan, Taiwan
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|