1
|
Jung HJ, Kim SH, Shin N, Oh SJ, Hwang JH, Kim HJ, Kim YH, Bhatia SK, Jeon JM, Yoon JJ, Yang YH. Polyhydroxybutyrate (PHB) production from sugar cane molasses and tap water without sterilization using novel strain, Priestia sp. YH4. Int J Biol Macromol 2023; 250:126152. [PMID: 37558031 DOI: 10.1016/j.ijbiomac.2023.126152] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
The production cost of biodegradable polymer like polyhydroxybutyrate (PHB) is still higher than that of petroleum-based plastics. A potential solution for reducing its production cost is using a cheap carbon source and avoiding a process of sterilization. In this study, a novel PHB-producing microbial strain, Priestia sp. YH4 was screened from the marine environment using sugarcane molasses as the carbon source without sterilization. Culture conditions, such as carbon, NaCl, temperature, pH, inoculum size, and cultivation time, were optimized for obtaining the highest PHB production by YH4 resulting in 5.94 g/L of dry cell weight (DCW) and 61.7 % of PHB content in the 5 mL culture. In addition, it showed similar PHB production between the cultures with or without sterilization in Marine Broth media. When cultured using only tap water, sugarcane molasses, and NaCl in a 5 L fermenter, 24.8 g/L DCW was produced at 41 h yielding 13.9 g/L PHB. Finally, DSC (Differential Scanning Calorimetry) and GPC (Gel Permeation Chromatography) were used to analyze thermal properties and molecular weights resulting in Tm = 167.2 °C, Tc = 67.3 °C, Mw = 2.85 × 105, Mn = 1.05 × 105, and PDI = 2.7, respectively. Therefore, we showed the feasibility of more economical process for PHB production by finding novel strain, utilizing molasses with minimal media components and avoiding sterilization.
Collapse
Affiliation(s)
- Hee Ju Jung
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Nara Shin
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Suk-Jin Oh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jeong Hyeon Hwang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yi-Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea
| | - Jong-Min Jeon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Jeong-Jun Yoon
- Green & Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea; Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Abou-Ghanem M, Nodeh-Farahani D, McGrath DT, VandenBoer TC, Styler SA. Emerging investigator series: ozone uptake by urban road dust and first evidence for chlorine activation during ozone uptake by agro-based anti-icer: implications for wintertime air quality in high-latitude urban environments. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:2070-2084. [PMID: 36044235 DOI: 10.1039/d1em00393c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
High-latitude urban regions provide a unique and complex range of environmental surfaces for uptake of trace pollutant gases, including winter road maintenance materials (e.g., gravel, rock salts, and anti-icer, a saline solution applied to roads during winter). In an effort to reduce the negative environmental and economic impacts of road salts, many municipalities have turned to agro-based anti-icing materials that are rich in organic material. To date, the reactivity of both anti-icer and saline road dust with pollutant gases remain unexplored, which limits our ability to assess the potential impacts of these materials on air quality in high-latitude regions. Here, we used a coated-wall flow tube to investigate the uptake of ozone, an important air pollutant, by road dust collected in Edmonton, Canada. At 25% relative humidity (RH) and 50 ppb ozone, γBET for ozone uptake by this sample is (8.0 ± 0.7) × 10-8 under dark conditions and (2.1 ± 0.1) × 10-7 under illuminated conditions. These values are 2-4× higher than those previously obtained by our group for natural mineral dusts, but are not large enough for suspended road dust to influence local ozone mixing ratios. In a separate set of experiments, we also investigated the uptake of ozone by calcium chloride (i.e., road salt) and commercial anti-icer solution. Although ozone uptake by pure calcium chloride was negligible, ozone uptake by anti-icer was significant, which implies that the reactivity of anti-icer is conferred by its organic content. Importantly, ozone uptake by anti-icer-and, to a lesser extent, road dust doped with anti-icer-leads to the release of inorganic chlorine gas, which we collected using inline reductive trapping and quantified using ion chromatography. To explain these results, we propose a novel pathway for chlorine activation: here, ozone oxidation of the anti-icer organic fraction (in this case, molasses) yields reactive OH radicals that can oxidize chloride. In summary, this study demonstrates the ability of road dust and anti-icer to influence atmospheric oxidant mixing ratios in cold-climate urban areas, and highlights previously unidentified air quality impacts of winter road maintenance decisions.
Collapse
Affiliation(s)
- Maya Abou-Ghanem
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Devon T McGrath
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | | | - Sarah A Styler
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Successive Fermentation of Aguamiel and Molasses by Aspergillus oryzae and Saccharomyces cerevisiae to Obtain High Purity Fructooligosaccharides. Foods 2022; 11:foods11121786. [PMID: 35741984 PMCID: PMC9222578 DOI: 10.3390/foods11121786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 02/05/2023] Open
Abstract
Fructooligosaccharides (FOS) are usually synthesized with pure enzymes using highly concentrated sucrose solutions. In this work, low-cost aguamiel and molasses were explored as sucrose alternatives to produce FOS, via whole-cell fermentation, with an Aspergillus oryzae DIA-MF strain. FOS production process was optimized through a central composite experimental design, with two independent variables: initial sucrose concentration in a medium composed of aguamiel and molasses (AgMe), and inoculum concentration. The optimized process—165 g/L initial sucrose in AgMe (adjusted with concentrated molasses) and 1 × 107 spores/mL inoculum concentration—resulted in an FOS production of 119 ± 12 g/L and a yield of 0.64 ± 0.05 g FOS/g GFi. Among the FOSs produced were kestose, nystose, 1-fructofuranosyl-nystose, and potentially a novel trisaccharide produced by this strain. To reduce the content of mono- and disaccharides in the mixture, run a successive fermentation was run with two Saccharomyces cerevisiae strains. Fermentations run with S. cerevisiae S227 improved FOS purity in the mixture from 39 ± 3% to 61.0 ± 0.6% (w/w) after 16 h of fermentation. This study showed that agro-industrial wastes such as molasses with aguamiel are excellent alternatives as substrate sources for the production of prebiotic FOS, resulting in a lower-cost process.
Collapse
|
4
|
Iyyappan J, Bharathiraja B, Varjani S, PraveenKumar R, Muthu Kumar S. Anaerobic biobutanol production from black strap molasses using Clostridium acetobutylicum MTCC11274: Media engineering and kinetic analysis. BIORESOURCE TECHNOLOGY 2022; 346:126405. [PMID: 34826562 DOI: 10.1016/j.biortech.2021.126405] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microbial reduction of black strap molasses (BSM) by Clostridium acetobutylicum MTCC 11,274 was performed for the production of biobutanol. The optimum fermentation conditions were predicted using one factor at a time (OFAT) method. The identification of significant parameters was performed using Plackett-Burman Design (PBD). Furthermore the fermentation conditions were optimized using central composite design (CCD). The kinetics of substrate utilization and product formation were investigated. Initial pH, yeast extract concentration (g/L) and total reducing sugar concentration (g/L) were found as significant parameters affecting butanol production using C. acetobutylicum MTCC11274. The maximum butanol production under optimal condition was 10.27 + 0.82 g/L after 24 h. The waste black strap molasses obtained from sugar industry could be used as promising substrate for the production of next generation biofuel.
Collapse
Affiliation(s)
- J Iyyappan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602107, India
| | - B Bharathiraja
- Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India
| | - R PraveenKumar
- Arunai Engineering College, Tiruvannamalai 606603, India
| | - S Muthu Kumar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
5
|
Isolation of Lactiplantibacillus sp. from Korean salted and fermented seafoods for effective fermentation of strawberry leaf extract: enhanced anti-inflammatory activity. 3 Biotech 2021; 11:268. [PMID: 34017674 DOI: 10.1007/s13205-021-02753-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/19/2021] [Indexed: 10/21/2022] Open
Abstract
Berries are rich in bioactive phytochemicals and phenolic compounds. In the present study, strawberry leaves obtained from Nangsan-myeon, Jeollabuk-do, Korea in 2019 were fermented using Lactiplantibacillus plantarum B1-4 and studied for antioxidant and anti-inflammatory properties. Comparative testing of active ingredients in the raw and fermented extract showed an increase in total polyphenol content and total flavonoid content from 92.0 mg GAE/g and 40.4 mg QE/g, respectively, to 116.1 mg GAE/g and 49.5 mg QE/g, respectively, in fermented extracts. Similarly, catechin content in fermented extract was increased by 26.5% and epicatechin content was decreased by 9.3%. Total and reducing sugar contents in the fermented extract were decreased by 58.4% and 50.4%. DPPH radical scavenging activity of the extracts before and after fermentation increased by about 10.7% from 35.6 to 46.3% at 250 µg/mL and ABTS by about 6.0% from 48.6 to 54.6% at 500 µg/mL. Cytotoxicity assay confirmed that fermented extract caused no harm to chromatid structure of RAW 264.7 cells up to 500 µg/mL concentration. Fermented extracts (400 µg/mL) reduced nitric oxide production (9.7%) and the levels of TNF-α (18.1%) and IL-6 (11.8%), making them ideal for integration into skin care products. The significant functional groups present in raw and fermented extracts were identified using FTIR. Thus, this study adds to the notion of using fermented extracts in functional foods due to their anti-inflammatory properties.
Collapse
|
6
|
Do Nascimento Costa RC, Ferreira NLB, De Andrade RO. Physicochemical and Microbiological Analysis of Passion Fruit and Cachaça Jelly Added from Albedo as a Source of Pectin, and Molasses as a Source of Sugar. JOURNAL OF CULINARY SCIENCE & TECHNOLOGY 2021. [DOI: 10.1080/15428052.2021.1914262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Rosely Cristina Do Nascimento Costa
- Department of Agroindustrial Management and Technology, Federal University of Paraiba, Bananeiras - PB, Brazil
- Department of Agroindustrial Management and Technology, Center for Human, Social and Agrarian Sciences Federal University of Paraiba, Bananeiras - PB, Brazil
| | - Nadson Libio Bezerra Ferreira
- Department of Agroindustrial Management and Technology, Center for Human, Social and Agrarian Sciences Federal University of Paraiba, Bananeiras - PB, Brazil
- Department of Food Technology, State University of Campinas, Campinas - SP, Brazil
| | - Romário Oliveira De Andrade
- Department of Agroindustrial Management and Technology, Center for Human, Social and Agrarian Sciences Federal University of Paraiba, Bananeiras - PB, Brazil
- Department of Agroindustria/Food, Professor at the Federal Institute of Alagoas – IFAL. Piranhas – AL, Brazil
| |
Collapse
|
7
|
Nagamatsu ST, Coutouné N, José J, Fiamenghi MB, Pereira GAG, Oliveira JVDC, Carazzolle MF. Ethanol production process driving changes on industrial strains. FEMS Yeast Res 2021; 21:6070656. [PMID: 33417685 DOI: 10.1093/femsyr/foaa071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022] Open
Abstract
Ethanol production has key differences between the two largest producing countries of this biofuel, Brazil and the USA, such as feedstock source, sugar concentration and ethanol titers in industrial fermentation. Therefore, it is highly probable that these specificities have led to genome adaptation of the Saccharomyces cerevisiae strains employed in each process to tolerate different environments. In order to identify particular adaptations, in this work, we have compared the genomes of industrial yeast strains widely used to produce ethanol from sugarcane, corn and sweet sorghum, and also two laboratory strains as reference. The genes were predicted and then 4524 single-copy orthologous were selected to build the phylogenetic tree. We found that the geographic location and industrial process were shown as the main evolutionary drivers: for sugarcane fermentation, positive selection was identified for metal homeostasis and stress response genes, whereas genes involved in membrane modeling have been connected with corn fermentation. In addition, the corn specialized strain Ethanol Red showed an increased number of copies of MAL31, a gene encoding a maltose transporter. In summary, our work can help to guide new strain chassis selection for engineering strategies, to produce more robust strains for biofuel production and other industrial applications.
Collapse
Affiliation(s)
- Sheila Tiemi Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale School of Medicine, 333 Cedar St, New Haven, CT, 06510, USA.,Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Natalia Coutouné
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Juliana José
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Mateus Bernabe Fiamenghi
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Gonçalo Amarante Guimarães Pereira
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), CEP 13083-970, Campinas, São Paulo, Brazil
| | - Marcelo Falsarella Carazzolle
- Laboratório de Genômica e BioEnergia, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade Estadual de Campinas (UNICAMP), Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-970, Brazil
| |
Collapse
|
8
|
ABDULLAH M, MAHMOOD S, AHMED Z. Evaluation of anti anemic prospective of natural iron sources in lactating women- an ignored important segment of Pakistani population. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.05020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Differential Effects of Chronic Ingestion of Refined Sugars versus Natural Sweeteners on Insulin Resistance and Hepatic Steatosis in a Rat Model of Diet-Induced Obesity. Nutrients 2020; 12:nu12082292. [PMID: 32751772 PMCID: PMC7469035 DOI: 10.3390/nu12082292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 01/07/2023] Open
Abstract
While the detrimental effect of refined sugars on health has been the subject of many investigations, little is known about the long-term impact of natural sweeteners on metabolic disorders. In this study we compared the metabolic responses to chronic ingestion of refined sugars compared to various natural sweeteners in diet-induced obese rats. Wistar rats were fed a high-fat high-sucrose diet (HFHS) for 8 weeks and daily gavaged with a solution containing 1 g of total carbohydrates from refined sugar (sucrose or fructose) or six different natural sugar sources, followed by assessment of glucose homeostasis, hepatic lipid accumulation, and inflammation. While glucose tolerance was similar following treatments with refined and natural sugars, lowered glucose-induced hyperinsulinemia was observed with fructose. Consumption of fructose and all-natural sweeteners but not corn syrup were associated with lower insulin resistance as revealed by reduced fasting insulin and homeostatic model assessment of insulin resistance (HOMA-IR) compared to sucrose treatment of HFHS-fed rats. All-natural sweeteners and fructose induced similar liver lipid accumulation as sucrose. Nevertheless, maple syrup, molasses, agave syrup, and corn syrup as well as fructose further reduced hepatic IL-1β levels compared to sucrose treatment. We conclude that natural sweeteners and especially maple syrup, molasses, and agave syrup attenuate the development of insulin resistance and hepatic inflammation compared to sucrose in diet-induced obese rats, suggesting that consumption of those natural sweeteners is a less harmful alternative to sucrose in the context of obesity.
Collapse
|
10
|
Briguglio M, Hrelia S, Malaguti M, Lombardi G, Riso P, Porrini M, Perazzo P, Banfi G. The Central Role of Iron in Human Nutrition: From Folk to Contemporary Medicine. Nutrients 2020; 12:nu12061761. [PMID: 32545511 PMCID: PMC7353323 DOI: 10.3390/nu12061761] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/26/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
Iron is a fundamental element in human history, from the dawn of civilization to contemporary days. The ancients used the metal to shape tools, to forge weapons, and even as a dietary supplement. This last indication has been handed down until today, when martial therapy is considered fundamental to correct deficiency states of anemia. The improvement of the martial status is mainly targeted with dietary supplements that often couple diverse co-factors, but other methods are available, such as parenteral preparations, dietary interventions, or real-world approaches. The oral absorption of this metal occurs in the duodenum and is highly dependent upon its oxidation state, with many absorption influencers possibly interfering with the intestinal uptake. Bone marrow and spleen represent the initial and ultimate step of iron metabolism, respectively, and the most part of body iron circulates bound to specific proteins and mainly serves to synthesize hemoglobin for new red blood cells. Whatever the martial status is, today’s knowledge about iron biochemistry allows us to embrace exceedingly personalized interventions, which however owe their success to the mythical and historical events that always accompanied this metal.
Collapse
Affiliation(s)
- Matteo Briguglio
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, 20161 Milan, Italy;
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (S.H.); (M.M.)
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy; (S.H.); (M.M.)
| | - Giovanni Lombardi
- IRCCS Orthopedic Institute Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, 20161 Milan, Italy;
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, 61-871 Poznań, Poland
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, University of Milan, 20133 Milan, Italy; (P.R.); (M.P.)
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Division of Human Nutrition, University of Milan, 20133 Milan, Italy; (P.R.); (M.P.)
| | - Paolo Perazzo
- IRCCS Orthopedic Institute Galeazzi, Postoperative Intensive Care Unit & Anesthesia, 20161 Milan, Italy;
| | - Giuseppe Banfi
- IRCCS Orthopedic Institute Galeazzi, Scientific Direction, 20161 Milan, Italy;
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
11
|
Adaptation to Industrial Stressors Through Genomic and Transcriptional Plasticity in a Bioethanol Producing Fission Yeast Isolate. G3-GENES GENOMES GENETICS 2020; 10:1375-1391. [PMID: 32086247 PMCID: PMC7144085 DOI: 10.1534/g3.119.400986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Schizosaccharomyces pombe is a model unicellular eukaryote with ties to the basic research, oenology and industrial biotechnology sectors. While most investigations into S. pombe cell biology utilize Leupold’s 972h- laboratory strain background, recent studies have described a wealth of genetic and phenotypic diversity within wild populations of S. pombe including stress resistance phenotypes which may be of interest to industry. Here we describe the genomic and transcriptomic characterization of Wilmar-P, an S. pombe isolate used for bioethanol production from sugarcane molasses at industrial scale. Novel sequences present in Wilmar-P but not in the laboratory S. pombe genome included multiple coding sequences with near-perfect nucleotide identity to Schizosaccharomyces octosporus sequences. Wilmar-P also contained a ∼100kb duplication in the right arm of chromosome III, a region harboring ght5+, the predominant hexose transporter encoding gene. Transcriptomic analysis of Wilmar-P grown in molasses revealed strong downregulation of core environmental stress response genes and upregulation of hexose transporters and drug efflux pumps compared to laboratory S. pombe. Finally, examination of the regulatory network of Scr1, which is involved in the regulation of several genes differentially expressed on molasses, revealed expanded binding of this transcription factor in Wilmar-P compared to laboratory S. pombe in the molasses condition. Together our results point to both genomic plasticity and transcriptomic adaptation as mechanisms driving phenotypic adaptation of Wilmar-P to the molasses environment and therefore adds to our understanding of genetic diversity within industrial fission yeast strains and the capacity of this strain for commercial scale bioethanol production.
Collapse
|
12
|
Briguglio M, Hrelia S, Malaguti M, De Vecchi E, Lombardi G, Banfi G, Riso P, Porrini M, Romagnoli S, Pino F, Crespi T, Perazzo P. Oral Supplementation with Sucrosomial Ferric Pyrophosphate Plus L-Ascorbic Acid to Ameliorate the Martial Status: A Randomized Controlled Trial. Nutrients 2020; 12:nu12020386. [PMID: 32024027 PMCID: PMC7071340 DOI: 10.3390/nu12020386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
Altered martial indices before orthopedic surgery are associated with higher rates of complications and greatly affect the patient’s functional ability. Oral supplements can optimize the preoperative martial status, with clinical efficacy and the patient’s tolerability being highly dependent on the pharmaceutical formula. Patients undergoing elective hip/knee arthroplasty were randomized to be supplemented with a 30-day oral therapy of sucrosomial ferric pyrophosphate plus L-ascorbic acid. The tolerability was 2.7% among treated patients. Adjustments for confounding factors, such as iron absorption influencers, showed a relevant response limited to older patients (≥ 65 years old), whose uncharacterized Hb loss was averted upon treatment with iron formula. Older patients with no support lost −2.8 ± 5.1%, while the intervention group gained +0.7 ± 4.6% of circulating hemoglobin from baseline (p = 0.019). Gastrointestinal diseases, medications, and possible dietary factors could affect the efficacy of iron supplements. Future opportunities may consider to couple ferric pyrophosphate with other nutrients, to pay attention in avoiding absorption disruptors, or to implement interventions to obtain an earlier martial status optimization at the population level.
Collapse
Affiliation(s)
- Matteo Briguglio
- Scientific Direction, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
- Correspondence:
| | - Silvana Hrelia
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (S.H.); (M.M.)
| | - Marco Malaguti
- Department for Life Quality Studies, University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy; (S.H.); (M.M.)
| | - Elena De Vecchi
- Laboratory of Clinical Chemistry and Microbiology, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871 Poznań, Poland
| | - Giuseppe Banfi
- Scientific Direction, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, Via Olgettina 58, 20132 Milan, Italy
| | - Patrizia Riso
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (P.R.); (M.P.)
| | - Marisa Porrini
- Division of Human Nutrition, Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Via Mangiagalli 25, 20133 Milan, Italy; (P.R.); (M.P.)
| | - Sergio Romagnoli
- Joint Replacement Department, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy;
| | - Fabio Pino
- Post-operative Intensive Care Unit & Anesthesia, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy; (F.P.); (T.C.); (P.P.)
| | - Tiziano Crespi
- Post-operative Intensive Care Unit & Anesthesia, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy; (F.P.); (T.C.); (P.P.)
| | - Paolo Perazzo
- Post-operative Intensive Care Unit & Anesthesia, IRCCS Orthopedic Institute Galeazzi, Via Riccardo Galeazzi 4, 20161 Milan, Italy; (F.P.); (T.C.); (P.P.)
| |
Collapse
|
13
|
Shakurnia A, Sheikhi A, Mirzapour M, Baharifar V, Baharifar N, Aghamohammadi N, Sheikhi M, Matinrad M, Mousavinasab SN, Sheikhi S, Sheikhi R. Sugarcane molasses enhances TGF-β secretion and FOXP3 gene expression by Bifidobacterium Animalis Subsp. Lactis stimulated PBMCs of Ulcerative Colitis patients. Complement Ther Med 2019; 47:102210. [PMID: 31780030 DOI: 10.1016/j.ctim.2019.102210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
Ulcerative colitis (UC) is one of the inflammatory diseases of the gut with frequent bloody diarrhea leads to increased rates of anemia. Evidences indicate the immunomodulation disorders in the response to intestinal microbiota in UC. Although sugarcane molasses, rich in necessary minerals and vitamins, could be a good support nutrient but its effect on immune system of UC patients is unknown. To determine how the immune system of UC patients responds to molasses this study was planned. Bifidobacterium lactis were cultivated on MRS broth. PBMCs of 12 UC patients were separated by Ficoll-Hypaque centrifugation and co-cultured with different concentrations of UV killed bacteria and/or molasses in RPMI-1640 plus 10 % FCS. The gene expression of FoxP3 was measured by real-time PCR. TGF-β and TNF-α were measured in supernatant of PBMCs by ELISA. Sugarcane molasses and B. lactis significantly augmented TGF-β compared to control (p < 0.01 and p < 0.001 respectively). The secretion levels of TGF-β by B. lactis plus molasses compared to B. lactis stimulated PBMCs was significantly higher (p < 0.05) but the level of TNF-α by PBMCs after 2/4/12 h incubation with B. lactis plus molasses compared to B. lactis alone was not changed (p > 0.2). The level of FOXP3 expression after treatment with molasses was increased significantly (p < 0.05). These data show that if sugarcane molasses added to B. lactis, not only do not increase the pro-inflammatory cytokine, TNF-α, but also augments the anti-inflammatory cytokine, TGF-β by PBMCs. Therefore, these results pave the way for further investigation to show sugarcane molasses as a safe support to compensate the lost nutrients in UC patients.
Collapse
Affiliation(s)
- Abdolhussein Shakurnia
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abdolkarim Sheikhi
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran.
| | | | - Vahid Baharifar
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narges Baharifar
- Department of Immunology, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Nima Aghamohammadi
- Department of Internal Medicine, Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mehdi Sheikhi
- Faculty of Medicine, Kazeroon Azad University, Kazeroon, Iran
| | | | - S Nouraddin Mousavinasab
- Department of Social Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sepideh Sheikhi
- Faculty of Nursing and Midwifery, Islamic Azad University of Dezful, Dezful, Iran
| | - Razieh Sheikhi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
de la Rosa O, Flores-Gallegos AC, Muñíz-Marquez D, Nobre C, Contreras-Esquivel JC, Aguilar CN. Fructooligosaccharides production from agro-wastes as alternative low-cost source. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
Rudisill SS, Martin BR, Mankowski KM, Tessier CR. Iron Deficiency Reduces Synapse Formation in the Drosophila Clock Circuit. Biol Trace Elem Res 2019; 189:241-250. [PMID: 30022428 PMCID: PMC6338522 DOI: 10.1007/s12011-018-1442-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023]
Abstract
Iron serves as a critical cofactor for proteins involved in a host of biological processes. In most animals, dietary iron is absorbed in enterocytes and then disseminated for use in other tissues in the body. The brain is particularly dependent on iron. Altered iron status correlates with disorders ranging from cognitive dysfunction to disruptions in circadian activity. The exact role iron plays in producing these neurological defects, however, remains unclear. Invertebrates provide an attractive model to study the effects of iron on neuronal development since many of the genes involved in iron metabolism are conserved, and the organisms are amenable to genetic and cytological techniques. We have examined synapse growth specifically under conditions of iron deficiency in the Drosophila circadian clock circuit. We show that projections of the small ventrolateral clock neurons to the protocerebrum of the adult Drosophila brain are significantly reduced upon chelation of iron from the diet. This growth defect persists even when iron is restored to the diet. Genetic neuronal knockdown of ferritin 1 or ferritin 2, critical components of iron storage and transport, does not affect synapse growth in these cells. Together, these data indicate that dietary iron is necessary for central brain synapse formation in the fly and further validate the use of this model to study the function of iron homeostasis on brain development.
Collapse
Affiliation(s)
- Samuel S Rudisill
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Bradley R Martin
- Department of Biological Sciences, University of Notre Dame, South Bend, IN, USA
| | - Kevin M Mankowski
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA
| | - Charles R Tessier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine-South Bend, Raclin Carmichael Hall 127, 1234 Notre Dame Avenue, South Bend, IN, 46617, USA.
| |
Collapse
|