1
|
Amaeze O, Isoherranen N, Shum S. The absorption, distribution, metabolism and elimination characteristics of small interfering RNA therapeutics and the opportunity to predict disposition in pregnant women. Drug Metab Dispos 2025; 53:100018. [PMID: 39884813 DOI: 10.1124/dmd.123.001383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/19/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024] Open
Abstract
Small interfering RNA (siRNA) therapeutics represent an emerging class of pharmacotherapy with the potential to address previously hard-to-treat diseases. Currently approved siRNA therapeutics include lipid nanoparticle-encapsulated siRNA and tri-N-acetylated galactosamine-conjugated siRNA. These siRNA therapeutics exhibit distinct pharmacokinetic characteristics and unique absorption, distribution, metabolism, and elimination (ADME) properties. As a new drug modality, limited clinical data are available for siRNA therapeutics in specific populations, including pediatrics, geriatrics, individuals with renal or hepatic impairment, and pregnant women, making dosing challenging. In this Minireview, a mechanistic overview of the ADME properties of the 5 currently approved siRNA therapeutics is presented. A concise overview of the clinical data available for therapeutic siRNAs in special populations, focusing on the potential impact of physiologic changes during pregnancy on siRNA disposition, is provided. The utility of physiologically based pharmacokinetic (PBPK) modeling as a tool to elucidate the characteristics and disposition of siRNA therapeutics in pregnant women is explored. Additionally, opportunities to integrate known physiologic alterations induced by pregnancy into PBPK models that incorporate siRNA ADME mechanisms to predict the effects of pregnancy on siRNA disposition are discussed. Clinical data regarding the use of therapeutic siRNA in special populations remain limited. Data for precise parameterization of maternal-fetal siRNA PBPK models are lacking presently and underscore the need for further research in this area. Addressing this gap in knowledge will not only enhance our understanding of siRNA pharmacokinetics during pregnancy but also advance the possible development of siRNA therapeutics to treat pregnancy-related conditions. SIGNIFICANCE STATEMENT: This Minireview proposes a framework on how small interfering RNA (siRNA) disposition can be predicted in pregnancy based on mechanistic absorption, distribution, metabolism, and elimination (ADME) information using physiologically-based pharmacokinetic (PBPK) modeling. The mechanistic ADME information and available clinical data in special populations of currently Food and Drug Administration-approved siRNA therapeutics are summarized. Additionally, how physiological changes during pregnancy may affect siRNA disposition is reviewed, and the opportunities to use PBPK modeling to predict siRNA disposition in pregnant women is explored.
Collapse
Affiliation(s)
- Ogochukwu Amaeze
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington
| | - Sara Shum
- ReNAgade Therapeutics Management Inc, Cambridge, Massachusetts.
| |
Collapse
|
2
|
Islam P, Abosalha A, Schaly S, Boyajian JL, Santos M, Makhlouf S, Renesteen E, Kassab A, Shum-Tim C, Shum-Tim D, Prakash S. Baculovirus Expressing Tumor Growth Factor-β1 (TGFβ1) Nanoshuttle Augments Therapeutic Effects for Vascular Wound Healing: Design and In Vitro Analysis. ACS Pharmacol Transl Sci 2024; 7:3419-3428. [PMID: 39539270 PMCID: PMC11555499 DOI: 10.1021/acsptsci.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/20/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
One of the major challenges in vascular tissue regeneration is effective wound healing that can be resolved by an innovative targeted nanoshuttle that delivers growth factors to blood vessels. This study investigates the production and efficacy of transforming growth factor-β1 (TGFβ1) gene delivery using poly(lactic-co-glycolic acid) (PLGA) baculovirus (BV) nanoshuttles (NSs). They exhibited an encapsulation efficiency of 86.23% ± 0.65% and a negative zeta potential of -29.57 ± 1.27 mV. In vitro studies in human umbilical vein endothelial cells (HUVECs) revealed that a 12 h incubation period optimized virus transduction. The safety and superior intracellular uptake of NSs and BVs in HUVECs were observed. The NSs carrying 100 and 400 MOI exhibited the highest cell proliferation rates in HUVECs. These sustained-release NSs significantly improved vascular cell migration and wound closure compared to free TGFβ1 carrying BV and can be a groundbreaking find in regenerative medicine, cardiovascular diseases, and chronic ulcer conditions.
Collapse
Affiliation(s)
- Paromita Islam
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Ahmed Abosalha
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
- Pharmaceutical
Technology Department, Faculty of Pharmacy, Tanta University, Tanta
Al-Geish St., the Medical Campus, Tanta 31527, Egypt
| | - Sabrina Schaly
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Jacqueline L. Boyajian
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Madison Santos
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Stephanie Makhlouf
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Editha Renesteen
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Amal Kassab
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Cedrique Shum-Tim
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
- Mila−Quebec
AI Institute, McGill University, 6666 Saint-Urbain Street, Montreal, Quebec H2S 3H1, Canada
| | - Dominique Shum-Tim
- Division
of Cardiac Surgery, Royal Victoria Hospital, McGill University Health
Centre, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3G 2M1, Canada
| | - Satya Prakash
- Biomedical
Technology and Cell Therapy Research Laboratory, Department of Biomedical
Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
3
|
Thangavelu L, Goyal A, Afzal M, Moglad E, Rawat S, Kazmi I, Alzarea SI, Almalki WH, Rani R, Madhubabu P, Rajput P, Bansal P. Pyroptosis in lung cancer: The emerging role of non-coding RNAs. Pathol Res Pract 2024; 263:155619. [PMID: 39357188 DOI: 10.1016/j.prp.2024.155619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/12/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Lung cancer remains an intractable malignancy worldwide, prompting novel therapeutic modalities. Pyroptosis, a lethal form of programmed cell death featured by inflammation, has been involved in cancer progression and treatment response. Simultaneously, non-coding RNA has been shown to have important roles in coordinating pattern formation and oncogenic pathways, including long non-coding RNA (lncRNAs), microRNA (miRNAs), circular RNA (circRNAs), and small interfering RNA (siRNAs). Recent studies have revealed that ncRNAs can promote or inhibit pyroptosis by interacting with key molecular players such as NLRP3, GSDMD, and various transcription factors. This dual role of ncRNAs offers a unique therapeutic potential to manipulate pyroptosis pathways, providing opportunities for innovative cancer treatments. In this review, we integrate current research findings to propose novel strategies for leveraging ncRNA-mediated pyroptosis as a therapeutic intervention in lung cancer. We explore the potential of ncRNAs as biomarkers for predicting patient response to treatment and as targets for overcoming resistance to conventional therapies.
Collapse
Affiliation(s)
- Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, India
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Sushama Rawat
- Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf 72341, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Richa Rani
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab 140413, India
| | | | - Pranchal Rajput
- Uttaranchal Institute of Pharmaceutical Sciences, Division of Research and Innovation, Uttaranchal University, India
| | - Pooja Bansal
- Department of Applied Sciences, Chandigarh Engineering College, Chandigarh Group of Colleges, Jhanjeri, Mohali 140307, Punjab, India
| |
Collapse
|
4
|
Marbán E. Deconstructing Regenerative Medicine: From Mechanistic Studies of Cell Therapy to Novel Bioinspired RNA Drugs. Circ Res 2024; 135:877-885. [PMID: 39325847 PMCID: PMC11469554 DOI: 10.1161/circresaha.124.323058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
All Food and Drug Administration-approved noncoding RNA (ncRNA) drugs (n≈20) target known disease-causing molecular pathways by mechanisms such as antisense. In a fortuitous evolution of work on regenerative medicine, my coworkers and I inverted the RNA drug discovery process: first we identified natural disease-modifying ncRNAs, then used them as templates for new synthetic RNA drugs. Mechanism was probed only after bioactivity had been demonstrated. The journey began with the development of cardiosphere-derived cells (CDCs) for cardiac regeneration. While testing CDCs in a first-in-human trial, we discovered they worked indirectly: ncRNAs within CDC-secreted extracellular vesicles mediate the therapeutic benefits. The vast majority of such ncRNAs are fragments of unknown function. We chose several abundant ncRNA species from CDC-secreted extracellular vesicles, synthesized and screened each of them in vitro and in vivo. Those with exceptional disease-modifying bioactivity inspired new chemical entities that conform to the structural conventions of the Food and Drug Administration-approved ncRNA armamentarium. This discovery arc-Cell-Derived RNA from Extracellular vesicles for bioinspired Drug develOpment, or CREDO-has yielded various promising lead compounds, each of which works via a unique, and often novel, mechanism. The process relies on emergent insights to shape therapeutic development. The initial focus of our inquiry-CDCs-are now themselves in phase 3 testing for Duchenne muscular dystrophy and its associated cardiomyopathy. But the intravenous delivery strategy and the repetitive dosing protocol for CDCs, which have proven key to clinical success, both arose from systematic mechanistic inquiry. Meanwhile, emergent insights have led to multiple cell-free therapeutic candidates: CDC-secreted extracellular vesicles are in preclinical development for ventricular arrhythmias, while the CREDO-conceived RNA drugs are in translation for diseases ranging from myocarditis to scleroderma.
Collapse
Affiliation(s)
- Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
5
|
Imai S, Watanabe N, Tone Y, Mitamura R, Mori J, Kameyama T, Yamada T, Kusano K. The Usefulness of Determining Plasma and Tissue Concentrations of Phosphorodiamidate Morpholino Oligonucleotides to Estimate Their Efficacy in Duchenne Muscular Dystrophy Patients. Drug Metab Dispos 2024; 52:1029-1036. [PMID: 38991781 DOI: 10.1124/dmd.124.001806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024] Open
Abstract
Currently, four kinds of phosphorodiamidate morpholino oligomers (PMOs), such as viltolarsen, have been approved for the treatment of Duchenne muscular dystrophy (DMD); however, it is unclear whether human efficacy can be estimated using plasma concentrations. This study summarizes the tissue distribution of viltolarsen in mice and cynomolgus monkeys and evaluates the relationship between exposure and efficacy based on exon skipping. In the tissue distribution studies, all muscles in DMD-model mice showed higher concentrations of viltolarsen than those in wild-type mice and cynomolgus monkeys, and the concentrations in skeletal muscle were correlated with the exon-skipping efficiency in mice and cynomolgus monkeys. In addition, a highly sensitive bioanalytical method using liquid chromatography with tandem mass spectrometry shows promise for determining plasma concentrations up to a later time point, and the tissue (muscle)/plasma concentration ratio (Kp) in DMD-model mice was shown to be useful for predicting changes in pharmacodynamic (PD) markers in humans. Our results suggest that pharmacokinetic (PK)/PD analysis can be conducted by using the human PK profile or Kp values and skipping efficiency in DMD-model mice. This information will be useful for the efficient and effective development of PMOs as therapeutic agents. SIGNIFICANCE STATEMENT: We evaluated the relationship between the plasma or tissue concentrations and the efficiency of exon skipping for viltolarsen as an example phosphorodiamidate morpholino oligomers in the skeletal and cardiac muscle of mice and cynomolgus monkeys for pharmacokinetic/pharmacodynamic (PK/PD) analysis. The results suggest that PK/PD analysis can be conducted by using the human PK profile or tissue (muscle)/plasma concentration ratios and skipping efficiency in DMD-model mice.
Collapse
Affiliation(s)
- Shunji Imai
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Naoki Watanabe
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Yuichiro Tone
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Rei Mitamura
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Jumpei Mori
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Tsubasa Kameyama
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Tetsuhiro Yamada
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| | - Kazutomi Kusano
- Drug Metabolism and Pharmacokinetics Research Department, Discovery Research Laboratories, Kyoto (S.I., R.M., J.M., T.K., T.Y., K.K.) and Discovery Research Laboratory in Tsukuba, Ibaraki (N.W., Y.T.) , Nippon Shinyaku Co., Ltd., Japan
| |
Collapse
|
6
|
Yuan Y, Li L, Earp J, Ma L, Bhattaram VA, Sharma V, Tong A, Wang Y, Liu J, Zhu H. Application of Model-Informed Drug Development in Dose Selection and Optimization for siRNA Therapies. J Clin Pharmacol 2024; 64:799-809. [PMID: 38426370 DOI: 10.1002/jcph.2418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
The application of model-informed drug development (MIDD) has revolutionized drug development and regulatory decision making, transforming the process into one that is more efficient, effective, and patient centered. A critical application of MIDD is to facilitate dose selection and optimization, which play a pivotal role in improving efficacy, safety, and tolerability profiles of a candidate drug. With the surge of interest in small interfering RNA (siRNA) drugs as a promising class of therapeutics, their applications in various disease areas have been extensively studied preclinically. However, dosing selection and optimization experience for siRNA in humans is limited. Unique challenges exist for the dose evaluation of siRNA due to the temporal discordance between pharmacokinetic and pharmacodynamic profiles, as well as limited available clinical experience and considerable interindividual variability. This review highlights the pivotal role of MIDD in facilitating dose selection and optimization for siRNA therapeutics. Based on past experiences with approved siRNA products, MIDD has demonstrated its ability to aid in dose selection for clinical trials and enabling optimal dosing for the general patient population. In addition, MIDD presents an opportunity for dose individualization based on patient characteristics, enhancing the precision and effectiveness of siRNA therapeutics. In conclusion, the integration of MIDD offers substantial advantages in navigating the complex challenges of dose selection and optimization in siRNA drug development, which in turn accelerates the development process, supports regulatory decision making, and ultimately improves the clinical outcomes of siRNA-based therapies, fostering advancements in precision medicine across a diverse range of diseases.
Collapse
Affiliation(s)
- Ye Yuan
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Liang Li
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Justin Earp
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Lian Ma
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Venkatesh Atul Bhattaram
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Vishnu Sharma
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Alexander Tong
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Yaning Wang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Jiang Liu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Hao Zhu
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
7
|
von Mässenhausen A, Schlecht MN, Beer K, Maremonti F, Tonnus W, Belavgeni A, Gavali S, Flade K, Riley JS, Zamora Gonzalez N, Brucker A, Becker JN, Tmava M, Meyer C, Peitzsch M, Hugo C, Gembardt F, Angeli JPF, Bornstein SR, Tait SWG, Linkermann A. Treatment with siRNAs is commonly associated with GPX4 up-regulation and target knockdown-independent sensitization to ferroptosis. SCIENCE ADVANCES 2024; 10:eadk7329. [PMID: 38489367 PMCID: PMC10942120 DOI: 10.1126/sciadv.adk7329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024]
Abstract
Small interfering RNAs (siRNAs) are widely used in biomedical research and in clinical trials. Here, we demonstrate that siRNA treatment is commonly associated with significant sensitization to ferroptosis, independently of the target protein knockdown. Genetically targeting mitochondrial antiviral-signaling protein (MAVS) reversed the siRNA-mediated sensitizing effect, but no activation of canonical MAVS signaling, which involves phosphorylation of IkBα and interferon regulatory transcription factor 3 (IRF3), was observed. In contrast, MAVS mediated a noncanonical signal resulting in a prominent increase in mitochondrial ROS levels, and increase in the BACH1/pNRF2 transcription factor ratio and GPX4 up-regulation, which was associated with a 50% decrease in intracellular glutathione levels. We conclude that siRNAs commonly sensitize to ferroptosis and may severely compromise the conclusions drawn from silencing approaches in biomedical research. Finally, as ferroptosis contributes to a variety of pathophysiological processes, we cannot exclude side effects in human siRNA-based therapeutical concepts that should be clinically tested.
Collapse
Affiliation(s)
- Anne von Mässenhausen
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marlena Nastassja Schlecht
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Kristina Beer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Francesca Maremonti
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Wulf Tonnus
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Alexia Belavgeni
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Shubhangi Gavali
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Karolin Flade
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Joel S. Riley
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
- Biocenter Innsbruck (CCB), Medical University Innsbruck, Division of Developmental Immunology, Innrain 80, 6020 Innsbruck, Austria
| | - Nadia Zamora Gonzalez
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Anne Brucker
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Jorunn Naila Becker
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Mirela Tmava
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Claudia Meyer
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Mirko Peitzsch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Hugo
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Florian Gembardt
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
| | - Jose Pedro Friedmann Angeli
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Chair of Translational Cell Biology, University of Würzburg, 97080 Würzburg, Germany
| | - Stefan R. Bornstein
- Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Diabetes and Nutritional Sciences, King's College London, London, UK
- Center for Regenerative Therapies, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Clinic Carl Gustav Carus of TU Dresden Faculty of Medicine, Dresden, Germany
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Stephen W. G. Tait
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1BD, UK
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, 01307 Dresden, Germany
- Division of Nephrology, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
Jia J, Yang J, Qian L, Zhou B, Tang X, Liu S, Wu L, Chen J, Kuang Y. Controlled siRNA Release of Nanopolyplex for Effective Targeted Anticancer Therapy in Animal Model. Int J Nanomedicine 2024; 19:1145-1161. [PMID: 38344438 PMCID: PMC10859097 DOI: 10.2147/ijn.s443636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
Introduction Spatiotemporally controlled release of siRNA for anti-tumor therapy poses significant challenges. Near-infrared (NIR) light, known for its exceptional tissue penetration and minimal tissue invasiveness, holds promise as a viable exogenous stimulus for inducing controlled siRNA release in vivo. However, the majority of light-responsive chemical bonds exhibit absorption wavelengths in the ultraviolet (UV) or short-wavelength visible light range. Methods To achieve NIR-controlled siRNA release, the study synthesized a UV-sensitive triblock copolymer cRGD-poly(ethylene glycol)-b-poly(aspartic acid ester-5-(2'-(dimethylamino)ethoxy)-2-nitrobenzyl alcohol)-b-polyphenylalanine, abbreviated as cRGD-PEG-PAsp(EDONB)-PPHE. This copolymer is composed of a cRGD-capped PEG block (cRGD-PEG), a poly(aspartate) block modified with cationic moieties through UV-cleavable 2-nitrobenzyl ester bonds [PAsp(EDONB)], and a hydrophobic polyphenylalanine block (PPHE). The cationic amphiphilic polymer cRGD-PEG-PAsp(EDONB)-PPHE can assemble with hydrophobic upconversion nanoparticles (UCNPs) to form a cationic micelle designated as T-UCNP, which subsequently complexes with siRNA to create the final nanopolyplex T-si/UCNP. siRNA-PLK1 was employed to prepare T-PLK1/UCNP nanopolyplex for anti-tumor therapy. Results T-PLK1/UCNP not only exhibited outstanding tumor cell targeting through cRGD modification but also achieved 980 nm NIR-controlled PLK1 gene silencing. This was achieved by utilizing the encapsulated UCNPs to convert NIR into UV light, facilitating the cleavage of 2-nitrobenzyl ester bonds. As a result, there was a significant suppression of tumor growth. Conclusion The UCNPs-encapsulated nanopolyplex T-si/UCNP, capable of co-delivering siRNA and UCNPs, enables precise NIR-controlled release of siRNA at the tumor site for cancer RNAi therapy. This nanopolyplex can enhance the controllability and safety of RNAi therapy for tumors, and it also holds the potential to serve as a platform for achieving controlled release and activation of other drugs, such as mRNA and DNA.
Collapse
Affiliation(s)
- Jingchao Jia
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Wuxi, People’s Republic of China
| | - Jing Yang
- Jiangnan University Medical Center, Wuxi, People’s Republic of China
| | - Leimin Qian
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Wuxi, People’s Republic of China
| | - Biao Zhou
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Wuxi, People’s Republic of China
| | - Xiaodong Tang
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Wuxi, People’s Republic of China
| | - Shuanghai Liu
- Department of General Surgery, Jiangyin Hospital Affiliated to Nantong University, Wuxi, People’s Republic of China
| | - Li Wu
- Department of Pharmaceutics, People’s Hospital of Shanggao, Yichun, People’s Republic of China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Jinan University, Guangzhou, People’s Republic of China
| | - Yuting Kuang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
9
|
Goleij P, Babamohamadi M, Rezaee A, Sanaye PM, Tabari MAK, Sadreddini S, Arefnezhad R, Motedayyen H. Types of RNA therapeutics. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 203:41-63. [PMID: 38360005 DOI: 10.1016/bs.pmbts.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
RNA therapy is one of the new treatments using small RNA molecules to target and regulate gene expression. It involves the application of synthetic or modified RNA molecules to inhibit the expression of disease-causing genes specifically. In other words, it silences genes and suppresses the transcription process. The main theory behind RNA therapy is that RNA molecules can prevent the translation into proteins by binding to specific messenger RNA (mRNA) molecules. By targeting disease-related mRNA molecules, RNA therapy can effectively silence or reduce the development of harmful proteins. There are different types of RNA molecules used in therapy, including small interfering RNAs (siRNAs), microRNAs (miRNAs), aptamer, ribozyme, and antisense oligonucleotides (ASOs). These molecules are designed to complement specific mRNA sequences, allowing them to bind and degrade the targeted mRNA or prevent its translation into protein. Nanotechnology is also highlighted to increase the efficacy of RNA-based drugs. In this chapter, while examining various methods of RNA therapy, we discuss the advantages and challenges of each.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehregan Babamohamadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran; Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Amin Khazeei Tabari
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; USERN Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sarvin Sadreddini
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Arefnezhad
- Coenzyme R Research Institute, Tehran, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hossein Motedayyen
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
10
|
Liu C, Zhang X, Yang H, Zhao M, Liu Y, Zhao R, Li Z, Sun M. PEG-modified nano liposomes co-deliver Apigenin and RAGE-siRNA to protect myocardial ischemia injury. Int J Pharm 2024; 649:123673. [PMID: 38056796 DOI: 10.1016/j.ijpharm.2023.123673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 12/08/2023]
Abstract
Ischemic heart disease (IHD) is a cardiac disorder in which myocardial damage occurs as a result of myocardial ischemia and hypoxia. Evidence suggests that oxidative stress and inflammatory responses are critical in the development of myocardial ischemia. Therefore, the combination of antioxidant and anti-inflammatory applications is an effective strategy to combat ischemic heart disease. In this paper, polyethylene glycol (PEG)-modified cationic liposomes were used as carriers to deliver apigenin (Apn) with small interfering RNA (siRNA) targeting the receptor for glycosylation end products (RAGE) (siRAGE) into cardiomyocytes to prevent myocardial ischemic injury through antioxidant and anti-inflammatory effects. Our results showed that we successfully prepared cationic PEG liposomes loaded with Apn and siRAGE (P-CLP-A/R) with normal appearance and morphology, particle size and Zeta potential, and good encapsulation rate, drug loading and in vitro release degree. In vitro, P-CLP-A/R was able to prevent oxidative stress injury in H9C2 cells, downregulate the expression of RAGE, reduce the secretion of cellular inflammatory factors and inhibit apoptosis through the RAGE/NF-κB pathway; In vivo, P-CLP-A/R was able to prevent arrhythmia and myocardial pathological injury, and reduce apoptosis and the area of necrotic myocardium in rats. In conclusion, P-CLP-A/R has a protective effect on myocardial ischemic injury and is expected to be a potential drug for the prevention of ischemic heart disease in the future.
Collapse
Affiliation(s)
- Chang Liu
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China.
| | - Xiaojun Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin 130022, PR China
| | - Huiying Yang
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meijun Zhao
- Department of Clinical Pharmacy, Affiliated Hospital of Jilin Medical College, Jilin, Jilin 132013, PR China
| | - Yanhong Liu
- Center for Prenatal Diagnosis, Centre for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin 130061, PR China
| | - Risheng Zhao
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Ziqing Li
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| | - Meng Sun
- College of Pharmacy, Beihua University, Jilin, Jilin 132013, PR China
| |
Collapse
|
11
|
Puccetti M, Schoubben A, Giovagnoli S, Ricci M. Biodrug Delivery Systems: Do mRNA Lipid Nanoparticles Come of Age? Int J Mol Sci 2023; 24:ijms24032218. [PMID: 36768539 PMCID: PMC9917085 DOI: 10.3390/ijms24032218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
As an appealing alternative to treat and prevent diseases ranging from cancer to COVID-19, mRNA has demonstrated significant clinical effects. Nanotechnology facilitates the successful implementation of the systemic delivery of mRNA for safe human consumption. In this manuscript, we provide an overview of current mRNA therapeutic applications and discuss key biological barriers to delivery and recent advances in the development of nonviral systems. The relevant challenges that LNPs face in achieving cost-effective and widespread clinical implementation when delivering mRNA are likewise discussed.
Collapse
|