1
|
Kerkman PF, de Vor L, van der Vaart TW, ten Doesschate T, Muts RM, Depelteau JS, Scheepmaker L, Ruyken M, de Haas CJ, Aerts PC, Marijnissen R, Schuurman J, Beurskens FJ, Gorlani A, Bardoel B, Rooijakkers SH. Single-cell Sequencing of Circulating Human Plasmablasts during Staphylococcus aureus Bacteremia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1644-1655. [PMID: 39451041 PMCID: PMC7616744 DOI: 10.4049/jimmunol.2300858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Staphylococcus aureus is the major cause of healthcare-associated infections, including life-threatening conditions as bacteremia, endocarditis, and implant-associated infections. Despite adequate antibiotic treatment, the mortality of S. aureus bacteremia remains high. This calls for different strategies to treat this infection. In past years, sequencing of Ab repertoires from individuals previously exposed to a pathogen emerged as a successful method to discover novel therapeutic monoclonal Abs and understand circulating B cell diversity during infection. In this paper, we collected peripheral blood from 17 S. aureus bacteremia patients to study circulating plasmablast responses. Using single-cell transcriptome gene expression combined with sequencing of variable heavy and light Ig genes, we retrieved sequences from >400 plasmablasts revealing a high diversity with >300 unique variable heavy and light sequences. More than 200 variable sequences were synthesized to produce recombinant IgGs that were analyzed for binding to S. aureus whole bacterial cells. This revealed four novel monoclonal Abs that could specifically bind to the surface of S. aureus in the absence of Ig-binding surface SpA. Interestingly, three of four mAbs showed cross-reactivity with Staphylococcus epidermidis. Target identification revealed that the S. aureus-specific mAb BC153 targets wall teichoic acid, whereas cross-reactive mAbs BC019, BC020, and BC021 target lipoteichoic acid. All mAbs could induce Fc-dependent phagocytosis of staphylococci by human neutrophils. Altogether, we characterize the active B cell responses to S. aureus in infected patients and identify four functional mAbs against the S. aureus surface, of which three cross-react with S. epidermidis.
Collapse
Affiliation(s)
- Priscilla F. Kerkman
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisanne de Vor
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Thomas W. van der Vaart
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases, Amsterdam, The Netherlands
| | - Thijs ten Doesschate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
- Department of Internal Medicine, Jeroen Bosch Hospital, Den Bosch, The Netherlands
| | - Remy M. Muts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jamie S. Depelteau
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisette Scheepmaker
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carla J.C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Piet C. Aerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | | | | | | | - Bart Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Suzan H.M. Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
2
|
Foss S, Sakya SA, Aguinagalde L, Lustig M, Shaughnessy J, Cruz AR, Scheepmaker L, Mathiesen L, Ruso-Julve F, Anthi AK, Gjølberg TT, Mester S, Bern M, Evers M, Bratlie DB, Michaelsen TE, Schlothauer T, Sok D, Bhattacharya J, Leusen J, Valerius T, Ram S, Rooijakkers SHM, Sandlie I, Andersen JT. Human IgG Fc-engineering for enhanced plasma half-life, mucosal distribution and killing of cancer cells and bacteria. Nat Commun 2024; 15:2007. [PMID: 38453922 PMCID: PMC10920689 DOI: 10.1038/s41467-024-46321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Monoclonal IgG antibodies constitute the fastest growing class of therapeutics. Thus, there is an intense interest to design more potent antibody formats, where long plasma half-life is a commercially competitive differentiator affecting dosing, frequency of administration and thereby potentially patient compliance. Here, we report on an Fc-engineered variant with three amino acid substitutions Q311R/M428E/N434W (REW), that enhances plasma half-life and mucosal distribution, as well as allows for needle-free delivery across respiratory epithelial barriers in human FcRn transgenic mice. In addition, the Fc-engineered variant improves on-target complement-mediated killing of cancer cells as well as both gram-positive and gram-negative bacteria. Hence, this versatile Fc technology should be broadly applicable in antibody design aiming for long-acting prophylactic or therapeutic interventions.
Collapse
Affiliation(s)
- Stian Foss
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Siri A Sakya
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Leire Aguinagalde
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Marta Lustig
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Jutamas Shaughnessy
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Ana Rita Cruz
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Lisette Scheepmaker
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Line Mathiesen
- Department of Public Health, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fulgencio Ruso-Julve
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Aina Karen Anthi
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Simone Mester
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Malin Bern
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Mitchell Evers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Diane B Bratlie
- Infection Immunology, Norwegian Institute of Public Health, Oslo, Norway
| | - Terje E Michaelsen
- Infection Immunology, Norwegian Institute of Public Health, Oslo, Norway
- Department of Chemical Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Munich, Germany
| | - Devin Sok
- International AIDS Vaccine Initiative (IAVI), New York, NY, USA
| | - Jayanta Bhattacharya
- Antibody Translational Research Program, Translational Health Science & Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Jeanette Leusen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts University Kiel and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Institute of Clinical Medicine, Department of Pharmacology, University of Oslo, Oslo, Norway.
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Qerqez AN, Silva RP, Maynard JA. Outsmarting Pathogens with Antibody Engineering. Annu Rev Chem Biomol Eng 2023; 14:217-241. [PMID: 36917814 PMCID: PMC10330301 DOI: 10.1146/annurev-chembioeng-101121-084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.
Collapse
Affiliation(s)
- Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| | - Rui P Silva
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| |
Collapse
|
4
|
Dalesandro BE, Pires MM. Immunotargeting of Gram-Positive Pathogens via a Cell Wall Binding Tick Antifreeze Protein. J Med Chem 2023; 66:503-515. [PMID: 36563000 DOI: 10.1021/acs.jmedchem.2c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Immunological agents that supplement or modulate the host immune response have proven to have powerful therapeutic potential, although this modality is less explored against bacterial pathogens. We describe the application of a bacterial binding protein to re-engage the immune system toward pathogenic bacteria. More specifically, a hapten was conjugated to a protein expressed by Ixodes scapularis ticks, called I. scapularis antifreeze glycoprotein (IAFGP), that has high affinity for the d-alanine residue on the bacterial peptidoglycan. We showed that a fragment of this protein retained high surface binding affinity. Moreover, conjugation of a hapten to this peptide led to the display of haptens on the cell surface of vancomycin-resistant Enterococcus faecalis. Hapten display then induced the recruitment of antibodies and promoted uptake of bacterial pathogens by immune cells. These results demonstrate the feasibility in using cell wall binding agents as the basis of a class of bacterial immunotherapies.
Collapse
Affiliation(s)
- Brianna E Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
5
|
Di Carluccio C, Soriano-Maldonado P, Berni F, de Haas CJC, Temming AR, Hendriks A, Ali S, Molinaro A, Silipo A, van Sorge NM, van Raaij MJ, Codee JDC, Marchetti R. Antibody Recognition of Different Staphylococcus aureus Wall Teichoic Acid Glycoforms. ACS CENTRAL SCIENCE 2022; 8:1383-1392. [PMID: 36313161 PMCID: PMC9615122 DOI: 10.1021/acscentsci.2c00125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Indexed: 05/14/2023]
Abstract
Wall teichoic acids (WTAs) are glycopolymers decorating the surface of Gram-positive bacteria and potential targets for antibody-mediated treatments against Staphylococcus aureus, including methicillin-resistant (MRSA) strains. Through a combination of glycan microarray, synthetic chemistry, crystallography, NMR, and computational studies, we unraveled the molecular and structural details of fully defined synthetic WTA fragments recognized by previously described monoclonal antibodies (mAbs 4461 and 4497). Our results unveiled the structural requirements for the discriminatory recognition of α- and β-GlcNAc-modified WTA glycoforms by the complementarity-determining regions (CDRs) of the heavy and light chains of the mAbs. Both mAbs interacted not only with the sugar moiety but also with the phosphate groups as well as residues in the ribitol phosphate (RboP) units of the WTA backbone, highlighting their significant role in ligand specificity. Using elongated WTA fragments, containing two sugar modifications, we also demonstrated that the internal carbohydrate moiety of α-GlcNAc-modified WTA is preferentially accommodated in the binding pocket of mAb 4461 with respect to the terminal moiety. Our results also explained the recently documented cross-reactivity of mAb 4497 for β-1,3/β-1,4-GlcNAc-modified WTA, revealing that the flexibility of the RboP backbone is crucial to allow positioning of both glycans in the antibody binding pocket.
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 4, 80126Naples, Italy
| | - Pablo Soriano-Maldonado
- Departamento
de Estructura de Macromoléculas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones
Científicas (CNB-CSIC), Calle Darwin 3, 28049Madrid, Spain
| | - Francesca Berni
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CCLeiden, The Netherlands
| | - Carla J. C. de Haas
- Medical
Microbiology, UMC Utrecht, Utrecht University, 3508Utrecht, The Netherlands
| | - A. Robin Temming
- Department
of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZAmsterdam, The Netherlands
| | - Astrid Hendriks
- Department
of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZAmsterdam, The Netherlands
| | - Sara Ali
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CCLeiden, The Netherlands
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 4, 80126Naples, Italy
| | - Alba Silipo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 4, 80126Naples, Italy
| | - Nina M. van Sorge
- Department
of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, 1105 AZAmsterdam, The Netherlands
- Netherlands
Reference Laboratory for Bacterial Meningitis, Amsterdam UMC, 1105 AZAmsterdam, The Netherlands
- Email
for N.M.v.S.:
| | - Mark J. van Raaij
- Departamento
de Estructura de Macromoléculas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones
Científicas (CNB-CSIC), Calle Darwin 3, 28049Madrid, Spain
- Email for M.J.v.R.:
| | - Jeroen D. C. Codee
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CCLeiden, The Netherlands
- Email for J.D.C.C.:
| | - Roberta Marchetti
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cinthia 4, 80126Naples, Italy
- Email for R.M.:
| |
Collapse
|
6
|
Kallem T, Cegelski L. Catching Threads in Bacterial Cell Walls. ACS CENTRAL SCIENCE 2022; 8:1376-1379. [PMID: 36313163 PMCID: PMC9615111 DOI: 10.1021/acscentsci.2c01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Till Kallem
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Kim JK, Lim GM, Kim EJ, Kim W, Lee CS, Kim BG, Jeong HJ. Generation of Recombinant Antibodies in HEK293F Cells for the Detection of Staphylococcus aureus. ACS OMEGA 2022; 7:9690-9700. [PMID: 35350310 PMCID: PMC8945071 DOI: 10.1021/acsomega.1c07194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Staphylococcus aureus is a major resistant pathogen in clinical practice. Due to the increasing number of infections, rapid and sensitive detection of antibiotic-resistant S. aureus as well as antibiotic-sensitive S. aureus is important for the prevention and control of infectious diseases. In this study, we produced recombinant antibodies against S. aureus from mammalian human embryonic kidney 293 Freestyle cells with high yield and purity. These recombinant antibodies showed high binding affinity and low detection limit in both indirect and sandwich enzyme-linked immunosorbent assays for the detection of methicillin-resistant S. aureus and methicillin-sensitive S. aureus. These results suggest that the recombinant antibodies produced herein can be used for the accurate detection of S. aureus with a wild range of applications in medical diagnosis, food safety, and drug discovery.
Collapse
Affiliation(s)
- Joo-Kyung Kim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
| | - Gyu-Min Lim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
| | - Eun-Jung Kim
- Bio-MAX/N-Bio, Seoul National
University, Seoul 08826, South
Korea
| | - Wooseong Kim
- College
of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South
Korea
| | - Chang-Soo Lee
- Department
of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, South Korea
| | - Byung-Gee Kim
- Interdisciplinary
Program for Biochemical Engineering and Biotechnology, Seoul National University, Seoul 08826, South
Korea
- Bio-MAX/N-Bio, Seoul National
University, Seoul 08826, South
Korea
| | - Hee-Jin Jeong
- Department
of Biological and Chemical Engineering, Hongik University, Sejong 30016, South Korea
| |
Collapse
|
8
|
de Vor L, van Dijk B, van Kessel K, Kavanaugh JS, de Haas C, Aerts PC, Viveen MC, Boel EC, Fluit AC, Kwiecinski JM, Krijger GC, Ramakers RM, Beekman FJ, Dadachova E, Lam MGEH, Vogely HC, van der Wal BCH, van Strijp JAG, Horswill AR, Weinans H, Rooijakkers SHM. Human monoclonal antibodies against Staphylococcus aureus surface antigens recognize in vitro and in vivo biofilm. eLife 2022; 11:e67301. [PMID: 34989676 PMCID: PMC8751199 DOI: 10.7554/elife.67301] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 12/06/2021] [Indexed: 12/22/2022] Open
Abstract
Implant-associated Staphylococcus aureus infections are difficult to treat because of biofilm formation. Bacteria in a biofilm are often insensitive to antibiotics and host immunity. Monoclonal antibodies (mAbs) could provide an alternative approach to improve the diagnosis and potential treatment of biofilm-related infections. Here, we show that mAbs targeting common surface components of S. aureus can recognize clinically relevant biofilm types. The mAbs were also shown to bind a collection of clinical isolates derived from different biofilm-associated infections (endocarditis, prosthetic joint, catheter). We identify two groups of antibodies: one group that uniquely binds S. aureus in biofilm state and one that recognizes S. aureus in both biofilm and planktonic state. Furthermore, we show that a mAb recognizing wall teichoic acid (clone 4497) specifically localizes to a subcutaneously implanted pre-colonized catheter in mice. In conclusion, we demonstrate the capacity of several human mAbs to detect S. aureus biofilms in vitro and in vivo.
Collapse
Affiliation(s)
- Lisanne de Vor
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Bruce van Dijk
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Kok van Kessel
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Jeffrey S Kavanaugh
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Carla de Haas
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Piet C Aerts
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Marco C Viveen
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Edwin C Boel
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Ad C Fluit
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Jakub M Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
| | - Gerard C Krijger
- Department of Radiology and Nuclear Medicine, University Medical Centre UtrechtUtrechtNetherlands
| | - Ruud M Ramakers
- MILabs B.VUtrechtNetherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical CenterUtrechtNetherlands
- Department of Radiation Science and Technology, Delft University of TechnologyDelftNetherlands
| | - Freek J Beekman
- MILabs B.VUtrechtNetherlands
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical CenterUtrechtNetherlands
- Department of Radiation Science and Technology, Delft University of TechnologyDelftNetherlands
| | - Ekaterina Dadachova
- College of Pharmacy and Nutrition, University of SaskatchewanSaskatoonCanada
| | - Marnix GEH Lam
- Department of Radiology and Nuclear Medicine, University Medical Centre UtrechtUtrechtNetherlands
| | - H Charles Vogely
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Bart CH van der Wal
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
| | - Jos AG van Strijp
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of MedicineAuroraUnited States
- Department of Veterans Affairs, Eastern Colorado Health Care SystemDenverUnited States
| | - Harrie Weinans
- Department of Orthopedics, University Medical Centre UtrechtUtrechtNetherlands
- Department of Biomechanical engineering, TU DelftDelftNetherlands
| | - Suzan HM Rooijakkers
- Department of Medical Microbiology, University Medical Centre UtrechtUtrechtNetherlands
| |
Collapse
|
9
|
Zacharias N, Podust VN, Kajihara KK, Leipold D, Del Rosario G, Thayer D, Dong E, Paluch M, Fischer D, Zheng K, Lei C, He J, Ng C, Su D, Liu L, Masih S, Sawyer W, Tinianow J, Marik J, Yip V, Li G, Chuh J, Morisaki JH, Park S, Zheng B, Hernandez-Barry H, Loyet KM, Xu M, Kozak KR, Phillips GL, Shen BQ, Wu C, Xu K, Yu SF, Kamath A, Rowntree RK, Reilly D, Pillow T, Polson A, Schellenberger V, Hazenbos WLW, Sadowsky J. A homogeneous high-DAR antibody-drug conjugate platform combining THIOMAB antibodies and XTEN polypeptides. Chem Sci 2022; 13:3147-3160. [PMID: 35414872 PMCID: PMC8926172 DOI: 10.1039/d1sc05243h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
The antibody-drug conjugate (ADC) is a well-validated modality for the cell-specific delivery of small molecules with impact expanding rapidly beyond their originally-intended purpose of treating cancer. However, antibody-mediated delivery (AMD)...
Collapse
Affiliation(s)
| | - Vladimir N Podust
- Amunix Pharmaceuticals, Inc. 2 Tower Place South San Francisco CA 94080 USA
| | | | | | | | - Desiree Thayer
- Amunix Pharmaceuticals, Inc. 2 Tower Place South San Francisco CA 94080 USA
| | - Emily Dong
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Maciej Paluch
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - David Fischer
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Kai Zheng
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Corinna Lei
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Jintang He
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Carl Ng
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Dian Su
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Luna Liu
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | - William Sawyer
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Jeff Tinianow
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Jan Marik
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Victor Yip
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Guangmin Li
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Josefa Chuh
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | - Summer Park
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Bing Zheng
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | - Kelly M Loyet
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Min Xu
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | | | - Ben-Quan Shen
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Cong Wu
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Keyang Xu
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Shang-Fan Yu
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Amrita Kamath
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | | | - Thomas Pillow
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | - Andrew Polson
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| | | | | | - Jack Sadowsky
- Genentech, Inc. 1 DNA Way South San Francisco CA 94080 USA
| |
Collapse
|
10
|
Zwarthoff SA, Widmer K, Kuipers A, Strasser J, Ruyken M, Aerts PC, de Haas CJC, Ugurlar D, den Boer MA, Vidarsson G, van Strijp JAG, Gros P, Parren PWHI, van Kessel KPM, Preiner J, Beurskens FJ, Schuurman J, Ricklin D, Rooijakkers SHM. C1q binding to surface-bound IgG is stabilized by C1r 2s 2 proteases. Proc Natl Acad Sci U S A 2021; 118:e2102787118. [PMID: 34155115 PMCID: PMC8256010 DOI: 10.1073/pnas.2102787118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Complement is an important effector mechanism for antibody-mediated clearance of infections and tumor cells. Upon binding to target cells, the antibody's constant (Fc) domain recruits complement component C1 to initiate a proteolytic cascade that generates lytic pores and stimulates phagocytosis. The C1 complex (C1qr2s2) consists of the large recognition protein C1q and a heterotetramer of proteases C1r and C1s (C1r2s2). While interactions between C1 and IgG-Fc are believed to be mediated by the globular heads of C1q, we here find that C1r2s2 proteases affect the capacity of C1q to form an avid complex with surface-bound IgG molecules (on various 2,4-dinitrophenol [DNP]-coated surfaces and pathogenic Staphylococcus aureus). The extent to which C1r2s2 contributes to C1q-IgG stability strongly differs between human IgG subclasses. Using antibody engineering of monoclonal IgG, we reveal that hexamer-enhancing mutations improve C1q-IgG stability, both in the absence and presence of C1r2s2 In addition, hexamer-enhanced IgGs targeting S. aureus mediate improved complement-dependent phagocytosis by human neutrophils. Altogether, these molecular insights into complement binding to surface-bound IgGs could be important for optimal design of antibody therapies.
Collapse
Affiliation(s)
- Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kevin Widmer
- Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland
| | - Annemarie Kuipers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Jürgen Strasser
- Nano Structuring and Bio-Analytics Group, TIMed Center, of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Maartje Ruyken
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Deniz Ugurlar
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Maurits A den Boer
- Biomolecular Mass Spectrometry & Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- Netherlands Proteomics Center, 3584 CH, Utrecht, The Netherlands
| | - Gestur Vidarsson
- Experimental Immunohematology, Sanquin Research, 1066 CX Amsterdam, The Netherlands
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet Gros
- Structural Biochemistry, Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Paul W H I Parren
- Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Lava Therapeutics, 3584 CM Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Johannes Preiner
- Nano Structuring and Bio-Analytics Group, TIMed Center, of Applied Sciences Upper Austria, 4020 Linz, Austria
| | | | | | - Daniel Ricklin
- Pharmaceutical Sciences, University of Basel, 4001 Basel, Switzerland
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
11
|
Ali S, Hendriks A, van Dalen R, Bruyning T, Meeuwenoord N, Overkleeft HS, Filippov DV, van der Marel GA, van Sorge NM, Codée JDC. (Automated) Synthesis of Well-defined Staphylococcus Aureus Wall Teichoic Acid Fragments. Chemistry 2021; 27:10461-10469. [PMID: 33991006 PMCID: PMC8361686 DOI: 10.1002/chem.202101242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 02/03/2023]
Abstract
Wall teichoic acids (WTAs) are important components of the cell wall of the opportunistic Gram‐positive bacterium Staphylococcus aureus. WTAs are composed of repeating ribitol phosphate (RboP) residues that are decorated with d‐alanine and N‐acetyl‐d‐glucosamine (GlcNAc) modifications, in a seemingly random manner. These WTA‐modifications play an important role in shaping the interactions of WTA with the host immune system. Due to the structural heterogeneity of WTAs, it is impossible to isolate pure and well‐defined WTA molecules from bacterial sources. Therefore, here synthetic chemistry to assemble a broad library of WTA‐fragments, incorporating all possible glycosylation modifications (α‐GlcNAc at the RboP C4; β‐GlcNAc at the RboP C4; β‐GlcNAc at the RboP C3) described for S. aureus WTAs, is reported. DNA‐type chemistry, employing ribitol phosphoramidite building blocks, protected with a dimethoxy trityl group, was used to efficiently generate a library of WTA‐hexamers. Automated solid phase syntheses were used to assemble a WTA‐dodecamer and glycosylated WTA‐hexamer. The synthetic fragments have been fully characterized and diagnostic signals were identified to discriminate the different glycosylation patterns. The different glycosylated WTA‐fragments were used to probe binding of monoclonal antibodies using WTA‐functionalized magnetic beads, revealing the binding specificity of these WTA‐specific antibodies and the importance of the specific location of the GlcNAc modifications on the WTA‐chains.
Collapse
Affiliation(s)
- Sara Ali
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The, Netherlands
| | - Astrid Hendriks
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht (The, Netherlands
| | - Rob van Dalen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht (The, Netherlands
| | - Thomas Bruyning
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The, Netherlands
| | - Nico Meeuwenoord
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The, Netherlands
| | - Herman S Overkleeft
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The, Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The, Netherlands
| | - Gijs A van der Marel
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The, Netherlands
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht (The, Netherlands
| | - Jeroen D C Codée
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC, Leiden (The, Netherlands
| |
Collapse
|
12
|
Abstract
Pseudomonas aeruginosa causes life-threatening infections that are associated with antibiotic failure. Previously, we identified the antibiotic G2637, an analog of arylomycin, targeting bacterial type I signal peptidase, which has moderate potency against P. aeruginosa. We hypothesized that an antibody-antibiotic conjugate (AAC) could increase its activity by colocalizing P. aeruginosa bacteria with high local concentrations of G2637 antibiotic in the intracellular environment of phagocytes. Using a novel technology of screening for hybridomas recognizing intact bacteria, we identified monoclonal antibody 26F8, which binds to lipopolysaccharide O antigen on the surface of P. aeruginosa bacteria. This antibody was engineered to contain 6 cysteines and was conjugated to the G2637 antibiotic via a lysosomal cathepsin-cleavable linker, yielding a drug-to-antibody ratio of approximately 6. The resulting AAC delivered a high intracellular concentration of free G2637 upon phagocytosis of AAC-bound P. aeruginosa by macrophages, and potently cleared viable P. aeruginosa bacteria intracellularly. The molar concentration of AAC-associated G2637 antibiotic that resulted in elimination of bacteria inside macrophages was approximately 2 orders of magnitude lower than the concentration of free G2637 required to eliminate extracellular bacteria. This study demonstrates that an anti-P. aeruginosa AAC can locally concentrate antibiotic and kill P. aeruginosa inside phagocytes, providing additional therapeutic options for antibiotics that are moderately active or have an unfavorable pharmacokinetics or toxicity profile.
Collapse
|
13
|
Surur AS, Sun D. Macrocycle-Antibiotic Hybrids: A Path to Clinical Candidates. Front Chem 2021; 9:659845. [PMID: 33996753 PMCID: PMC8120311 DOI: 10.3389/fchem.2021.659845] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
The tale of abate in antibiotics continued defense mechanisms that chaperone the rise of drug-defying superbugs—on the other hand, the astray in antibacterial drug discovery and development. Our salvation lies in circumventing the genesis of resistance. Considering the competitive advantages of antibacterial chemotherapeutic agents equipped with multiple warheads against resistance, the development of hybrids has rejuvenated. The adoption of antibiotic hybrid paradigm to macrocycles has advanced novel chemical entities to clinical trials. The multi-targeted TD-1792, for instance, retained potent antibacterial activities against multiple strains that are resistant to its constituent, vancomycin. Moreover, the antibiotic conjugation of rifamycins has provided hybrid clinical candidates with desirable efficacy and safety profiles. In 2020, the U.S. FDA has granted an orphan drug designation to TNP-2092, a conjugate of rifamycin and fluoroquinolone, for the treatment of prosthetic joint infections. DSTA4637S is a pioneer antibacterial agent under clinical development and represents a novel class of bacterial therapy, that is, antibody–antibiotic conjugates. DSTA4637S is effective against the notorious persistent S. aureus bacteremia, a revelation of the abracadabra potential of antibiotic hybrid approaches.
Collapse
Affiliation(s)
- Abdrrahman Shemsu Surur
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| | - Dianqing Sun
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI, United States
| |
Collapse
|
14
|
Cruz AR, Boer MAD, Strasser J, Zwarthoff SA, Beurskens FJ, de Haas CJC, Aerts PC, Wang G, de Jong RN, Bagnoli F, van Strijp JAG, van Kessel KPM, Schuurman J, Preiner J, Heck AJR, Rooijakkers SHM. Staphylococcal protein A inhibits complement activation by interfering with IgG hexamer formation. Proc Natl Acad Sci U S A 2021; 118:e2016772118. [PMID: 33563762 PMCID: PMC7896290 DOI: 10.1073/pnas.2016772118] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Immunoglobulin (Ig) G molecules are essential players in the human immune response against bacterial infections. An important effector of IgG-dependent immunity is the induction of complement activation, a reaction that triggers a variety of responses that help kill bacteria. Antibody-dependent complement activation is promoted by the organization of target-bound IgGs into hexamers that are held together via noncovalent Fc-Fc interactions. Here we show that staphylococcal protein A (SpA), an important virulence factor and vaccine candidate of Staphylococcus aureus, effectively blocks IgG hexamerization and subsequent complement activation. Using native mass spectrometry and high-speed atomic force microscopy, we demonstrate that SpA blocks IgG hexamerization through competitive binding to the Fc-Fc interaction interface on IgG monomers. In concordance, we show that SpA interferes with the formation of (IgG)6:C1q complexes and prevents downstream complement activation on the surface of S. aureus. Finally, we demonstrate that IgG3 antibodies against S. aureus can potently induce complement activation and opsonophagocytic killing even in the presence of SpA. Together, our findings identify SpA as an immune evasion protein that specifically blocks IgG hexamerization.
Collapse
Affiliation(s)
- Ana Rita Cruz
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Maurits A den Boer
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Jürgen Strasser
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Guanbo Wang
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | | | | | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands
| | | | - Johannes Preiner
- Nano Structuring and Bio-Analytics Group, TIMed Center, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Albert J R Heck
- Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands;
| |
Collapse
|
15
|
Raafat D, Otto M, Reppschläger K, Iqbal J, Holtfreter S. Fighting Staphylococcus aureus Biofilms with Monoclonal Antibodies. Trends Microbiol 2019; 27:303-322. [PMID: 30665698 DOI: 10.1016/j.tim.2018.12.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 02/07/2023]
Abstract
Staphylococcus aureus (S. aureus) is a notorious pathogen and one of the most frequent causes of biofilm-related infections. The treatment of S. aureus biofilms is hampered by the ability of the biofilm structure to shield bacteria from antibiotics as well as the host's immune system. Therefore, new preventive and/or therapeutic interventions, including the use of antibody-based approaches, are urgently required. In this review, we describe the mechanisms by which anti-S. aureus antibodies can help in combating biofilms, including an up-to-date overview of monoclonal antibodies currently in clinical trials. Moreover, we highlight ongoing efforts in passive vaccination against S. aureus biofilm infections, with special emphasis on promising targets, and finally indicate the direction into which future research could be heading.
Collapse
Affiliation(s)
- Dina Raafat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Egypt; Current affiliation: Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD, USA
| | - Kevin Reppschläger
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Jawad Iqbal
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany
| | - Silva Holtfreter
- Department of Immunology, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|