1
|
Sun L, Xu L, Duan T, Xi Y, Deng Z, Luo S, Liu C, Yang C, Liu H, Sun L. CAV1 Exacerbates Renal Tubular Epithelial Cell Senescence by Suppressing CaMKK2/AMPK-Mediated Autophagy. Aging Cell 2025:e14501. [PMID: 39887553 DOI: 10.1111/acel.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025] Open
Abstract
Renal proximal tubular epithelial cell (PTEC) senescence and defective autophagy contribute to kidney aging, but the mechanisms remain unclear. Caveolin-1 (CAV1), a crucial component of cell membrane caveolae, regulates autophagy and is associated with cellular senescence. However, its specific role in kidney aging is poorly understood. In this study, we generated Cav1 gene knockout mice and induced kidney aging using D-galactose (D-gal). The results showed that CAV1 expression increased in the renal cortex of the aging mice, which was accompanied by exacerbated renal interstitial fibrosis, elevated levels of senescence-associated proteins γH2AX and p16INK4a, and increased β-galactosidase activity. Moreover, autophagy and AMPK phosphorylation in PTECs were reduced. These phenotypes were partially reversed in D-gal-induced Cav1 knockout mice. Similar results were observed in D-gal-induced human proximal tubular epithelial (HK-2) cells, but these effects were blocked when AMPK activation was inhibited. Additionally, in CaMKK2 knockdown HK-2 cells, siCAV1 failed to promote AMPK phosphorylation, whereas this effect persisted when STK11 was knocked down. Besides, we examined the phosphorylation of CaMKK2 and found that siCAV1 increased its activity. Given that CaMKK2 activity is affected by intracellular Ca2+, we examined Ca2+ levels in HK-2 cells and found that D-gal treatment reduced intracellular Ca2+ concentration, but CAV1 knockdown did not alter these levels. Through GST pull-down assays, we demonstrated a direct interaction between CAV1 and CaMKK2. In conclusion, these findings suggest that CAV1 exacerbates renal tubular epithelial cell senescence by directly interacting with CaMKK2, suppressing its activity and AMPK-mediated autophagy via a Ca2+-independent pathway.
Collapse
Affiliation(s)
- Liya Sun
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lujun Xu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Tongyue Duan
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yiyun Xi
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huafeng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lin Sun
- Department of Nephrology, Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Creyns B, MacKenzie B, Sa Y, Coelho AL, Christensen D, Parimon T, Windsor B, Hogaboam CM. Caveolin scaffolding domain (CSD) peptide LTI-2355 modulates the phagocytic and synthetic activity of lung derived myeloid cells in Idiopathic Pulmonary Fibrosis (IPF) and Post-acute sequelae of COVID-fibrosis (PASC-F). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569608. [PMID: 38654821 PMCID: PMC11037873 DOI: 10.1101/2023.12.01.569608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Rationale The role of the innate immune system in Idiopathic Pulmonary Fibrosis (IPF) remains poorly understood. However, a functional myeloid compartment is required to remove dying cells and cellular debris, and to mediate innate immune responses against pathogens. Aberrant macrophage activity has been described in patients with Post-acute sequelae of COVID fibrosis (PASC-F). Therefore, we examined the functional and synthetic properties of myeloid cells isolated from normal donor lung and lung explant tissue from both IPF and PASC-F patients and explored the effect of LTI-2355, a Caveolin Scaffolding Domain (CSD) peptide, on these cells. Methods & Results CD45 + myeloid cells isolated from lung explant tissue from IPF and PASC-F patients exhibited an impaired capacity to clear autologous dead cells and cellular debris. Uptake of pathogen-coated bioparticles was impaired in myeloid cells from both fibrotic patient groups independent of type of pathogen highlighting a cell intrinsic functional impairment. LTI-2355 improved the phagocytic activity of both IPF and PASC-F myeloid cells, and this improvement was paired with decreased pro-inflammatory and pro-fibrotic synthetic activity. LTI-2355 was also shown to primarily target CD206-expressing IPF and PASC-F myeloid cells. Conclusions Primary myeloid cells from IPF and PASC-F patients exhibit dysfunctional phagocytic and synthetic properties that are reversed by LTI-2355. Thus, these studies highlight an additional mechanism of action of a CSD peptide in the treatment of IPF and progressive fibrotic lung disease.
Collapse
|
3
|
Zhang R, Dang Y. The Recent Advances in the Function and Mechanism of Caveolin-1 in Retinal Neovascularization. Curr Drug Targets 2024; 25:465-472. [PMID: 38591209 DOI: 10.2174/0113894501310201240403065930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Retinal neovascularization diseases have relatively high rates of evitable blindness. Abnormal retinal neovascularization is their main hallmark, which can damage the structure and function of the eye and lead to impaired vision. Caveolin-1 is a membrane protein that is expressed in many types of retinal cells and is involved in retinal neovascularization. This review presents a comprehensive analysis of global research on specific functions of caveolin-1 in retinal neovascularization. We believe that the mechanism of action of caveolin-1 might be related to the regulation of relevant signal pathways and looked ahead the application prospects of modulating caveolin- 1 in retinal neovascularization diseases.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Ophthalmology, Sanmenxia Eye Hospital/Sanmenxia Central Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, 472000, China
- Henan International Joint Laboratory of Outflow Engineering, Sanmenxia Central Hospital, School of Medicine, Henan University of Science and Technology, Sanmenxia, 47200, China
| | - Yalong Dang
- Department of Ophthalmology, Sanmenxia Eye Hospital/Sanmenxia Central Hospital Affiliated to Henan University of Science and Technology, Sanmenxia, 472000, China
- Henan International Joint Laboratory of Outflow Engineering, Sanmenxia Central Hospital, School of Medicine, Henan University of Science and Technology, Sanmenxia, 47200, China
| |
Collapse
|
4
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Du J, Liu Y, Lan G, Zhou Y, Ni Y, Liao K, Zheng F, Cheng Q, Shi G, Su X. PTRF-IL33-ZBP1 signaling mediating macrophage necroptosis contributes to HDM-induced airway inflammation. Cell Death Dis 2023; 14:432. [PMID: 37454215 PMCID: PMC10349813 DOI: 10.1038/s41419-023-05971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Polymerase 1 and transcript release factor (PTRF, encoding by Cavin-1) regulates interleukin 33 (IL-33) release, which is implicated in asthma development. Z-DNA binding protein 1 (ZBP1)-sensing Z-RNAs induces necroptosis which causes inflammatory diseases. House dust mite (HDM) is the major source of allergen in house dust and is strongly associated with the development of asthma. Whether PTRF via IL-33 and ZBP1 mediates HDM-induced macrophage necroptosis and airway inflammation remains unclear. Here, we found that deficiency of PTRF could reduce lung IL-33, ZBP1, phosphor-receptor-interacting protein kinase 3 (p-RIPK3), and phosphor-mixed lineage kinase domain-like (p-MLKL) (necroptosis executioner), and airway inflammation in an HDM-induced asthma mouse model. In HDM-treated macrophages, ZBP1, p-RIPK3, and p-MLKL levels were markedly increased, and these changes were reversed by deletion of Cavin-1. Deletion of Il33 also reduced expression of ZBP1, p-RIPK3, and p-MLKL in HDM-challenged lungs. Moreover, IL-33 synergizing with HDM boosted expression of ZBP1, p-RIPK3, and p-MLKL in macrophages. In bronchial epithelial cells rather than macrophages and vascular endothelial cells, PTRF positively regulates IL-33 expression. Therefore, we conclude that PTRF mediates HDM-induced macrophage ZBP1/necroptosis and airway inflammation, and this effect could be boosted by bronchial epithelial cell-derived IL-33. Our findings suggest that PTRF-IL33-ZBP1 signaling pathway might be a promising target for dampening airway inflammation.
Collapse
Affiliation(s)
- Juan Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Yahui Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Gelei Lan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Yao Zhou
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Kai Liao
- Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qijian Cheng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
| |
Collapse
|
6
|
Yao Y, Borkar NA, Zheng M, Wang S, Pabelick CM, Vogel ER, Prakash YS. Interactions between calcium regulatory pathways and mechanosensitive channels in airways. Expert Rev Respir Med 2023; 17:903-917. [PMID: 37905552 PMCID: PMC10872943 DOI: 10.1080/17476348.2023.2276732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION Asthma is a chronic lung disease influenced by environmental and inflammatory triggers and involving complex signaling pathways across resident airway cells such as epithelium, airway smooth muscle, fibroblasts, and immune cells. While our understanding of asthma pathophysiology is continually progressing, there is a growing realization that cellular microdomains play critical roles in mediating signaling relevant to asthma in the context of contractility and remodeling. Mechanosensitive pathways are increasingly recognized as important to microdomain signaling, with Piezo and transient receptor protein (TRP) channels at the plasma membrane considered important for converting mechanical stimuli into cellular behavior. Given their ion channel properties, particularly Ca2+ conduction, a question becomes whether and how mechanosensitive channels contribute to Ca2+ microdomains in airway cells relevant to asthma. AREAS COVERED Mechanosensitive TRP and Piezo channels regulate key Ca2+ regulatory proteins such as store operated calcium entry (SOCE) involving STIM and Orai channels, and sarcoendoplasmic (SR) mechanisms such as IP3 receptor channels (IP3Rs), and SR Ca2+ ATPase (SERCA) that are important in asthma pathophysiology including airway hyperreactivity and remodeling. EXPERT OPINION Physical and/or functional interactions between Ca2+ regulatory proteins and mechanosensitive channels such as TRP and Piezo can toward understanding asthma pathophysiology and identifying novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Niyati A Borkar
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Mengning Zheng
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Respiratory and Critical Care Medicine, Guizhou Province People’s Hospital, Guiyang, Guizhou, China
| | - Shengyu Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi’an Medical University, Xi’an, Shaanxi, China
| | - Christina M Pabelick
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Elizabeth R Vogel
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - YS Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Yang Y, Li Y, Du X, Liu Z, Zhu C, Mao W, Liu G, Jiang Q. Anti-Aging Effects of Quercetin in Cladocera Simocephalus vetulus Using Proteomics. ACS OMEGA 2023; 8:17609-17619. [PMID: 37251128 PMCID: PMC10210174 DOI: 10.1021/acsomega.2c08242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/21/2023] [Indexed: 05/31/2023]
Abstract
Quercetin is a flavonoid widely found in food and traditional herbs. In this study, we evaluated the anti-aging effects of quercetin on Simocephalus vetulus (S. vetulus) by assessing lifespan and growth parameters and analyzed the differentially expressed proteins and crucial pathways associated with quercetin activity using proteomics. The results demonstrated that, at a concentration of 1 mg/L, quercetin significantly prolonged the average and maximal lifespans of S. vetulus and increased the net reproduction rate slightly. The proteomics-based analysis revealed 156 differently expressed proteins, with 84 being significantly upregulated and 72 significantly downregulated. The protein functions were identified as being associated with glycometabolism, energy metabolism, and sphingolipid metabolism pathways, and the key enzyme activity and related gene expression, such that of AMPK, supported the importance of these pathways in the anti-aging activity of quercetin. In addition, quercetin was found to regulate the anti-aging-related proteins Lamin A and Klotho directly. Our results increased the understanding of quercetin's anti-aging effects.
Collapse
Affiliation(s)
- Ying Yang
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yiming Li
- Fishery
Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200092, China
| | - Xinglin Du
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Zhiquan Liu
- School of
Life and Environmental Sciences, Hangzhou
Normal University, Hangzhou 311121, Zhejiang, China
- School
of Engineering, Hangzhou Normal University, Hangzhou 310018, Zhejiang, China
| | - Chenxi Zhu
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Weiping Mao
- Institute
of Biochemistry and Biological Products, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Guoxing Liu
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
- The
Low Temperature Germplasm Bank of Important Economic Fish of Jiangsu
Provincial Science and Technology Resources (Agricultural Germplasm
Resources) Coordination Service Platform, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Qichen Jiang
- Freshwater
Fisheries Research Institute of Jiangsu Province, 79 Chating East Street, Nanjing 210017, China
| |
Collapse
|
8
|
Barruet E, Striedinger K, Marangoni P, Pomerantz JH. Loss of transcriptional heterogeneity in aged human muscle stem cells. PLoS One 2023; 18:e0285018. [PMID: 37192223 PMCID: PMC10187936 DOI: 10.1371/journal.pone.0285018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/12/2023] [Indexed: 05/18/2023] Open
Abstract
Age-related loss of muscle mass and function negatively impacts healthspan and lifespan. Satellite cells function as muscle stem cells in muscle maintenance and regeneration by self-renewal, activation, proliferation and differentiation. These processes are perturbed in aging at the stem cell population level, contributing to muscle loss. However, how representation of subpopulations within the human satellite cell pool change during aging remains poorly understood. We previously reported a comprehensive baseline of human satellite cell (Hu-MuSCs) transcriptional activity in muscle homeostasis describing functional heterogenous human satellite cell subpopulations such as CAV1+ Hu-MUSCs. Here, we sequenced additional satellite cells from new healthy donors and performed extended transcriptomic analyses with regard to aging. We found an age-related loss of global transcriptomic heterogeneity and identified new markers (CAV1, CXCL14, GPX3) along with previously described ones (FN1, ITGB1, SPRY1) that are altered during aging in human satellite cells. These findings describe new transcriptomic changes that occur during aging in human satellite cells and provide a foundation for understanding functional impact.
Collapse
Affiliation(s)
- Emilie Barruet
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, United States of America
| | - Katharine Striedinger
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, California, United States of America
| | - Jason H. Pomerantz
- Departments of Surgery and Orofacial Sciences, Division of Plastic and Reconstructive Surgery, Program in Craniofacial Biology, Eli and Edythe Broad Center of Regeneration Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
9
|
Chen J, Jian X, Li C, Cheng B. Therapeutic potential of amitriptyline for paraquat-induced pulmonary fibrosis: Involvement of caveolin-1-mediated anti-epithelial-mesenchymal transition and inhibition of apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114732. [PMID: 36898313 DOI: 10.1016/j.ecoenv.2023.114732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Treatment of pulmonary fibrosis caused by paraquat (PQ) poisoning remains problematic. Amitriptyline (AMT) has multiple pharmacological effects. Here we investigated the anti-fibrotic effect of AMT on PQ-induced pulmonary fibrosis and its possible mechanism. METHODS C57BL/6 mice were randomly divided into control, PQ, PQ + AMT and AMT groups. Histopathology of the lungs, blood gas analysis, and levels of hydroxyproline (HYP), transforming growth factor β1 (TGF-β1) and interleukin 17 (IL-17) were measured. The siRNA transfection inhibited caveolin-1 in A549 cells, which induced epithelial-mesenchymal transition (EMT) by PQ and followed intervention with AMT. E-cadherin, N-cadherin, α-smooth muscle actin (α-SMA) and caveolin-1 were studied by immunohistochemistry and western blot analysis. The apoptosis rate was measured by flow cytometry. RESULTS Compared with the PQ group, the PQ + AMT group displayed mild pathological changes in pulmonary fibrosis, lower HYP, IL-17 and TGF- β1 levels in lung, but high TGF- β1 in serum. Levels of N-cadherin and α-SMA in the lungs were significantly decreased, but caveolin-1 was increased, while SaO2 and PaO2 levels were higher. Compared with the PQ group, the apoptosis rate, N-cadherin and α-SMA levels in A549 cells were significantly decreased after PQ treatment and high dose AMT intervention (p < 0.01). The expressions of E-cadherin, N-cadherin and α-SMA in the PQ-induced cells transfected with caveolin-1 siRNA or siControl RNA were significantly different (p < 0.01), but the apoptosis rate was unaltered. CONCLUSION AMT inhibited PQ-induced EMT in A549 cells and improved lung histopathology and oxygenation in mice by up-regulating caveolin-1.
Collapse
Affiliation(s)
- Jianshi Chen
- Department of Intensive Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Qilu Hospital of Shandong University, Jinan 250000, China
| | - Chunmei Li
- Department of Digestive Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bihuang Cheng
- Department of Intensive Care Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
10
|
Elliot S, Catanuto P, Pereira-simon S, Xia X, Shahzeidi S, Roberts E, Ludlow J, Hamdan S, Daunert S, Parra J, Stone R, Pastar I, Tomic-Canic M, Glassberg MK. Urine-derived exosomes from individuals with IPF carry pro-fibrotic cargo. eLife 2022; 11:e79543. [PMID: 36454035 PMCID: PMC9714968 DOI: 10.7554/elife.79543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Background MicroRNAs (miRNA) and other components contained in extracellular vesicles may reflect the presence of a disease. Lung tissue, sputum, and sera of individuals with idiopathic pulmonary fibrosis (IPF) show alterations in miRNA expression. We designed this study to test whether urine and/or tissue derived exosomal miRNAs from individuals with IPF carry cargo that can promote fibrosis. Methods Exosomes were isolated from urine (U-IPFexo), lung tissue myofibroblasts (MF-IPFexo), serum from individuals with IPF (n=16) and age/sex-matched controls without lung disease (n=10). We analyzed microRNA expression of isolated exosomes and their in vivo bio-distribution. We investigated the effect on ex vivo skin wound healing and in in vivo mouse lung models. Results U-IPFexo or MF-IPFexo expressed miR-let-7d, miR-29a-5p, miR-181b-3p and miR-199a-3p consistent with previous reports of miRNA expression obtained from lung tissue/sera from patients with IPF. In vivo bio-distribution experiments detected bioluminescent exosomes in the lung of normal C57Bl6 mice within 5 min after intravenous infusion, followed by distribution to other organs irrespective of exosome source. Exosomes labeled with gold nanoparticles and imaged by transmission electron microscopy were visualized in alveolar epithelial type I and type II cells. Treatment of human and mouse lung punches obtained from control, non-fibrotic lungs with either U-IPFexo or MF-IPFexo produced a fibrotic phenotype. A fibrotic phenotype was also induced in a human ex vivo skin model and in in vivo lung models. Conclusions Our results provide evidence of a systemic feature of IPF whereby exosomes contain pro-fibrotic miRNAs when obtained from a fibrotic source and interfere with response to tissue injury as measured in skin and lung models. Funding This work was supported in part by Lester and Sue Smith Foundation and The Samrick Family Foundation and NIH grants R21 AG060338 (SE and MKG), U01 DK119085 (IP, RS, MTC).
Collapse
Affiliation(s)
- Sharon Elliot
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Paola Catanuto
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Simone Pereira-simon
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
| | - Xiaomei Xia
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | | | - Evan Roberts
- Cancer Modeling Shared Resource Sylvester Comprehensive Cancer Center, University of MiamiMiamiUnited States
| | | | - Suzana Hamdan
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of MedicineMiamiUnited States
- Dr. JT Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami Miller School of MedicineMiamiUnited States
- Miami Clinical and Translational Science Institute, University of Miami Miller School of MedicineMiamiUnited States
| | - Jennifer Parra
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
| | - Rivka Stone
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, University of MiamiMiamiUnited States
| | - Marilyn K Glassberg
- DeWitt Daughtry Family Department of Surgery, University of Miami Leonard M. Miller School of MedicineMiamiUnited States
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep, University of MiamiMiamiUnited States
- Department of Medicine, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| |
Collapse
|
11
|
Lannes-Costa PS, Pimentel BADS, Nagao PE. Role of Caveolin-1 in Sepsis – A Mini-Review. Front Immunol 2022; 13:902907. [PMID: 35911737 PMCID: PMC9334647 DOI: 10.3389/fimmu.2022.902907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Sepsis is a generalized disease characterized by an extreme response to a severe infection. Moreover, challenges remain in the diagnosis, treatment and management of septic patients. In this mini-review we demonstrate developments on cellular pathogenesis and the role of Caveolin-1 (Cav-1) in sepsis. Studies have shown that Cav-1 has a significant role in sepsis through the regulation of membrane traffic and intracellular signaling pathways. In addition, activation of apoptosis/autophagy is considered relevant for the progression and development of sepsis. However, how Cav-1 is involved in sepsis remains unclear, and the precise mechanisms need to be further investigated. Finally, the role of Cav-1 in altering cell permeability during inflammation, in sepsis caused by microorganisms, apoptosis/autophagy activation and new therapies under study are discussed in this mini-review.
Collapse
|
12
|
Popov LD. Deciphering the relationship between caveolae-mediated intracellular transport and signalling events. Cell Signal 2022; 97:110399. [PMID: 35820545 DOI: 10.1016/j.cellsig.2022.110399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/30/2022]
Abstract
The caveolae-mediated transport across polarized epithelial cell barriers has been largely deciphered in the last decades and is considered the second essential intracellular transfer mechanism, after the clathrin-dependent endocytosis. The basic cell biology knowledge was supplemented recently, with the molecular mechanisms beyond caveolae generation implying the key contribution of the lipid-binding proteins (the structural protein Caveolin and the adapter protein Cavin), along with the bulb coat stabilizing molecules PACSIN-2 and Eps15 homology domain protein-2. The current attention is focused also on caveolae architecture (such as the bulb coat, the neck, the membrane funnel inside the bulb, and the associated receptors), and their specific tasks during the intracellular transport of various cargoes. Here, we resume the present understanding of the assembly, detachment, and internalization of caveolae from the plasma membrane lipid raft domains, and give an updated view on transcytosis and endocytosis, the two itineraries of cargoes transport via caveolae. The review adds novel data on the signalling molecules regulating caveolae intracellular routes and on the transport dysregulation in diseases. The therapeutic possibilities offered by exploitation of Caveolin-1 expression and caveolae trafficking, and the urgent issues to be uncovered conclude the review.
Collapse
Affiliation(s)
- Lucia-Doina Popov
- Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 8, B.P. Hasdeu Street, 050568 Bucharest, Romania.
| |
Collapse
|
13
|
Mumtaz S, Ali S, Tahir HM, Kazmi SAR, Shakir HA, Mughal TA, Mumtaz S, Summer M, Farooq MA. Aging and its treatment with vitamin C: a comprehensive mechanistic review. Mol Biol Rep 2021; 48:8141-8153. [PMID: 34655018 DOI: 10.1007/s11033-021-06781-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 01/22/2023]
Abstract
Aging and age-related disorders have become one of the prominent issue of world. Oxidative stress due to overproduction of reactive oxygen species is the most significant cause of aging. The aim of literature compilation was to elucidate the therapeutic effect of vitamin C against oxidative stress. Various mediators with anti-inflammatory and anti-oxidant properties might be probable competitors of vitamin C for the improvement of innovative anti-aging treatments. More attention has been paid to vitamin C due to its anti-oxidant property and potentially beneficial biological activities for inhibiting aging.Vitamin C acts as an antioxidant agent and free radical scavenger that can protect the cell from oxidative stress, disorganization of chromatin, telomere attrition, and prolong the lifetime. This review emphasizes mechanism of aging and various biomarkers that are directly related to aging and also focuses on the therapeutic aspect of vitamin C against oxidative stress and age-related disorders.
Collapse
Affiliation(s)
- Shumaila Mumtaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan.
| | - Hafiz Muhammad Tahir
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | | | | | - Tafail Akbar Mughal
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Samaira Mumtaz
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adeel Farooq
- Applied Entomology and Medical Toxicology and Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
14
|
Wicher SA, Roos BB, Teske JJ, Fang YH, Pabelick C, Prakash YS. Aging increases senescence, calcium signaling, and extracellular matrix deposition in human airway smooth muscle. PLoS One 2021; 16:e0254710. [PMID: 34324543 PMCID: PMC8321097 DOI: 10.1371/journal.pone.0254710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Lung function declines as people age and their lungs become stiffer. With an increasing elderly population, understanding mechanisms that contribute to these structural and functional changes in the aging lung is important. Part of the aging process is characterized by thicker, more fibrotic airways, and senile emphysema caused by changes in lung parenchyma. There is also senescence, which occurs throughout the body with aging. Here, using human airway smooth muscle (ASM) cells from patients in different age groups, we explored senescence pathways and changes in intracellular calcium signaling and extracellular matrix (ECM) deposition to elucidate potential mechanisms by which aging leads to thicker and stiffer lungs. Senescent markers p21, γH2AX, and β-gal, and some senescence-associated secretory proteins (SASP) increased with aging, as shown by staining and biochemical analyses. Agonist-induced intracellular Ca2+ responses, measured using fura-2 loaded cells and fluorescence imaging, increased with age. However, biochemical analysis showed that expression of the following markers decreased with age: M3 muscarinic receptor, TRPC3, Orai1, STIM1, SERCA2, MMP2 and MMP9. In contrast, collagen III, and fibronectin deposition increased with age. These data show that senescence increases in the aging airways that is associated with a stiffer but surprisingly greater intracellular calcium signaling as a marker for contractility. ASM senescence may enhance fibrosis in a feed forward loop promoting remodeling and altered calcium storage and buffering.
Collapse
Affiliation(s)
- Sarah A. Wicher
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
| | - Yun Hua Fang
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Christina Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| |
Collapse
|
15
|
Caveolin-1 as a critical component in the pathogenesis of lung fibrosis of different etiology: Evidences and mechanisms. Exp Mol Pathol 2019; 111:104315. [PMID: 31629729 DOI: 10.1016/j.yexmp.2019.104315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/08/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022]
Abstract
Caveolin is a structural protein of flask-shaped invaginations of the plasma membrane termed as caveolae and is widely expressed on the endothelial cells, smooth muscle cells and fibroblasts in the different parts of the body including the lung tissues. The expression of caveolin-1 in the lung tissues is important to prevent the fibrogenic actions of TGF-β1 in lung fibrosis of different etiology including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease and allergen-induced airway remodeling. Caveolin-1-mediated internalization and degradation of TGF-β1 receptors may possibly account for the decreased actions of TGF-β1. Studies have shown that the deficiency of caveolin-1 is very important in inducing lung fibrosis and its upregulation is reported to prevent lung fibrosis. The biological actions of caveolin-1 involve signaling pathways including JNK signaling, IL-4, STAT-3, miR199a-5p, CXCR4+ and CXCL12. The present review discusses the key role of caveolin and associated signaling pathways in the pathogenesis of lung fibrosis of different etiology.
Collapse
|
16
|
Li M, Cai W, Chen Y, Dong L. The CAV1 Gene 3' Untranslated Region Single Nucleotide Polymorphisms Are Associated with the Risk of Pulmonary Hypertension in Chinese Han Chronic Obstructive Pulmonary Patients. Genet Test Mol Biomarkers 2019; 23:634-643. [PMID: 31386584 DOI: 10.1089/gtmb.2019.0053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aims: Caveolin-1, which is encoded by the caveolin-1 (CAV1) gene, plays an important role in the development of pulmonary hypertension (PH). The purpose of this study was to determine the relationship between 3' untranslated region (UTR) single nucleotide polymorphisms (SNPs) of the CAV1 gene and the risk of PH in Chinese Han patients with chronic obstructive pulmonary disease (COPD). Methods: From March 2016 to October 2018, 235 patients with COPD combined with PH (COPD/PH+) and 240 patients with COPD and without PH (COPD/PH-) were recruited to the study. The CAV1 gene rs1049314, rs8713, rs1049334, rs6867, and rs1049337 loci were genotyped and the plasma hsa-miR-451 and caveolin-1 levels were measured in all subjects. Results: The risk of PH in patients with COPD carrying the C allele of the rs8713 locus was 2.82 times higher than that in A allele carriers (95% confidence interval [CI], 1.94-4.08; p < 0.001). The risk of PH in patients with COPD carrying the T allele of the rs1049337 locus was significantly lower than that in C allele carriers (odds ratio [OR], 0.48; 95% CI, 0.37-0.63; p < 0.001). The ACGAC haplotype was found to be a highly-significant risk factor for COPD combined with PH (OR, 2.24; 95% CI, 1.20-4.17; p = 0.01). Plasma levels of hsa-miR-451 and the caveolin1 protein in patients with the rs8713 C allele were significantly lower than in those with the wild type (WT) allele regardless of PH status. Conversely, the hsa-miRN-451 and caveolin-1 levels in patients with the rs1049337 mutant C allele were significantly higher than those in the WT T allele (p < 0.05). There was a positive correlation between plasma hsa-miR-451 and caveolin-1 levels in patients with COPD/PH+ and COPD/PH- (r = 0.72 and 0.63, respectively). Conclusion: SNPs of the CAV1 gene loci rs8713 and rs1049337 are associated with a risk of PH in COPD patients. The underlying mechanism is likely to be related to the effect of the SNPs on the regulation of caveolin-1 by hsa-miR-451.
Collapse
Affiliation(s)
- Minjing Li
- Department of Pneumology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Wanru Cai
- Department of Pneumology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Ye Chen
- Department of Pneumology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Dong
- Department of Pneumology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|