1
|
Lan H, Zhu J, Hou H, Zhang C, Huo X, Zhang Y, Yang F, Zhou N, Zhang X. Combination therapy with Chicoric acid and PD-1/PD-L1 blockade improves the immunotherapy response in patient-derived ovarian cancer xenograft model. Cell Commun Signal 2025; 23:137. [PMID: 40087780 PMCID: PMC11909847 DOI: 10.1186/s12964-025-02146-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/08/2025] [Indexed: 03/17/2025] Open
Abstract
PURPOSE Limited treatment options exist for refractory ovarian cancer (OC) due to its poor response to immune therapies. Therefore, there is an urgent need to develop new effective treatment strategies. Chicoric acid (CA) is reported to have immune-enhancing properties, but its efficacy in cancer treatment is not well understood. We hypothesize that CA might improve the efficacy of PD-1/PD-L1 blockade immunotherapy in refractory OC patients. METHODS Patient-derived xenograft (PDX) models were constructed from chemoresistant advanced high-grade serous ovarian cancer patients. These models were treated with CA, aPD-1/aPD-L1 antibodies, or a combination of both. Single-cell RNA sequencing was performed to analyze the cellular composition of the tumor microenvironment (TME), evaluate treatment efficacy, and explore therapeutic mechanisms. Variations in peripheral blood lymphocytes were analyzed via fluorescence-activated cell sorting. Immunohistochemistry confirmed the variations in tumor-infiltrating lymphocytes and tumor cells. RESULTS Immunocompetent peripheral blood mononuclear cell (PBMC)-PDX models were successfully constructed using malignant ascites fluid and PBMCs. After treatment, 158,734 cells from 15 samples were categorized into epithelial cells, T lymphocytes, myeloid cells, fibroblasts, and endothelial cells. CA enhanced the antitumor ability of immune cells against OC cells. Notably, CA stimulated the proliferation of CD45 + and CD3 + cells and promoted the migration of CD8 + and CD4 + T cells from peripheral blood to infiltrate the TME. Additionally, CA enhanced the response of OCs to aPD-L1/aPD-1 treatment, strengthened the interaction between tumor and nontumor cells, and identified APP/CD74 as a critical ligand‒receptor pair. CHI3L1 was also found to be a potential marker for predicting immunotherapy efficacy in OC. CONCLUSION This study demonstrated that combination therapy with CA and aPD-1/aPD-L1 might be a promising strategy for treating OC effectively.
Collapse
Affiliation(s)
- Hongwei Lan
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Jingjuan Zhu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Chuantao Zhang
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Xingfa Huo
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Yuming Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Fangfang Yang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China.
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, No. 56 Haier Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
2
|
Ran X, Wu BX, Vidhyasagar V, Song L, Zhang X, Ladak RJ, Teng M, Ba-Alawi W, Philip V, He HH, Sonenberg N, Lok BH. PARP inhibitor radiosensitization enhances anti-PD-L1 immunotherapy through stabilizing chemokine mRNA in small cell lung cancer. Nat Commun 2025; 16:2166. [PMID: 40038278 DOI: 10.1038/s41467-025-57257-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/17/2025] [Indexed: 03/06/2025] Open
Abstract
Immunotherapy (IO) is an effective treatment for various cancers; however, the benefits are modest for small cell lung cancer (SCLC). The poor response of SCLC to anti-PD-1/PD-L1 IO is due in part to the lack of cytotoxic T cells because of limited chemokine expression from SCLC tumors. Immunogenic radiosensitizers that enhance chemokine expression may be a promising strategy forward. Here, we show that the PARP inhibitors (PARPi), including olaparib, talazoparib and veliparib, in combination with radiotherapy (RT) enhance the immune activation and anti-tumor efficacy in SCLC cell lines, patient-derived xenograft (PDX) and syngeneic mouse models. The effect is further enhanced by continued delivery of adjuvant PARPi. The combination treatment (PARPi with RT) activates the cGAS-STING pathway and increases the mRNA levels of the T cell chemo-attractants CCL5 and CXCL10. In addition to upregulation of transcription, the combination treatment increases chemokine CXCL10 protein levels via stabilization of CXCL10 mRNA in an EIF4E2-dependent manner. The incorporation of anti-PD-L1 IO into the PARPi with RT combination therapy further improves the anti-tumor efficacy by increasing T cell infiltration and function. This study thus provides a proof of principle for the combination of PARP inhibitors, RT and anti-PD-L1 IO as a treatment strategy for SCLC.
Collapse
Affiliation(s)
- Xiaozhuo Ran
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bell Xi Wu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Lifang Song
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Xu Zhang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Reese Jalal Ladak
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Mona Teng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wail Ba-Alawi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Vivek Philip
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng H He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nahum Sonenberg
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Benjamin H Lok
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Park CK, Khalil M, Pham NA, Wong S, Ly D, Sacher A, Tsao MS. Humanized Mouse Models for Immuno-Oncology Research: A Review and Implications in Lung Cancer Research. JTO Clin Res Rep 2025; 6:100781. [PMID: 39990135 PMCID: PMC11847118 DOI: 10.1016/j.jtocrr.2024.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 02/25/2025] Open
Abstract
Cancer immunotherapy has brought significant clinical benefits to patients with cancer, including those with lung cancer. Patient-derived tumor xenograft mouse models have become the preferred animal model for translational cancer research and preclinical studies. Given the unmet need for improved predictive models in immuno-oncology, humanized mouse models which are co-engrafted with both human tumors and immune system components have been used to investigate novel immunotherapeutics. These models have similarly been used to predict immune-related adverse events and to develop predictive biomarkers. This review summarizes key concepts related to humanized mouse models. We highlight the various approaches to generate them, factors that are critical to successfully establishing such models, their respective limitations, and considerations in model selection for preclinical lung cancer immuno-oncology research and therapeutic studies.
Collapse
Affiliation(s)
- Cheol-Kyu Park
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Internal Medicine, Chonnam National University Medical School and Hwasun Hosptial, Hwasun, Republic of Korea
- Research Institute of Medical Science, Chonnam National University, Gwangju, Republic of Korea
| | - Maryam Khalil
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephanie Wong
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Dalam Ly
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Sound Tsao
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Zhang B, Liu Q, Li L, Ye Y, Guo X, Xu W, Chen L, Mo X, Nian S, Yuan Q. Therapeutic effect of fully human anti-Nrp-1 antibody on non-small cell lung cancer in vivo and in vitro. Cancer Immunol Immunother 2025; 74:50. [PMID: 39751948 PMCID: PMC11699024 DOI: 10.1007/s00262-024-03893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/11/2024] [Indexed: 01/04/2025]
Abstract
Although immune checkpoint inhibitors have changed the treatment paradigm for non-small cell lung cancer (NSCLC), not all patients benefit from them. Therefore, there is an urgent need to explore novel immune checkpoint inhibitors. Neuropilin-1 (Nrp-1) is a unique immune checkpoint capable of exerting antitumor effects through CD8+ T cells. It is also a T-cell memory checkpoint that regulates long-term antitumor immunity. However, its role in NSCLC remains unclear. The aim of this study was to develop a fully human anti-Nrp-1 antibody with therapeutic effects against NSCLC in vitro and in vivo. We screened and constructed of a high-affinity anti-Nrp-1 IgG antibody from a constructed high-capacity fully human single-chain fragment variable (scFv) phage library. This novel anti-Nrp-1 IgG antibody partially restored the killing function of exhausted CD8+ T cells in malignant pleural fluid in vitro. Co-culture of peripheral blood mononuclear cells (PBMC) with A549 and the addition of anti-Nrp1-IgG enhanced the killing of A549 target cells, leading to an increase in late-stage apoptosis of target cells. Importantly, anti-Nrp1-IgG treatment significantly reduced tumor volume in a mouse model of lung cancer with humanized immune system. These findings suggest that 53-IgG has a promising application as a potent Nrp-1-targeting agent in NSCLC immunotherapy.
Collapse
Grants
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022NSFSC0699, 2023NSFSC0727 Scienceand Technology Department of Sichuan Province
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022YFS0636-B3, 2022YFS0608-B1, 2022YFS0630-B3 the Sichuan Science and Technology program
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
- 2022CXY06 the project of Southwest Medical University
Collapse
Affiliation(s)
- Bo Zhang
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Clinical Laboratory, Female and Child Health Care and Family Planning Service Center, Binhai New Area, Tianjin, 300450, China
| | - Qin Liu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Lin Li
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yingchun Ye
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xiyuan Guo
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Wenfeng Xu
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ligang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Neurosurgery, Luzhou, 646000, Sichuan Province, China
| | - Xianming Mo
- Department of Gastrointestinal Surgery, Laboratory of Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Siji Nian
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| | - Qing Yuan
- Public Center of Experimental Technology, The School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Institute of Nuclear Medicine, Southwest Medical University, Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.
| |
Collapse
|
5
|
Yu JZ, Kiss Z, Ma W, Liang R, Li T. Preclinical Models for Functional Precision Lung Cancer Research. Cancers (Basel) 2024; 17:22. [PMID: 39796653 PMCID: PMC11718887 DOI: 10.3390/cancers17010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Patient-centered precision oncology strives to deliver individualized cancer care. In lung cancer, preclinical models and technological innovations have become critical in advancing this approach. Preclinical models enable deeper insights into tumor biology and enhance the selection of appropriate systemic therapies across chemotherapy, targeted therapies, immunotherapies, antibody-drug conjugates, and emerging investigational treatments. While traditional human lung cancer cell lines offer a basic framework for cancer research, they often lack the tumor heterogeneity and intricate tumor-stromal interactions necessary to accurately predict patient-specific clinical outcomes. Patient-derived xenografts (PDXs), however, retain the original tumor's histopathology and genetic features, providing a more reliable model for predicting responses to systemic therapeutics, especially molecularly targeted therapies. For studying immunotherapies and antibody-drug conjugates, humanized PDX mouse models, syngeneic mouse models, and genetically engineered mouse models (GEMMs) are increasingly utilized. Despite their value, these in vivo models are costly, labor-intensive, and time-consuming. Recently, patient-derived lung cancer organoids (LCOs) have emerged as a promising in vitro tool for functional precision oncology studies. These LCOs demonstrate high success rates in growth and maintenance, accurately represent the histology and genomics of the original tumors and exhibit strong correlations with clinical treatment responses. Further supported by advancements in imaging, spatial and single-cell transcriptomics, proteomics, and artificial intelligence, these preclinical models are reshaping the landscape of drug development and functional precision lung cancer research. This integrated approach holds the potential to deliver increasingly accurate, personalized treatment strategies, ultimately enhancing patient outcomes in lung cancer.
Collapse
Affiliation(s)
- Jie-Zeng Yu
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Zsofia Kiss
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Ruqiang Liang
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (J.-Z.Y.); (Z.K.); (W.M.); (R.L.)
- Medical Service, Hematology/Oncology, Veterans Affairs Northern California Health Care System, Mather, CA 10535, USA
| |
Collapse
|
6
|
Wang L, Zheng J, Tan Z, Zhang Y, Wang H. A novel bispecific peptide targeting PD-1 and PD-L1 with combined antitumor activity of T-cells derived from the patients with TSCC. Int Immunopharmacol 2024; 138:112582. [PMID: 38981226 DOI: 10.1016/j.intimp.2024.112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024]
Abstract
Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) are key immune checkpoints (ICs) that critically influence immunotherapy. Tumor resistance to single IC-targeting drugs has increased interest in dual-target drugs, which have shown feasibility for cancer treatment. In this study, we aimed to develop dual-target peptide drugs targeting the PD-1/PD-L1 pathway and to evaluate their efficacy compared to functional antibodies in enhancing the cytotoxicity of human T cells against tongue squamous carcinoma cell lines. Through sequence analysis and peptide truncation, we modified a pre-existing peptide named nABPD-1 targeting PD-1. Subsequently, we obtained two novel peptides named nABPD-2 and nABPD-3, with nABPD-2 showing an enhanced affinity for human PD-1 protein compared to nABPD-1. Importantly, nABPD-2 exhibited dual-targeting capability, possessing a high affinity for both PD-L1 and PD-1. Furthermore, nABPD-2 effectively promoted the cytotoxicity of human T cells against tongue squamous carcinoma cell lines, surpassing the efficacy of anti-PD-1 or anti-PD-L1 functional antibodies alone. Considering that nABPD-2 has lower production costs and dose requirements, it can potentially be used in therapeutic applications.
Collapse
Affiliation(s)
- Lili Wang
- Department of Oral and Maxillofacial Surgery, Clinical Laboratory, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Junheng Zheng
- Zhuhai Taisujian Biotechnology Co., Ltd, Zhuhai, Guangdong, China; Cheerland Taisujian BioPharm. Co., Ltd, Shenzhen, Guangdong, China
| | - Zhihao Tan
- Cheerland Taisujian BioPharm. Co., Ltd, Shenzhen, Guangdong, China
| | - Yan Zhang
- Laboratory of Cancer and Stem Cell Biology, Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou Higher Education Mega Center, Guangzhou 510006, China
| | - Hua Wang
- Department of Oral and Maxillofacial Surgery, Clinical Laboratory, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China; Department of Oral and Maxillofacial Surgery, Oral Medical Center, Shenzhen Qianhai Taikang Hospital, Shenzhen, China; Zhuhai Taisujian Biotechnology Co., Ltd, Zhuhai, Guangdong, China; Cheerland Taisujian BioPharm. Co., Ltd, Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Eguren-Santamaria I, Fernández de Piérola E, Camps G, Martín-Muñoz P, Campos M, Cuculescu D, Aguilera-Buenosvinos I, Rodríguez López I, Salido-Vallejo R, Alexandru R, De Andrea CE, Álvarez-Gigli L, Berraondo P, Melero I, Sanmamed MF. MHC class I and II-deficient humanized mice are suitable tools to test the long-term antitumor efficacy of immune checkpoint inhibitors and T-cell engagers. J Immunother Cancer 2024; 12:e008516. [PMID: 39244214 PMCID: PMC11381650 DOI: 10.1136/jitc-2023-008516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Immunodeficient mice engrafted with peripheral blood mononuclear cells (PBMCs) are models to study new cancer immunotherapy agents. However, this approach is associated with xenograft-versus-host disease (xGVHD), which starts early after PBMC transfer and limits the duration and interpretation of experiments. Here, we explore different approaches to overcome xGVHD and better support the development of cancer immunotherapies. METHODS Immunodeficient NOD-scid IL2Rgnull (NSG) mice were intravenously transferred with human PBMCs and subcutaneously co-engrafted with HT29 human colon carcinoma cells. Diverse strategies to reduce xGVHD while preserving the antitumor activity of human immune cells were evaluated: (1) ex vivo immune graft modification by depleting CD4+ T cells pre-transfer using magnetic beads, (2) post-transplantation cyclophosphamide administration to eliminate proliferating xenoreactive T-cell clones and (3) using major histocompatibility complex (MHC) class I and II-deficient NSG mice: (Kb Db)null (IA)null (MHC-dKO NSG). Body weight and plasma murine alanine aminotransferase levels were measured as indicators of xGVHD and tumor size was measured every 2-3 days to monitor antitumor activity. The antitumor effects and pharmacodynamics of nivolumab plus ipilimumab and an anti-epithelial cell adhesion molecule (EpCAM)/CD3 T-cell engager (αEpCAM/CD3 bispecific antibody (BsAb)) were evaluated in the model. RESULTS CD4+ T-cell depletion attenuates xGVHD but also abrogates the antitumor activity. Cyclophosphamide limits the antitumor response and does not substantially prevent xGVHD. In contrast, xGVHD was significantly attenuated in MHC-dKO NSG recipients, while the antitumor effect of human PBMCs was preserved. Furthermore, the administration of nivolumab plus ipilimumab caused exacerbated xGVHD in conventional NSG mice, thereby precluding the observation of their antitumor effects. Severe xGVHD did not occur in MHC-dKO NSG mice thus enabling the study of complete and durable tumor rejections. Similarly, NSG mice treated with an αEpCAM/CD3 BsAb showed complete tumor regressions, but died due to xGVHD. In contrast, MHC-dKO NSG mice on treatment with the αEpCAM/CD3 BsAb achieved complete tumor responses without severe xGVHD. A significant proportion of mice rendered tumor-free showed tumor rejection on rechallenge with HT29 cells without further treatment. Finally, tumor-infiltrating CD8+ T-cell number increase, activation and CD137 upregulation were observed on αEpCAM/CD3 BsAb treatment. CONCLUSION Humanized MHC-dKO immunodeficient mice allow and refine the preclinical testing of immunotherapy agents for which experimentation is precluded in conventional immunodeficient mice due to severe xGVHD.
Collapse
Affiliation(s)
- Iñaki Eguren-Santamaria
- Immunology and Immunotherapy, Centro de Investigación Médica Aplicada, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
| | - Eva Fernández de Piérola
- Immunology and Immunotherapy, Centro de Investigación Médica Aplicada, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
| | - Gracián Camps
- Immunology and Immunotherapy, Centro de Investigación Médica Aplicada, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
| | - Paula Martín-Muñoz
- Immunology and Immunotherapy, Centro de Investigación Médica Aplicada, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
| | | | - Doina Cuculescu
- Clinical Trial Unit, Clínica Universidad de Navarra, Pamplona, Spain
| | | | - Inmaculada Rodríguez López
- Immunology and Immunotherapy, Centro de Investigación Médica Aplicada, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
| | | | - Raluca Alexandru
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
- Department of Pathology, Clinica Universidad de Navarra, Pamplona, Spain
| | - Carlos E De Andrea
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
- Department of Pathology, Clinica Universidad de Navarra, Pamplona, Spain
| | | | - Pedro Berraondo
- Immunology and Immunotherapy, Centro de Investigación Médica Aplicada, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Immunology and Immunotherapy, Centro de Investigación Médica Aplicada, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Miguel F Sanmamed
- Immunology and Immunotherapy, Centro de Investigación Médica Aplicada, Pamplona, Spain
- Medical Oncology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Paplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| |
Collapse
|
8
|
Li K, Wang J, Zhang R, Zhou J, Espinoza B, Niu N, Wang J, Jurcak N, Rozich N, Osipov A, Henderson M, Funes V, Lyman M, Blair AB, Herbst B, He M, Yuan J, Trafton D, Yuan C, Wichroski M, Liu X, Fu J, Zheng L. Overcome the challenge for intratumoral injection of STING agonist for pancreatic cancer by systemic administration. J Hematol Oncol 2024; 17:62. [PMID: 39113096 PMCID: PMC11305077 DOI: 10.1186/s13045-024-01576-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 08/11/2024] Open
Abstract
Due to the challenge for intratumoral administration, innate agonists have not made it beyond preclinical studies for efficacy testing in most tumor types. Pancreatic ductal adenocarcinoma (PDAC) has a hostile tumor microenvironment that renders T cells dysfunctional. Innate agonist treatments may serve as a T cell priming mechanism to sensitize PDACs to anti-PD-1 antibody (a-PD-1) treatment. Using a transplant mouse model with spontaneously formed liver metastasis, a genetically engineered KPC mouse model that spontaneously develops PDAC, and a human patient-derived xenograft model, we compared the antitumor efficacy between intrahepatic/intratumoral and intramuscular systemic administration of BMS-986301, a next-generation STING agonist. Flow cytometry, Nanostring, and cytokine assays were used to evaluate local and systemic immune responses. This study demonstrated that administration of STING agonist systemically via intramuscular injection is equivalent to its intratumoral injection in inducing both effector T cell response and antitumor efficacy. Compared to intratumoral administration, T cell exhaustion and immunosuppressive signals induced by systemic administration were attenuated. Nonetheless, either intratumoral or systemic treatment of STING agonist was associated with increased expression of CTLA-4 on tumor-infiltrating T cells. However, the combination of a-PD-1 and anti-CTLA-4 antibody with systemic STING agonist demonstrated the antitumor efficacy in the KPC mouse spontaneous PDAC model. The mouse pancreatic and liver orthotopic model of human patient-derived xenograft reconstituted with PBMC also showed that antitumor and abscopal effects of both intratumoral and intramuscular STING agonist are equivalent. Taken together, this study supports the clinical development of innate agonists via systemic administration for treating PDAC.
Collapse
Affiliation(s)
- Keyu Li
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Junke Wang
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Rui Zhang
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jiawei Zhou
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Birginia Espinoza
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nan Niu
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Zhejiang Provisional People's Hospital, Hangzhou, Zhejiang, China
| | - Jianxin Wang
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The First-Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Noelle Jurcak
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | - Noah Rozich
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Arsen Osipov
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - MacKenzie Henderson
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Vanessa Funes
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Melissa Lyman
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alex B Blair
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Brian Herbst
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mengni He
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Jialong Yuan
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Diego Trafton
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Chunhui Yuan
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of General Surgery, Peking University Third Hospital, Beijing, 100191, China
| | | | - Xubao Liu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Juan Fu
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Lei Zheng
- Department of Oncology and The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Multidisciplinary Gastrointestinal Cancer Laboratories Program, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Johns Hopkins Kimmel Cancer Center, 1650 Orleans Street, CRB1 Room 351, Baltimore, MD, 21231, USA.
| |
Collapse
|
9
|
Li W, Xia C, Wang K, Xue L, Wang Y, Yang JY, Zhang M, Yin M, Ju C, Miao Z, Li Y, Zhao X, Yang Z, Tang R, Yang W. Technical considerations and strategies for generating and optimizing humanized mouse tumor models in immuno-oncology research. Int Immunopharmacol 2024; 139:112722. [PMID: 39033663 DOI: 10.1016/j.intimp.2024.112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
The field of cancer immunotherapy has experienced significant progress, resulting in the emergence of numerous biological drug candidates requiring in vivo efficacy testing and a better understanding of their mechanism of action (MOA). Humanized immune system (HIS) models are valuable tools in this regard. However, there is a lack of systematic guidance on HIS modeling. To address this issue, the present study aimed to establish and optimize a variety of HIS models for immune-oncology (IO) study, including genetically engineered mouse models and HIS models with human immune components reconstituted in severely immunocompromised mice. The efficacy and utility of these models were tested with several marketed or investigational IO drugs according to their MOA, followed by immunophenotypic analysis and efficacy evaluation. The results of the present study demonstrated that the HIS models responded to various IO drugs as expected and that each model had unique niches, utilities and limitations. Researchers should carefully choose the appropriate models based on the MOA and the targeted immune cell populations of the investigational drug. The present study provides valuable methodologies and actionable technical guidance on designing, generating or utilizing appropriate HIS models to address specific questions in translational IO.
Collapse
Affiliation(s)
- Wenjing Li
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | - Chunlei Xia
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | - Kun Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | - Liting Xue
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | - Yan Wang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China
| | | | | | - Ming Yin
- Beijing Vitalstar Biotechnology Co., Ltd., Beijing 100000, China
| | - Cunxiang Ju
- Gempharmatech Co., Ltd., Nanjing 210000, China
| | - Zhenchuan Miao
- Beijing Vitalstar Biotechnology Co., Ltd., Beijing 100000, China
| | - Ying Li
- Gempharmatech Co., Ltd., Nanjing 210000, China
| | - Xiaofeng Zhao
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Jiangsu Simcere Pharmaceutical Co, Ltd., Nanjing 210000, China
| | - Zhijian Yang
- ClinBridge Biotech Co., Ltd., Nanjing 210000, China
| | - Renhong Tang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China.
| | - WenQing Yang
- State Key Laboratory of Neurology and Oncology Drug Development, Nanjing 210000, China; Simcere Zaiming Pharmaceutical Co, Ltd., Shanghai 200120, China.
| |
Collapse
|
10
|
Dou Y, Zheng J, Kang J, Wang L, Huang D, Liu Y, He C, Lin C, Lu C, Wu D, Han R, Li L, Tang L, He Y. Mesoporous manganese nanocarrier target delivery metformin for the co-activation STING pathway to overcome immunotherapy resistance. iScience 2024; 27:110150. [PMID: 39040065 PMCID: PMC11261061 DOI: 10.1016/j.isci.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Targeting the stimulator of interferon genes (STING) pathway is a promising strategy to overcome primary resistance to immune checkpoint inhibitors in non-small cell lung cancer with the STK11 mutation. We previously found metformin enhances the STING pathway and thus promotes immune response. However, its low concentration in tumors limits its clinical use. Here, we constructed high-mesoporous Mn-based nanocarrier loading metformin nanoparticles (Mn-MSN@Met-M NPs) that actively target tumors and respond to release higher concentration of Mn2+ ions and metformin. The NPs significantly enhanced the T cells to kill lung cancer cells with the STK11 mutant. The mechanism shows that enhanced STING pathway activation promotes STING, TBKI, and IRF3 phosphorylation through Mn2+ ions and metformin release from NPs, thus boosting type I interferon production. In vivo, NPs in combination with a PD-1 inhibitor effectively decreased tumor growth. Collectively, we developed a Mn-MSN@Met-M nanoactivator to intensify immune activation for potential cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanyao Dou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liping Wang
- Department of pain treatment, the seventh people’s Hospital of Chongqing, Chongqing 401320, China
| | - Daijuan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
11
|
Han R, Guo H, Shi J, Zhao S, Jia Y, Liu X, Liu Y, Cheng L, Zhao C, Li X, Zhou C. Osimertinib in combination with anti-angiogenesis therapy presents a promising option for osimertinib-resistant non-small cell lung cancer. BMC Med 2024; 22:174. [PMID: 38658988 PMCID: PMC11040894 DOI: 10.1186/s12916-024-03389-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Osimertinib has become standard care for epidermal growth factor receptor (EGFR)-positive non-small cell lung cancer (NSCLC) patients whereas drug resistance remains inevitable. Now we recognize that the interactions between the tumor and the tumor microenvironment (TME) also account for drug resistance. Therefore, we provide a new sight into post-osimertinib management, focusing on the alteration of TME. METHODS We conducted a retrospective study on the prognosis of different treatments after osimertinib resistance. Next, we carried out in vivo experiment to validate our findings using a humanized mouse model. Furthermore, we performed single-cell transcriptome sequencing (scRNA-seq) of tumor tissue from the above treatment groups to explore the mechanisms of TME changes. RESULTS Totally 111 advanced NSCLC patients have been enrolled in the retrospective study. The median PFS was 9.84 months (95% CI 7.0-12.6 months) in the osimertinib plus anti-angiogenesis group, significantly longer than chemotherapy (P = 0.012) and osimertinib (P = 0.003). The median OS was 16.79 months (95% CI 14.97-18.61 months) in the osimertinib plus anti-angiogenesis group, significantly better than chemotherapy (P = 0.026), the chemotherapy plus osimertinib (P = 0.021), and the chemotherapy plus immunotherapy (P = 0.006). The efficacy of osimertinib plus anlotinib in the osimertinib-resistant engraft tumors (R-O+A) group was significantly more potent than the osimertinib (R-O) group (P<0.05) in vitro. The combinational therapy could significantly increase the infiltration of CD4+ T cells (P<0.05), CD25+CD4+ T cells (P<0.001), and PD-1+CD8+ T cells (P<0.05) compared to osimertinib. ScRNA-seq demonstrated that the number of CD8+ T and proliferation T cells increased, and TAM.mo was downregulated in the R-O+A group compared to the R-O group. Subtype study of T cells explained that the changes caused by combination treatment were mainly related to cytotoxic T cells. Subtype study of macrophages showed that proportion and functional changes in IL-1β.mo and CCL18.mo might be responsible for rescue osimertinib resistance by combination therapy. CONCLUSIONS In conclusion, osimertinib plus anlotinib could improve the prognosis of patients with a progressed disease on second-line osimertinib treatment, which may ascribe to increased T cell infiltration and TAM remodeling via VEGF-VEGFR blockage.
Collapse
Affiliation(s)
- Ruoshuang Han
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of Army Medical University, Chongqing, People's Republic of China
| | - Haoyue Guo
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinpeng Shi
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yijun Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaozhen Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yiwei Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Lei Cheng
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Chao Zhao
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xuefei Li
- Department of Lung Cancer and Immunology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Jain M, Goel A. Current Insights in Murine Models for Breast Cancer: Present, Past and Future. Curr Pharm Des 2024; 30:2267-2275. [PMID: 38910416 DOI: 10.2174/0113816128306053240604074142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024]
Abstract
Breast cancer is an intricate disease that is increasing at a fast pace, and numerous heterogeneities within it further make it difficult to investigate. We have always used animal models to understand cancer pathology and create an in vivo microenvironment that closely resembles human cancer. They are considered an indispensable part of any clinical investigation regarding cancer. Animal models have a high potency in identifying the relevant biomarkers and genetic pathways involved in the course of disease prognosis. Researchers have previously explored a variety of organisms, including Drosophila melanogaster, zebrafish, and guinea pigs, to analyse breast cancer, but murine models have proven the most comprehensive due to their homologous nature with human chromosomes, easy availability, simple gene editing, and high adaptability. The available models have their pros and cons, and it depends on the researcher to select the one most relevant to their research question. Chemically induced models are cost-effective and simple to create. Transplantation models such as allografts and xenografts can mimic the human breast cancer environment reliably. Genetically engineered mouse models (GEMMs) help to underpin the genetic alterations involved and test novel immunotherapies. Virus-mediated models and gene knockout models have also provided new findings regarding breast cancer progression and metastasis. These mouse models have also enabled the visualization of breast cancer metastases. It is also imperative to consider the cost-effectiveness of these models. Despite loopholes, mouse models have evolved and are required for disease analysis.
Collapse
Affiliation(s)
- Mansi Jain
- Department of Biotechnology, GLA University, Mathura, India
| | - Anjana Goel
- Department of Biotechnology, GLA University, Mathura, India
| |
Collapse
|
13
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
14
|
Srivastava R, Labani-Motlagh A, Chen A, Bohorquez JA, Qin B, Dodda M, Yang F, Ansari D, Patel S, Ji H, Trasti S, Chao Y, Patel Y, Zou H, Hu B, Yi G. Development of a human glioblastoma model using humanized DRAG mice for immunotherapy. Antib Ther 2023; 6:253-264. [PMID: 38075240 PMCID: PMC10702851 DOI: 10.1093/abt/tbad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 12/20/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor. The development of alternative humanized mouse models with fully functional human immune cells will potentially accelerate the progress of GBM immunotherapy. We successfully generated humanized DRAG (NOD.Rag1KO.IL2RγcKO) mouse model by transplantation of human DR4+ hematopoietic stem cells (hHSCs), and effectively grafted GBM patient-derived tumorsphere cells to form xenografted tumors intracranially. The engrafted tumors recapitulated the pathological features and the immune cell composition of human GBM. Administration of anti-human PD-1 antibodies in these tumor-bearing humanized DRAG mice decreased the major tumor-infiltrating immunosuppressive cell populations, including CD4+PD-1+ and CD8+PD-1+ T cells, CD11b+CD14+HLA-DR+ macrophages, CD11b+CD14+HLA-DR-CD15- and CD11b+CD14-CD15+ myeloid-derived suppressor cells, indicating the humanized DRAG mice as a useful model to test the efficacy of GBM immunotherapy. Taken together, these results suggest that the humanized DRAG mouse model is a reliable preclinical platform for studying brain cancer immunotherapy and beyond.
Collapse
Affiliation(s)
- Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Alireza Labani-Motlagh
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China
| | - Jose Alejandro Bohorquez
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Bin Qin
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- National Centre for International Research in Cell and Gene Therapy, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, People’s Republic of China
| | - Meghana Dodda
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Fan Yang
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Danish Ansari
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Sahil Patel
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Honglong Ji
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| | - Scott Trasti
- Laboratory Animal Resource Center, Texas Tech University Health Sciences Center, Lubbock, TX 79410, USA
| | - Yapeng Chao
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yash Patel
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- John G. Rangos Sr. Research Center, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
- Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| | - Guohua Yi
- Department of Medicine, The University of Texas at Tyler School of Medicine, Tyler, TX 75708, USA
- Center for Biomedical Research, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
- Department of Cellular and Molecular Biology, The University of Texas Health Science Center at Tyler, Tyler, TX 75708, USA
| |
Collapse
|
15
|
Chen X, Li B, Wang Y, Jin J, Yang Y, Huang L, Yang M, Zhang J, Wang B, Shao Z, Ni T, Huang S, Hu X, Tao Z. Low level of ARID1A contributes to adaptive immune resistance and sensitizes triple-negative breast cancer to immune checkpoint inhibitors. Cancer Commun (Lond) 2023; 43:1003-1026. [PMID: 37434394 PMCID: PMC10508140 DOI: 10.1002/cac2.12465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/22/2023] [Accepted: 07/04/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) shed new light on triple-negative breast cancer (TNBC), but only a minority of patients demonstrate response. Therefore, adaptive immune resistance (AIR) needs to be further defined to guide the development of ICI regimens. METHODS Databases, including The Cancer Genome Atlas, Gene Ontology Resource, University of California Santa Cruz Genome Browser, and Pubmed, were used to screen epigenetic modulators, regulators for CD8+ T cells, and transcriptional regulators of programmed cell death-ligand 1 (PD-L1). Human peripheral blood mononuclear cell (Hu-PBMC) reconstruction mice were adopted for xenograft transplantation. Tumor specimens from a TNBC cohort and the clinical trial CTR20191353 were retrospectively analyzed. RNA-sequencing, Western blotting, qPCR and immunohistochemistry were used to assess gene expression. Coculture assays were performed to evaluate the regulation of TNBC cells on T cells. Chromatin immunoprecipitation and transposase-accessible chromatin sequencing were used to determine chromatin-binding and accessibility. RESULTS The epigenetic modulator AT-rich interaction domain 1A (ARID1A) gene demonstrated the highest expression association with AIR relative to other epigenetic modulators in TNBC patients. Low ARID1A expression in TNBC, causing an immunosuppressive microenvironment, promoted AIR and inhibited CD8+ T cell infiltration and activity through upregulating PD-L1. However, ARID1A did not directly regulate PD-L1 expression. We found that ARID1A directly bound the promoter of nucleophosmin 1 (NPM1) and that low ARID1A expression increased NPM1 chromatin accessibility as well as gene expression, further activating PD-L1 transcription. In Hu-PBMC mice, atezolizumab demonstrated the potential to reverse ARID1A deficiency-induced AIR in TNBC by reducing tumor malignancy and activating anti-tumor immunity. In CTR20191353, ARID1A-low patients derived more benefit from pucotenlimab compared to ARID1A-high patients. CONCLUSIONS In AIR epigenetics, low ARID1A expression in TNBC contributed to AIR via the ARID1A/NPM1/PD-L1 axis, leading to poor outcome but sensitivity to ICI treatment.
Collapse
Affiliation(s)
- Xin‐Yu Chen
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Bin Li
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Ye Wang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Juan Jin
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Yu Yang
- State Key Laboratory of Genetic EngineeringCollaborative Innovation Center of Genetics and DevelopmentHuman Phenome InstituteSchool of Life SciencesFudan UniversityShanghaiP. R. China
| | - Lei‐Huan Huang
- State Key Laboratory of Genetic EngineeringCollaborative Innovation Center of Genetics and DevelopmentHuman Phenome InstituteSchool of Life SciencesFudan UniversityShanghaiP. R. China
| | - Meng‐Di Yang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Jian Zhang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Bi‐Yun Wang
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhi‐Ming Shao
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
- Key Laboratory of Breast Cancer in ShanghaiDepartment of Breast SurgeryFudan University Shanghai Cancer CenterShanghaiP. R. China
- Precision Cancer Medicine CenterFudan University Shanghai Cancer CenterShanghaiP. R. China
| | - Ting Ni
- State Key Laboratory of Genetic EngineeringCollaborative Innovation Center of Genetics and DevelopmentHuman Phenome InstituteSchool of Life SciencesFudan UniversityShanghaiP. R. China
| | - Sheng‐Lin Huang
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
- Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Xi‐Chun Hu
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| | - Zhong‐Hua Tao
- Department of Breast and Urologic Medical OncologyFudan University Shanghai Cancer CenterShanghaiP. R. China
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiP. R. China
| |
Collapse
|
16
|
Meng J, Lv Y, Bao W, Meng Z, Wang S, Wu Y, Li S, Jiao Z, Tian Z, Ma G, Wei W. Generation of whole tumor cell vaccine for on-demand manipulation of immune responses against cancer under near-infrared laser irradiation. Nat Commun 2023; 14:4505. [PMID: 37495590 PMCID: PMC10372023 DOI: 10.1038/s41467-023-40207-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/18/2023] [Indexed: 07/28/2023] Open
Abstract
The therapeutic efficacy of whole tumor cell vaccines (TCVs) is modest, which has delayed their translation into personalized immunotherapies in the clinic. Here, we develop a TCV platform based on photothermal nanoparticle-loaded tumor cells, which can be rationally applied to diverse tumor types to achieve on-demand boost of anti-tumor immune responses for inhibiting tumor growth. During the fabrication process, mild photothermal heating by near-infrared (NIR) laser irradiation induces the nanoparticle-bearing tumor cells to express heat shock proteins as endogenous adjuvants. After a single vaccination at the back of tumor-bearing mice, non-invasive NIR laser irradiation further induces mild hyperthermia at vaccination site, which promotes the recruitment, activation, and antigen presentation by dendritic cells. Using an indicator we term fluctuation of tumor growth rate, we determine appropriate irradiation regimens (including optimized irradiation intervals and times). This TCV platform enables on-demand NIR manipulation of immune responses, and we demonstrate potent therapeutic efficacy against six murine models that mimick a range of clinical scenarios, including a model based on humanized mice and patient-derived tumor xenografts.
Collapse
Affiliation(s)
- Jiaqi Meng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlin Lv
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Weier Bao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zihui Meng
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuanbin Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shuping Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhouguang Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
17
|
Karnik I, Her Z, Neo SH, Liu WN, Chen Q. Emerging Preclinical Applications of Humanized Mouse Models in the Discovery and Validation of Novel Immunotherapeutics and Their Mechanisms of Action for Improved Cancer Treatment. Pharmaceutics 2023; 15:1600. [PMID: 37376049 DOI: 10.3390/pharmaceutics15061600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer therapeutics have undergone immense research over the past decade. While chemotherapies remain the mainstay treatments for many cancers, the advent of new molecular techniques has opened doors for more targeted modalities towards cancer cells. Although immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy in treating cancer, adverse side effects related to excessive inflammation are often reported. There is a lack of clinically relevant animal models to probe the human immune response towards ICI-based interventions. Humanized mouse models have emerged as valuable tools for pre-clinical research to evaluate the efficacy and safety of immunotherapy. This review focuses on the establishment of humanized mouse models, highlighting the challenges and recent advances in these models for targeted drug discovery and the validation of therapeutic strategies in cancer treatment. Furthermore, the potential of these models in the process of uncovering novel disease mechanisms is discussed.
Collapse
Affiliation(s)
- Isha Karnik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shu Hui Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| |
Collapse
|
18
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
19
|
Srivastava R, Labani-Motlagh A, Chen A, Yang F, Ansari D, Patel S, Ji H, Trasti S, Dodda M, Patel Y, Zou H, Hu B, Yi G. Development of a human glioblastoma model using humanized DRAG mice for immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528743. [PMID: 36824969 PMCID: PMC9948970 DOI: 10.1101/2023.02.15.528743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor with high mortality rates and a short median survival rate of about 15 months despite intensive multimodal treatment of maximal surgical resection, radiotherapy, and chemotherapy. Although immunotherapies have been successful in the treatment of various cancers, disappointing results from clinical trials for GBM immunotherapy represent our incomplete understanding. The development of alternative humanized mouse models with fully functional human immune cells will potentially accelerate the progress of GBM immunotherapy. In this study, we developed a humanized DRAG (NOD.Rag1KO.IL2RγcKO) mouse model, in which the human hematopoietic stem cells (HSCs) were well-engrafted and subsequently differentiated into a full lineage of immune cells. Using this humanized DRAG mouse model, GBM patient-derived tumorsphere lines were successfully engrafted to form xenografted tumors, which can recapitulate the pathological features and the immune cell composition of human GBM. Importantly, the administration of anti-human PD-1 antibodies in these DRAG mice bearing a GBM patient-derived tumorsphere line resulted in decreasing the major tumor-infiltrating immunosuppressive cell populations, including CD4 + PD-1 + and CD8 + PD-1 + T cells, CD11b + CD14 + HLA-DR + macrophages, CD11b + CD14 + HLA-DR - CD15 - and CD11b + CD14 - CD15 + myeloid-derived suppressor cells, indicating the humanized DRAG mouse model as a useful model to test the efficacy of immune checkpoint inhibitors in GBM immunotherapy. Together, these results suggest that humanized DRAG mouse models are a reliable preclinical platform for brain cancer immunotherapy and beyond.
Collapse
|
20
|
Zhang W, Zheng X. Patient-derived xenografts or organoids in the discovery of traditional and self-assembled drug for tumor immunotherapy. Front Oncol 2023; 13:1122322. [PMID: 37081982 PMCID: PMC10110942 DOI: 10.3389/fonc.2023.1122322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/24/2023] [Indexed: 04/22/2023] Open
Abstract
In addition to the rapid development of immune checkpoint inhibitors, there has also been a surge in the development of self-assembly immunotherapy drugs. Based on the immune target, traditional tumor immunotherapy drugs are classified into five categories, namely immune checkpoint inhibitors, direct immune modulators, adoptive cell therapy, oncolytic viruses, and cancer vaccines. Additionally, the emergence of self-assembled drugs with improved precision and environmental sensitivity offers a promising innovation approach to tumor immunotherapy. Despite rapid advances in tumor immunotherapy drug development, all candidate drugs require preclinical evaluation for safety and efficacy, and conventional evaluations are primarily conducted using two-dimensional cell lines and animal models, an approach that may be unsuitable for immunotherapy drugs. The patient-derived xenograft and organoids models, however, maintain the heterogeneity and immunity of the pathological tumor heterogeneity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoqiang Zheng
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Xiaoqiang Zheng,
| |
Collapse
|
21
|
PDX Models: A Versatile Tool for Studying the Role of Myeloid-Derived Suppressor Cells in Breast Cancer. Cancers (Basel) 2022; 14:cancers14246153. [PMID: 36551639 PMCID: PMC9777315 DOI: 10.3390/cancers14246153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
The pivotal role of myeloid-derived suppressive cells (MDSCs) in cancer has become increasingly apparent over the past few years. However, to fully understand how MDSCs can promote human tumor progression and to develop strategies to target this cell type, relevant models that closely resemble the clinical complexity of human tumors are needed. Here, we show that mouse MDSCs of both the monocytic (M-MDCS) and the granulocytic (PMN-MDSC) lineages are recruited to human breast cancer patient-derived xenograft (PDX) tumors in mice. Transcriptomic analysis of FACS-sorted MDSC-subpopulations from the PDX tumors demonstrated the expression of several MDSC genes associated with both their mobilization and immunosuppressive function, including S100A8/9, Ptgs2, Stat3, and Cxcr2, confirming the functional identity of these cells. By combining FACS analysis, RNA sequencing, and immune florescence, we show that the extent and type of MDSC infiltration depend on PDX model intrinsic factors such as the expression of chemokines involved in mobilizing and recruiting tumor-promoting MDSCs. Interestingly, MDSCs have been shown to play a prominent role in breast cancer metastasis, and in this context, we demonstrate increased recruitment of MDSCs in spontaneous PDX lung metastases compared to the corresponding primary PDX tumors. We also demonstrate that T cell-induced inflammation enhances the recruitment of MDSC in experimental breast cancer metastases. In conclusion, breast cancer PDX models represent a versatile tool for studying molecular mechanisms that drive myeloid cell recruitment to primary and metastatic tumors and facilitate the development of innovative therapeutic strategies targeting these cells.
Collapse
|
22
|
Wang X, Wu C, Wei H. Humanized Germ-Free Mice for Investigating the Intervention Effect of Commensal Microbiome on Cancer Immunotherapy. Antioxid Redox Signal 2022; 37:1291-1302. [PMID: 35403435 DOI: 10.1089/ars.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Significance: A growing body of evidence has demonstrated that the commensal microbiome is deeply involved in the host immune response, accounting for significantly divergent clinical outcomes among cancer patients receiving immunotherapy. Therefore, precise screening and evaluating of functional bacterial strains as novel targets for cancer immunotherapy have attracted great enthusiasm from both academia and industry, which calls for the construction and application of advanced animal models to support translational research in this field. Recent Advances: Significant progress has been made to elucidate the intervention effect of commensal microbiome on immunotherapy based on animal experiments. Especially, correlation between gut microbiota and host response to immunotherapy has been continuously discovered in a variety of cancer types, laying the foundation for causality establishment and mechanism research. Critical Issues: In oncology research, it is particularly not uncommon to see that a promising preclinical result fails to translate into clinical success. The use of conventional murine models in immunotherapy-associated microbiome research is very likely to bring discredit on the preclinical findings. We emphasize the value of germ-free (GF) mice and humanized mice as advanced models in this field. Future Directions: Integrating rederivation and humanization to generate humanized GF mice as preclinical models would make it possible to clarify the role of specific bacterial strains in immunotherapy as well as obtain preclinical findings that are more predictive for humans, leading to novel microbiome-based strategies for cancer immunotherapy. Antioxid. Redox Signal. 37, 1291-1302.
Collapse
Affiliation(s)
- Xinning Wang
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chengwei Wu
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
23
|
Sharma D, Singh M, Rani R. Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics. Semin Cancer Biol 2022; 87:184-195. [PMID: 36371026 DOI: 10.1016/j.semcancer.2022.11.007] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Lactate dehydrogenase (LDH) is one of the crucial enzymes in aerobic glycolysis, catalyzing the last step of glycolysis, i.e. the conversion of pyruvate to lactate. Most cancer cells are characterized by an enhanced rate of tumor glycolysis to ensure the energy demand of fast-growing cancer cells leading to increased lactate production. Excess lactate creates extracellular acidosis which facilitates invasion, angiogenesis, and metastasis and affects the immune response. Lactate shuttle and lactate symbiosis is established in cancer cells, which may further increase the poor prognosis. Several genetic and phenotypic studies established the potential role of lactate dehydrogenase A (LDHA) or LDH5, the one homo-tetramer of subunit A, in cancer development and metastasis. The LDHA is considered a viable target for drug design and discovery. Several small molecules have been discovered to date exhibiting significant LDHA inhibitory activities and anticancer activities, therefore the starvation of cancer cells by targeting tumor glycolysis through LDHA inhibition with improved selectivity can generate alternative anticancer therapeutics. This review provides an overview of the role of LDHA in metabolic reprogramming and its association with proto-oncogenes and oncogenes. This review also aims to deliver an update on significant LDHA inhibitors with anticancer properties and future direction in this area.
Collapse
Affiliation(s)
- Dolly Sharma
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Mamta Singh
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Reshma Rani
- Jubilant Biosys, Drug Discovery chemistry, Greater Noida, 201310 Uttar Pradesh, India.
| |
Collapse
|
24
|
Padinharayil H, Alappat RR, Joy LM, Anilkumar KV, Wilson CM, George A, Valsala Gopalakrishnan A, Madhyastha H, Ramesh T, Sathiyamoorthi E, Lee J, Ganesan R. Advances in the Lung Cancer Immunotherapy Approaches. Vaccines (Basel) 2022; 10:1963. [PMID: 36423060 PMCID: PMC9693102 DOI: 10.3390/vaccines10111963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 09/19/2023] Open
Abstract
Despite the progress in the comprehension of LC progression, risk, immunologic control, and treatment choices, it is still the primary cause of cancer-related death. LC cells possess a very low and heterogeneous antigenicity, which allows them to passively evade the anticancer defense of the immune system by educating cytotoxic lymphocytes (CTLs), tumor-infiltrating lymphocytes (TILs), regulatory T cells (Treg), immune checkpoint inhibitors (ICIs), and myeloid-derived suppressor cells (MDSCs). Though ICIs are an important candidate in first-line therapy, consolidation therapy, adjuvant therapy, and other combination therapies involving traditional therapies, the need for new predictive immunotherapy biomarkers remains. Furthermore, ICI-induced resistance after an initial response makes it vital to seek and exploit new targets to benefit greatly from immunotherapy. As ICIs, tumor mutation burden (TMB), and microsatellite instability (MSI) are not ideal LC predictive markers, a multi-parameter analysis of the immune system considering tumor, stroma, and beyond can be the future-oriented predictive marker. The optimal patient selection with a proper adjuvant agent in immunotherapy approaches needs to be still revised. Here, we summarize advances in LC immunotherapy approaches with their clinical and preclinical trials considering cancer models and vaccines and the potential of employing immunology to predict immunotherapy effectiveness in cancer patients and address the viewpoints on future directions. We conclude that the field of lung cancer therapeutics can benefit from the use of combination strategies but with comprehension of their limitations and improvements.
Collapse
Affiliation(s)
- Hafiza Padinharayil
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Reema Rose Alappat
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Liji Maria Joy
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Kavya V. Anilkumar
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Cornelia M. Wilson
- Life Sciences Industry Liaison Lab, School of Psychology and Life Sciences, Canterbury Christ Church University, Sandwich CT13 9ND, UK
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, College of Medicine, Hallym University, Chuncheon 24253, Republic of Korea
| |
Collapse
|
25
|
Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022; 13:1007579. [PMID: 36341323 PMCID: PMC9626807 DOI: 10.3389/fimmu.2022.1007579] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
26
|
Boccalatte F, Mina R, Aroldi A, Leone S, Suryadevara CM, Placantonakis DG, Bruno B. Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers (Basel) 2022; 14:5108. [PMID: 36291891 PMCID: PMC9600451 DOI: 10.3390/cancers14205108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells in solid tumors have so far yielded limited results, in terms of therapeutic effects, as compared to the dramatic results observed for hematological malignancies. Many factors involve both the tumor cells and the microenvironment. The lack of specific target antigens and severe, potentially fatal, toxicities caused by on-target off-tumor toxicities constitute major hurdles. Furthermore, the tumor microenvironment is usually characterized by chronic inflammation, the presence of immunosuppressive molecules, and immune cells that can reduce CAR T cell efficacy and facilitate antigen escape. Nonetheless, solid tumors are under investigation as possible targets despite their complexity, which represents a significant challenge. In preclinical mouse models, CAR T cells are able to efficiently recognize and kill several tumor xenografts. Overall, in the next few years, there will be intensive research into optimizing novel cell therapies to improve their effector functions and keep untoward effects in check. In this review, we provide an update on the state-of-the-art CAR T cell therapies in solid tumors, focusing on the preclinical studies and preliminary clinical findings aimed at developing optimal strategies to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Roberto Mina
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, MB, Italy
| | - Sarah Leone
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Carter M. Suryadevara
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center/Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benedetto Bruno
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| |
Collapse
|
27
|
Shang P, Yu L, Cao S, Guo C, Zhang W. An improved cell line-derived xenograft humanized mouse model for evaluation of PD-1/PD-L1 blocker BMS202-induced immune responses in colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1497-1506. [PMID: 36269133 PMCID: PMC9827804 DOI: 10.3724/abbs.2022145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The establishment of an in vivo mouse model mimicking human tumor-immune environments provides a promising platform for immunotherapy assessment, drug discovery and clinical decision guidance. To this end, we construct humanized NCG mice by transplanting human hCD34 + hematopoietic progenitors into non-obese diabetic (NOD) Cg- Prkdc scidIL2rg tm1Wjl /Sz (null; NCG) mice and monitoring the development of human hematopoietic and immune systems (Hu-NCG). The cell line-derived xenograft (CDX) Hu-NCG mouse models are set up to assess the outcome of immunotherapy mediated by the small molecule BMS202. As a PD-1/PD-L1 blocker, BMS202 shows satisfactory antitumour efficacy in the HCT116 and SW480 xenograft Hu-NCG mouse models. Mechanistically, BMS202 exerts antitumour efficacy by improving the tumor microenvironment and enhancing the infiltration of hCD8 + T cells and the release of hIFNγ in tumor tissue. Thus, tumor-bearing Hu-NCG mice are a suitable and important in vivo model for preclinical study, particularly in cancer immunotherapy.
Collapse
Affiliation(s)
- Pengzhao Shang
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China
| | - Liting Yu
- Department of PharmacyBinzhou Medical UniversityYantai264003China
| | - Shucheng Cao
- School of EngineeringChina Pharmaceutical UniversityNanjing210009China
| | - Changying Guo
- School of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210009China,Correspondence address. Tel: +86-15737957481; (W.Z.) / Tel: +86-18252099426; (C.G.) @cpu.edu.cn
| | - Wanheng Zhang
- Department of Pharmacythe First Affiliated Hospitaland College of Clinical Medicine of Henan University of Science and TechnologyLuoyang471003China,Correspondence address. Tel: +86-15737957481; (W.Z.) / Tel: +86-18252099426; (C.G.) @cpu.edu.cn
| |
Collapse
|
28
|
Kanikarla Marie P, Sorokin AV, Bitner LA, Aden R, Lam M, Manyam G, Woods MN, Anderson A, Capasso A, Fowlkes N, Overman MJ, Menter DG, Kopetz S. Autologous humanized mouse models to study combination and single-agent immunotherapy for colorectal cancer patient-derived xenografts. Front Oncol 2022; 12:994333. [PMID: 36212401 PMCID: PMC9532947 DOI: 10.3389/fonc.2022.994333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022] Open
Abstract
Designing studies of immunotherapy is limited due to a lack of pre-clinical models that reliably predict effective immunotherapy responses. To address this gap, we developed humanized mouse models of colorectal cancer (CRC) incorporating patient-derived xenografts (PDX) with human peripheral blood mononuclear cells (PBMC). Humanized mice with CRC PDXs were generated via engraftment of autologous (isolated from the same patients as the PDXs) or allogeneic (isolated from healthy donors) PBMCs. Human T cells were detected in mouse blood, tissues, and infiltrated the implanted PDXs. The inclusion of anti-PD-1 therapy revealed that tumor responses in autologous but not allogeneic models were more comparable to that of patients. An overall non-specific graft-vs-tumor effect occurred in allogeneic models and negatively correlated with that seen in patients. In contrast, autologous humanized mice more accurately correlated with treatment outcomes by engaging pre-existing tumor specific T-cell populations. As autologous T cells appear to be the major drivers of tumor response thus, autologous humanized mice may serve as models at predicting treatment outcomes in pre-clinical settings for therapies reliant on pre-existing tumor specific T-cell populations.
Collapse
Affiliation(s)
- Preeti Kanikarla Marie
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alexey V. Sorokin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lea A. Bitner
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Rebecca Aden
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael Lam
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ganiraju Manyam
- Department of Bioinformatics & Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Melanie N. Woods
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Amanda Anderson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Anna Capasso
- Department of Oncology, The University of Texas Health Austin, Austin, TX, United States
| | - Natalie Fowlkes
- Department of Veterinary Medicine & Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J. Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - David G. Menter
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Scott Kopetz,
| |
Collapse
|
29
|
Janakiraman H, Becker SA, Bradshaw A, Rubinstein MP, Camp ER. Critical evaluation of an autologous peripheral blood mononuclear cell-based humanized cancer model. PLoS One 2022; 17:e0273076. [PMID: 36095023 PMCID: PMC9467357 DOI: 10.1371/journal.pone.0273076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
The use of humanized mouse models for oncology is rapidly expanding. Autologous patient-derived systems are particularly attractive as they can model the human cancer's heterogeneity and immune microenvironment. In this study, we developed an autologous humanized mouse cancer model by engrafting NSG mice with patient-derived xenografts and infused matched peripheral blood mononuclear cells (PBMCs). We first defined the time course of xenogeneic graft-versus-host-disease (xGVHD) and determined that only minimal xGVHD was observed for up to 8 weeks. Next, colorectal and pancreatic cancer patient-derived xenograft bearing NSG mice were infused with 5x106 human PBMCS for development of the humanized cancer models (iPDX). Early after infusion of human PBMCs, iPDX mice demonstrated engraftment of human CD4+ and CD8+ T cells in the blood of both colorectal and pancreatic cancer patient-derived models that persisted for up to 8 weeks. At the end of the experiment, iPDX xenografts maintained the features of the primary human tumor including tumor grade and cell type. The iPDX tumors demonstrated infiltration of human CD3+ cells with high PD-1 expression although we observed significant intra and inter- model variability. In summary, the iPDX models reproduced key features of the corresponding human tumor. The observed variability and high PD-1 expression are important considerations that need to be addressed in order to develop a reproducible model system.
Collapse
Affiliation(s)
- Harinarayanan Janakiraman
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Scott A. Becker
- Molecular and Systems Pharmacology, Emory University, Atlanta, GA, United States of America
| | - Alexandra Bradshaw
- Department of Surgery, Medical University Of South Carolina, Charleston, SC, United States of America
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center–James, Columbus, OH, United States of America
| | - Ernest Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L. Duncan Comprehensive Cancer Center, Houston, Texas, United States of America
- Michael E. DeBakey VA Medical Center, Houston, Texas, United States of America
| |
Collapse
|
30
|
Bruss C, Kellner K, Ortmann O, Seitz S, Brockhoff G, Hutchinson JA, Wege AK. Advanced Immune Cell Profiling by Multiparameter Flow Cytometry in Humanized Patient-Derived Tumor Mice. Cancers (Basel) 2022; 14:2214. [PMID: 35565343 PMCID: PMC9103756 DOI: 10.3390/cancers14092214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/07/2022] Open
Abstract
"Humanized" mice have been widely used for the characterization of human cancer progression and as a powerful preclinical model. Standardization of multicolor phenotyping could help to identify immune cell patterns involved in checkpoint-related complications. Therefore, we applied established protocols for immune cell profiling to our humanized Patient-Derived Xenograft (hPDX) model. hPDX are characterized by the co-existence of a human immune system and a patient-derived tumor transplant. These mice possess a human-like immune system after CD34+ stem cell transplantation while the reconstitution level of the immune system was not related to the quantity of transplanted CD34+ cells. Contamination ≤ 1.2% by CD3+ cells in the hematopoietic stem cell (HSC) transplant did not trigger abnormal T cell maturation. Different B and T cell differentiation stages were identified, as well as regulatory T cells (Tregs) and exhausted T cells that expressed TIGIT, PD-1, or KLRG1. Overall, the application of standardized protocols for the characterization of immune cells using flow cytometry will contribute to a better understanding of immune-oncologic processes.
Collapse
Affiliation(s)
- Christina Bruss
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (C.B.); (K.K.); (O.O.); (S.S.); (G.B.)
| | - Kerstin Kellner
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (C.B.); (K.K.); (O.O.); (S.S.); (G.B.)
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (C.B.); (K.K.); (O.O.); (S.S.); (G.B.)
| | - Stephan Seitz
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (C.B.); (K.K.); (O.O.); (S.S.); (G.B.)
| | - Gero Brockhoff
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (C.B.); (K.K.); (O.O.); (S.S.); (G.B.)
| | - James A. Hutchinson
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Anja Kathrin Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93053 Regensburg, Germany; (C.B.); (K.K.); (O.O.); (S.S.); (G.B.)
| |
Collapse
|
31
|
Liu S, Sun Z, Liang M, Song W, Zhang R, Shi Y, Cui Y, Gao Q. An Unrevealed Molecular Function of Corannulene Buckybowl Glycoconjugates in Selective Tumor Annihilation by Targeting the Cancer-Specific Warburg Effect. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105315. [PMID: 35253390 PMCID: PMC8981914 DOI: 10.1002/advs.202105315] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The biomedical application of corannulene π-bowls is historically limited by low solubility and bioavailability despite the potential in their unique electronic properties for new functional materials. Herein, the unexpected role and molecular mechanism of Corranulene π-bowls are uncovered in biomedical applications as an effective anticancer agent for Warburg effect mediated selective tumor targeting. The corannulene triazolyl monosaccharides Cor-sugars exhibit highly potent cytotoxicity against human cancer cells and effectively inhibit xenograft growth of hyperglycolytic tumors. Particularly, the galactose-conjugated Cor-gal exhibits superior in vivo anticancer efficacy in A549 tumor models with outstanding safety profile compared to doxorubicin. Moreover, the combined treatment of Cor-gal with immune checkpoint inhibitor results in an effective synergy in treating H460 human lung carcinoma. An uptake mechanism study reveals that Cor-sugars exploit tumor-specific glucose transporter glucose transporter 1 (GLUT1) for targeted cell delivery and intra-tumoral accumulation through the cancer-specific Warburg effect. Their significant anticancer activity is attributed to multiphasic DNA-binding and cell cycle alteration effects. This study uncovers new molecular properties of corannulene buckybowl and enabling their potential new applications in biomedical engineering.
Collapse
Affiliation(s)
- Shengnan Liu
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Ziru Sun
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Min Liang
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Central Institute of Pharmaceutical ResearchCSPC Pharmaceutical Group226 Huanhe RoadShijiazhuangHebei050035P. R. China
| | - Weijie Song
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerWest Huanhu RoadHexi DistrictTianjin300060P. R. China
| | - Ru Zhang
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Department of BiologyGudui BioPharma Technology Inc.Huayuan Industrial Park5 Lanyuan RoadTianjin300384P. R. China
| | - Yunli Shi
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| | - Yujun Cui
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
- Transplantation CenterTianjin First Central Hospital24 Fukang RoadNankai DistrictTianjin300192P. R. China
| | - Qingzhi Gao
- Institute of Molecular PlusFrontiers Science Center for Synthetic Biology (Ministry of Education of China)Tianjin Key Laboratory for Modern Drug Delivery and High‐EfficiencyTianjin University92 Weijin RoadNankai DistrictTianjin300072P. R. China
| |
Collapse
|
32
|
Wang Z, Lu C, Zhang K, Lin C, Wu F, Tang X, Wu D, Dou Y, Han R, Wang Y, Hou C, Ouyang Q, Feng M, He Y, Li L. Metformin Combining PD-1 Inhibitor Enhanced Anti-Tumor Efficacy in STK11 Mutant Lung Cancer Through AXIN-1-Dependent Inhibition of STING Ubiquitination. Front Mol Biosci 2022; 9:780200. [PMID: 35281267 PMCID: PMC8905189 DOI: 10.3389/fmolb.2022.780200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Non-small-cell lung cancer (NSCLC) with STK11 mutation showed primary resistance to immune checkpoint inhibitors (ICIs). The glucose-lowering drug metformin exerted anti-cancer effect and enhanced efficacy of chemotherapy in NSCLC with KRAS/STK11 co-mutation, yet it is unknown whether metformin may enhance ICI efficacy in STK11 mutant NSCLC.Methods: We studied the impact of metformin on ICI efficacy in STK11 mutant NSCLC in vitro and in vivo using colony formation assay, cell viability assay, Ki67 staining, ELISA, CRISPR/Cas9-mediated knockout, and animal experiments.Results: Through colony formation assay, Ki67 incorporation assay, and CCK-8 assay, we found that metformin significantly enhanced the killing of H460 cells and A549 cells by T cells. In NOD-SCID xenografts, metformin in combination with PD-1 inhibitor pembrolizumab effectively decreased tumor growth and increased infiltration of CD8+ T cells. Metformin enhanced stabilization of STING and activation of its downstream signaling pathway. siRNA-mediated knockdown of STING abolished the effect of metformin on T cell-mediated killing of tumor cells. Next, we found that CRISPR/Cas9-mediated knockout of the scaffold protein AXIN-1 abolished the effect of metformin on T cell-mediated killing and STING stabilization. Immunoprecipitation and confocal macroscopy revealed that metformin enhanced the interaction and colocalization between AXIN-1 and STING. Protein-protein interaction modeling indicated that AXIN-1 may directly bind to STING at its K150 site. Next, we found that metformin decreased K48-linked ubiquitination of STING and inhibited the interaction of E3-ligand RNF5 and STING. Moreover, in AXIN-1−/− H460 cells, metformin failed to alter the interaction of RNF5 and STING.Conclusion: Metformin combining PD-1 inhibitor enhanced anti-tumor efficacy in STK11 mutant lung cancer through inhibition of RNF5-mediated K48-linked ubiquitination of STING, which was dependent on AXIN-1.
Collapse
Affiliation(s)
- Zhiguo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kejun Zhang
- Department of Outpatients, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Wu
- Department of Oncology, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolin Tang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuanyao Dou
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yubo Wang
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chao Hou
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qin Ouyang
- School of Pharmacy, Third Military Medical University (Army Medical University), Chongqing, China
| | - Mingxia Feng
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Mingxia Feng, ; Yong He, ; Li Li,
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Mingxia Feng, ; Yong He, ; Li Li,
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Mingxia Feng, ; Yong He, ; Li Li,
| |
Collapse
|
33
|
Pan B, Wei X, Xu X. Patient-derived xenograft models in hepatopancreatobiliary cancer. Cancer Cell Int 2022; 22:41. [PMID: 35090441 PMCID: PMC8796540 DOI: 10.1186/s12935-022-02454-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Animal models are crucial tools for evaluating the biological progress of human cancers and for the preclinical investigation of anticancer drugs and cancer prevention. Various animals are widely used in hepatopancreatobiliary cancer research, and mouse models are the most popular. Generally, genetic tools, graft transplantation, and chemical and physical measures are adopted to generate sundry mouse models of hepatopancreatobiliary cancer. Graft transplantation is commonly used to study tumour progression. Over the past few decades, subcutaneous or orthotopic cell-derived tumour xenograft models (CDX models) have been developed to simulate distinct tumours in patients. However, two major limitations exist in CDX models. One model poorly simulates the microenvironment of tumours in humans, such as the vascular, lymphatic and immune environments. The other model loses genetic heterogeneity compared with the corresponding primary tumour. Increased efforts have focused on developing better models for hepatopancreatobiliary cancer research. Hepatopancreatobiliary cancer is considered a tumour with high molecular heterogeneity, making precision medicine challenging in cancer treatment. Developing a new animal model that can better mimic tumour tissue and more accurately predict the efficacy of anticancer treatments is urgent. For the past several years, the patient-derived xenograft model (PDX model) has emerged as a promising tool for translational research. It can retain the genetic and histological stability of their originating tumour at limited passages and shed light on precision cancer medicine. In this review, we summarize the methodology, advantages/disadvantages and applications of PDX models in hepatopancreatobiliary cancer research.
Collapse
|
34
|
Gatto L, Franceschi E, Di Nunno V, Maggio I, Lodi R, Brandes AA. Engineered CAR-T and novel CAR-based therapies to fight the immune evasion of glioblastoma: gutta cavat lapidem. Expert Rev Anticancer Ther 2021; 21:1333-1353. [PMID: 34734551 DOI: 10.1080/14737140.2021.1997599] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The field of cancer immunotherapy has achieved great advancements through the application of genetically engineered T cells with chimeric antigen receptors (CAR), that have shown exciting success in eradicating hematologic malignancies and have proved to be safe with promising early signs of antitumoral activity in the treatment of glioblastoma (GBM). AREAS COVERED We discuss the use of CAR T cells in GBM, focusing on limitations and obstacles to advancement, mostly related to toxicities, hostile tumor microenvironment, limited CAR T cells infiltration and persistence, target antigen loss/heterogeneity and inadequate trafficking. Furthermore, we introduce the refined strategies aimed at strengthening CAR T activity and offer insights in to novel immunotherapeutic approaches, such as the potential use of CAR NK or CAR M to optimize anti-tumor effects for GBM management. EXPERT OPINION With the progressive wide use of CAR T cell therapy, significant challenges in treating solid tumors, including central nervous system (CNS) tumors, are emerging, highlighting early disease relapse and cancer cell resistance issues, owing to hostile immunosuppressive microenvironment and tumor antigen heterogeneity. In addition to CAR T cells, there is great interest in utilizing other types of CAR-based therapies, such as CAR natural killer (CAR NK) or CAR macrophages (CAR M) cells for CNS tumors.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| | | | - Ilaria Maggio
- Medical Oncology Department, Azienda USL, Bologna, Italy
| | - Raffaele Lodi
- IrcssIstituto di Scienze Neurologiche di Bologna, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, Bologna, Italy
| |
Collapse
|
35
|
Huang L, Wang R, Xie K, Zhang J, Tao F, Pi C, Feng Y, Gu H, Fang J. A HER2 target antibody drug conjugate combined with anti-PD-(L)1 treatment eliminates hHER2+ tumors in hPD-1 transgenic mouse model and contributes immune memory formation. Breast Cancer Res Treat 2021; 191:51-61. [PMID: 34657203 DOI: 10.1007/s10549-021-06384-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 09/06/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE Disitamab vedotin (RC48) is an HER2-directed antibody-drug conjugate, emerging as an effective strategy for cancer therapy, which not only enhances antitumor immunity in previous animal models but also improves clinical outcomes for patients such as with gastric cancer, urothelium carcinoma, and HER2 low-expressing breast cancer. Here, we explore the combination therapeutic efficacy of this novel HER2-targeting ADC with immune checkpoint inhibitors in a human HER2-expressing syngeneic breast cancer model. METHODS The human HER2+ cancer cell line is constructed by stable transfection and individual clones were isolated by single-cell sorting. Flow cytometry was performed to determine its binding activity. Cytotoxic effect was determined using an MTT assay with the supplement of RC48. Human PD-1 transgenic mice were used to analyze the in vivo antitumor effects of the ADC and its combination therapy with PD-1/PD-L1 antibody. RESULTS The combination of RC48 and PD-1/PD-L1 immune checkpoint inhibition significantly enhanced tumor suppression and antitumor immunity. Tumor rejection in the synergistic groups was accompanied by massive T cell infiltration and immune marker activation. Furthermore, the combination therapy promoted immunological memory formation in the tumor eradication animals, protecting them from tumor rechallenge. CONCLUSION A novel HER2-targeting ADC combined with immune checkpoint inhibitors can achieve remarkable effects in mice and elicit long-lasting immune protection in a hHER2+ murine breast cancer model. This study provides insights into the efficacy of RC48 therapeutic activity and a rationale for potential therapeutic combination strategies with immunotherapy.
Collapse
Affiliation(s)
- Lei Huang
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Ruiqin Wang
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Kun Xie
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Jingming Zhang
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Fei Tao
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Chenyu Pi
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Yan Feng
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China
| | - Hua Gu
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China.
| | - Jianmin Fang
- Laboratory of Molecular Medicine, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, People's Republic of China. .,Department of Neurology, Tongji Hospital, Tongji University, Shanghai, People's Republic of China. .,Biomedical Research Center, Tongji University Suzhou Institute, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
36
|
Mapping lung squamous cell carcinoma pathogenesis through in vitro and in vivo models. Commun Biol 2021; 4:937. [PMID: 34354223 PMCID: PMC8342622 DOI: 10.1038/s42003-021-02470-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the main cause of cancer death worldwide, with lung squamous cell carcinoma (LUSC) being the second most frequent subtype. Preclinical LUSC models recapitulating human disease pathogenesis are key for the development of early intervention approaches and improved therapies. Here, we review advances and challenges in the generation of LUSC models, from 2D and 3D cultures, to murine models. We discuss how molecular profiling of premalignant lesions and invasive LUSC has contributed to the refinement of in vitro and in vivo models, and in turn, how these systems have increased our understanding of LUSC biology and therapeutic vulnerabilities.
Collapse
|
37
|
Xu S, Yan X, Dai G, Luo C. A Novel Mice Model for Studying the Efficacy and IRAEs of Anti-CTLA4 Targeted Immunotherapy. Front Oncol 2021; 11:692403. [PMID: 34178691 PMCID: PMC8222697 DOI: 10.3389/fonc.2021.692403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Background Patient-derived orthotopic xenograft (PDOX) is a popular animal model for translational cancer research. Immunotherapy is a promising therapy against glioblastoma (GBM). However, the PDOX model is limited to evaluating immune-related events. Our study aims to establish GBM humanized PDOX (HPDOX) mice models to study the mechanism of anti-CTLA4 immunotherapy and immune-related adverse events (IRAEs). Methods HPDOX models were established by culturing GBM tissues and intracranially implanting them in NSG mice. Meanwhile, peripheral blood mononuclear cells (PBMCs) were separated from peripheral blood and of GBM patients and administrated in corresponding mice. The population of CD45+, CD3+, CD4+, CD8+, and regulatory T (Treg) cells was estimated in the peripheral blood or tumor. Results T cells derived from GBM patients were detected in HPDOX mice models. The application of anti-CTLA4 antibodies (ipilimumab and tremelimumab) significantly inhibited the growth of GBM xenografts in mice. Moreover, residual patient T cells were detected in the tumor microenvironment and peripheral blood of HPDOX mice and were significantly elevated by ipilimumab and tremelimumab. Additionally, Treg cells were decreased in mice with IRAEs. Lastly, the proportion of CD4+/CD8+ T cells dramatically increased after the administration of ipilimumab. And the degree of IRAEs may be related to CD56+ expression in HPDOX. Conclusions Our study established HPDOX mice models for investigating the mechanism and IRAEs of immunotherapies in GBM, which would offer a promising platform for evaluating the efficacy and IRAEs of novel therapies and exploring personalized therapeutic strategies.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xi Yan
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
| | - Gan Dai
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
38
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
39
|
Xie X, Hu Y, Ye T, Chen Y, Zhou L, Li F, Xi X, Wang S, He Y, Gao X, Wei W, Ma G, Li Y. Therapeutic vaccination against leukaemia via the sustained release of co-encapsulated anti-PD-1 and a leukaemia-associated antigen. Nat Biomed Eng 2021; 5:414-428. [PMID: 33046865 DOI: 10.1038/s41551-020-00624-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic leukaemia vaccines have shown modest potency. Here, we show that the co-encapsulation of a leukaemia-associated epitope peptide highly expressed in leukaemia patients and of the immune checkpoint inhibitor anti-programmed-cell-death-protein-1 (anti-PD-1) in degradable poly(lactic acid) microcapsules resulted in the sustained release of the peptide and of the antibody, which led to the recruitment of activated antigen-presenting cells to the injection site, their uptake of the peptide and the transportation of the anti-PD-1 antibody to lymph nodes, enhancing the expansion of epitope-specific T cells and the activation of cytotoxic T cells. After single subcutaneous injections of vaccine formulations with different epitope peptides, mice bearing leukaemia xenografts derived from humanized cell lines or from primary cells from patients showed better therapeutic outcomes than mice receiving repeated injections of free antigen, antibody and a commercial adjuvant. The sustained release of a tumour-associated peptide and of anti-PD-1 may represent a generalizable strategy for boosting antitumour immune responses to leukaemia.
Collapse
Affiliation(s)
- Xiaoling Xie
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China.,State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Tong Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Yiran Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Xiaobo Xi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China.,University of Chinese Academy of Sciences, Beijing, P R China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China. .,University of Chinese Academy of Sciences, Beijing, P R China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P R China. .,University of Chinese Academy of Sciences, Beijing, P R China.
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, P R China. .,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, P R China.
| |
Collapse
|
40
|
Guo W, Zhang C, Qiao T, Zhao J, Shi C. Strategies for the Construction of Mouse Models With Humanized Immune System and Evaluation of Tumor Immune Checkpoint Inhibitor Therapy. Front Oncol 2021; 11:673199. [PMID: 33996603 PMCID: PMC8117211 DOI: 10.3389/fonc.2021.673199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has been used as a first-line treatment for a variety of advanced tumors, allowing remarkable progress to be made in cancer treatment. Nonetheless, only a small number of patients can benefit from immune checkpoint inhibitor monotherapy. To improve the effect of immunotherapy, the underlying mechanism of combination therapy was investigated in the context of an intact human tumor immune microenvironment using mice with a human immune system (HIS) bearing human tumors. Herein, we summarize and discuss strategies for the development and use of HIS mice models in tumor immunotherapies. Most importantly, this review proposes a method of t11umor identification and classification in HIS mice based on the tumor-infiltrating lymphocytes and PD-L1 expression, and according to this classification, we propose different combination treatment strategies that can be utilized to enhance the effect of immunotherapy. Thus, we provide effective experimental schemes for tumor immunotherapy in HIS mice models.
Collapse
Affiliation(s)
- Wenwen Guo
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China.,School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, China
| | - Caiqin Zhang
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| | - Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jumei Zhao
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
41
|
Lin S, Cheng L, Ye W, Li S, Zheng D, Qin L, Wu Q, Long Y, Lin S, Wang S, Huang G, Li P, Yao Y, Sun X. Chimeric CTLA4-CD28-CD3z T Cells Potentiate Antitumor Activity Against CD80/CD86-Positive B Cell Malignancies. Front Immunol 2021; 12:642528. [PMID: 33868277 PMCID: PMC8050336 DOI: 10.3389/fimmu.2021.642528] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
The adoptive transfer of chimeric antigen receptor T (CAR T) cells have been recognized as a promising therapeutic strategy for the treatment of hematological malignancies; however, clinical success using CAR T cells for the treatment of solid tumors are still limited since the T-cell function is inhibited by negative signals in the microenvironment of solid tumors. CTLA4 is a well-known immune checkpoint molecule, thus we developed a novel CAR by converting this negative signal to positive signal. The CAR developed consists of the extracellular and transmembrane domains of CTLA4 and the cytoplasmic domains of CD28 and CD3z (CTLA4-CAR T). CTLA4-CAR T cells exhibited superior cytokine secreting activities and cytotoxic to tumor cells in vitro and in xenograft models. CTLA4-CAR T cells were found to accumulate in tumors and are toxic to myeloid-derived suppressor cells (MDSCs) without signs of severe GVHD and CRS in preclinical models. Thus, this chimeric CTLA4-CAR can enhance the antitumor activity of CAR T cells and shed light on the strategy of using armed CAR T cells to target the immunomodulatory tumor microenvironment.
Collapse
Affiliation(s)
- Shouheng Lin
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Cheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Wei Ye
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Shanglin Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Diwei Zheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Le Qin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qiting Wu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Youguo Long
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Simiao Lin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Suna Wang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Guohua Huang
- Department of Respiratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yao Yao
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
42
|
Abstract
Mice with human hematopoietic system have become critical for research and preclinical studies. Mice with patient-derived xenografts of different tumors exist without human immune system. Answers can be addressed with the same immunodeficient mice that are chimeric for the human hemato-lymphoid system (humanized mice). The growing field of immune-oncology could benefit from preclinical studies with the humanized mice. Other fields will also benefit such as studies of infectious disease, regenerative medicine, organ transplant, and allergies. Here, we describe the method to humanize immune-deficient mice with human CD34+ hematopoietic cells.
Collapse
|
43
|
Qiao T, Xiong Y, Feng Y, Guo W, Zhou Y, Zhao J, Jiang T, Shi C, Han Y. Inhibition of LDH-A by Oxamate Enhances the Efficacy of Anti-PD-1 Treatment in an NSCLC Humanized Mouse Model. Front Oncol 2021; 11:632364. [PMID: 33859941 PMCID: PMC8042335 DOI: 10.3389/fonc.2021.632364] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is a curable treatment for certain cancers, but it is still only effective in a small subset of patients, partly because of the lack of sufficient immune cells in the tumor. It is reported that targeted lactate dehydrogenase (LDH) to reduce lactic acid production can promote the infiltration and activity of immune cells and turn tumors into hot tumors. Therefore, we constructed a humanized mouse model to evaluate the efficacy of using classical LDH inhibitor oxamate and pembrolizumab alone or in combination in non-small cell lung cancer (NSCLC). We found that both oxamate and pembrolizumab monotherapy significantly delayed tumor growth; moreover, combination therapy showed better results. Immunofluorescence analysis showed that oxamate treatment increased the infiltration of activated CD8+ T cells in the tumor, which might have enhanced the therapeutic effects of pembrolizumab. Treatment of the humanized mice with anti-CD8 abrogated the therapeutic effects of oxamate, indicating CD8+ T cells as the main force mediating the effect of oxamate. In conclusion, Our preclinical findings position that oxamate not only inhibits tumor growth at a high safe dose but also enhances the efficacy of pembrolizumab in Hu-PBMC-CDX mice. Our study also provides a preclinical model for exploring the efficacy of other immune-based combination therapies for NSCLC.
Collapse
Affiliation(s)
- Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yangbo Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenwen Guo
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, China
| | - Yongsheng Zhou
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Changhong Shi
- Laboratory Animal Center, The Fourth Military Medical University, Xi'an, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Thoracic Surgery, Air Force Medical Center, Beijing, China
| |
Collapse
|
44
|
Fu X, Zhao R, Yoon G, Shim JH, Choi BY, Yin F, Xu B, Laster KV, Liu K, Dong Z, Lee MH. 3-Deoxysappanchalcone Inhibits Skin Cancer Proliferation by Regulating T-Lymphokine-Activated Killer Cell-Originated Protein Kinase in vitro and in vivo. Front Cell Dev Biol 2021; 9:638174. [PMID: 33842463 PMCID: PMC8027363 DOI: 10.3389/fcell.2021.638174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Skin cancer is one of the most commonly diagnosed cancers worldwide. The 5-year survival rate of the most aggressive late-stage skin cancer ranges between 20 and 30%. Thus, the discovery and investigation of novel target therapeutic agents that can effectively treat skin cancer is of the utmost importance. The T-lymphokine-activated killer cell-originated protein kinase (TOPK), which belongs to the serine-threonine kinase class of the mitogen-activated protein kinase kinase (MAPKK) family, is highly expressed and activated in skin cancer. The present study investigates the role of 3-deoxysappanchalcone (3-DSC), a plant-derived functional TOPK inhibitor, in suppressing skin cancer cell growth. Purpose In the context of skin cancer prevention and therapy, we clarify the effect and mechanism of 3-DSC on different types of skin cancer and solar-simulated light (SSL)-induced skin hyperplasia. Methods In an in vitro study, western blotting and in vitro kinase assays were utilized to determine the protein expression of TOPK and its activity, respectively. Pull-down assay with 3-DSC and TOPK (wild-type and T42A/N172 mutation) was performed to confirm the direct interaction between T42A/N172 amino acid sites of TOPK and 3-DSC. Cell proliferation and anchorage-independent cell growth assays were utilized to determine the effect of 3-DSC on cell growth. In an in vivo study, the thickness of skin and tumor size were measured in the acute SSL-induced inflammation mouse model or SK-MEL-2 cell-derived xenografts mouse model treated with 3-DSC. Immunohistochemistry analysis of tumors isolated from SK-MEL-2 cell-derived xenografts was performed to determine whether cell-based results observed upon 3-DSC treatment could be recapitulated in vivo. Results 3-DSC is able to inhibit cell proliferation in skin cancer cells in an anchorage-dependent and anchorage-independent manner by regulation of TOPK and its related signaling pathway in vitro. We also found that application of 3-DSC reduced acute SSL-induced murine skin hyperplasia. Additionally, we observed that 3-DSC decreased SK-MEL-2 cell-derived xenograft tumor growth through attenuating phosphorylation of TOPK and its downstream effectors including ERK, RSK, and c-Jun. Conclusions Our results suggest that 3-DSC may function in a chemopreventive and chemotherapeutic capacity by protecting against UV-induced skin hyperplasia and inhibiting tumor cell growth by attenuating TOPK signaling, respectively.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Jung-Hyun Shim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Cheongju, South Korea
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
45
|
Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B. Application of Animal Models in Cancer Research: Recent Progress and Future Prospects. Cancer Manag Res 2021; 13:2455-2475. [PMID: 33758544 PMCID: PMC7979343 DOI: 10.2147/cmar.s302565] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Animal models refers to the animal experimental objects and related materials that can simulate human body established in medical research. As the second-largest disease in terms of morbidity and mortality after cardiovascular disease, cancer has always been the focus of human attention all over the world, which makes it a research hotspot in the medical field. At the same time, more and more animal models have been constructed and used in cancer research. With the deepening of research, the construction methods of cancer animal models are becoming more and more diverse, including chemical induction, xenotransplantation, gene programming, and so on. In recent years, patient-derived xenotransplantation (PDX) model has become a research hotspot because it can retain the microenvironment of the primary tumor and the basic characteristics of cells. Animal models can be used not only to study the biochemical and physiological processes of the occurrence and development of cancer in objects but also for the screening of cancer drugs and the exploration of gene therapy. In this paper, several main tumor animal models and the application progress of animal models in tumor research are systematically reviewed. Finally, combined with the latest progress and development trend in this field, the future research of tumor animal model was prospected.
Collapse
Affiliation(s)
- Zhitao Li
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ye Cheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yijiao Fang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, People's Republic of China
| | - Fan Wu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guoqiang Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangshun Sun
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chengyu Lv
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China
| | - Bingqing Hui
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
46
|
Guil-Luna S, Sedlik C, Piaggio E. Humanized Mouse Models to Evaluate Cancer Immunotherapeutics. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2021. [DOI: 10.1146/annurev-cancerbio-050520-100526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Immunotherapy is at the forefront of cancer treatment. The advent of numerous novel approaches to cancer immunotherapy, including immune checkpoint antibodies, adoptive transfer of CAR (chimeric antigen receptor) T cells and TCR (T cell receptor) T cells, NK (natural killer) cells, T cell engagers, oncolytic viruses, and vaccines, is revolutionizing the treatment for different tumor types. Some are already in the clinic, and many others are underway. However, not all patients respond, resistance develops, and as available therapies multiply there is a need to further understand how they work, how to prioritize their clinical evaluation, and how to combine them. For this, animal models have been highly instrumental, and humanized mice models (i.e., immunodeficient mice engrafted with human immune and cancer cells) represent a step forward, although they have several limitations. Here, we review the different humanized models available today, the approaches to overcome their flaws, their use for the evaluation of cancer immunotherapies, and their anticipated evolution as tools to help personalized clinical decision-making.
Collapse
Affiliation(s)
- Silvia Guil-Luna
- Maimónides Institute for Biomedical Research of Córdoba (IMIBIC), 14004 Córdoba, Spain
| | - Christine Sedlik
- Translational Research Department, Institut Curie Research Center, INSERM U932, PSL Research University, 75248 Paris, France;,
| | - Eliane Piaggio
- Translational Research Department, Institut Curie Research Center, INSERM U932, PSL Research University, 75248 Paris, France;,
| |
Collapse
|
47
|
Bella Á, Di Trani CA, Fernández-Sendin M, Arrizabalaga L, Cirella A, Teijeira Á, Medina-Echeverz J, Melero I, Berraondo P, Aranda F. Mouse Models of Peritoneal Carcinomatosis to Develop Clinical Applications. Cancers (Basel) 2021; 13:cancers13050963. [PMID: 33669017 PMCID: PMC7956655 DOI: 10.3390/cancers13050963] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Peritoneal carcinomatosis mouse models as a platform to test, improve and/or predict the appropriate therapeutic interventions in patients are crucial to providing medical advances. Here, we overview reported mouse models to explore peritoneal carcinomatosis in translational biomedical research. Abstract Peritoneal carcinomatosis of primary tumors originating in gastrointestinal (e.g., colorectal cancer, gastric cancer) or gynecologic (e.g., ovarian cancer) malignancies is a widespread type of tumor dissemination in the peritoneal cavity for which few therapeutic options are available. Therefore, reliable preclinical models are crucial for research and development of efficacious treatments for this condition. To date, a number of animal models have attempted to reproduce as accurately as possible the complexity of the tumor microenvironment of human peritoneal carcinomatosis. These include: Syngeneic tumor cell lines, human xenografts, patient-derived xenografts, genetically induced tumors, and 3D scaffold biomimetics. Each experimental model has its own strengths and limitations, all of which can influence the subsequent translational results concerning anticancer and immunomodulatory drugs under exploration. This review highlights the current status of peritoneal carcinomatosis mouse models for preclinical development of anticancer drugs or immunotherapeutic agents.
Collapse
Affiliation(s)
- Ángela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Myriam Fernández-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
| | | | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Oncology, Clínica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Correspondence: (P.B.); (F.A.)
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, 31008 Pamplona, Spain; (Á.B.); (C.A.D.T.); (M.F.-S.); (L.A.); (A.C.); (Á.T.); (I.M.)
- Navarra Institute for Health Research (IDISNA), 31008 Pamplona, Spain
- Correspondence: (P.B.); (F.A.)
| |
Collapse
|
48
|
Zhang J, Huang Y, Xi G, Zhang F. HX008: a humanized PD-1 blocking antibody with potent antitumor activity and superior pharmacologic properties. MAbs 2021; 12:1724751. [PMID: 32106752 PMCID: PMC7153830 DOI: 10.1080/19420862.2020.1724751] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Through reactivating tumor-infiltrating lymphocytes, therapeutics targeting programmed cell death protein 1 (PD-1) demonstrate impressive clinical efficacy in the treatment of multiple cancers. In this report, we characterize HX008, a humanized IgG4S228P anti-PD-1 monoclonal antibody with an engineered Fc domain, in a series of in vitro assays and in vivo studies. In vitro, HX008 binds to human PD-1 with high affinity and potently suppresses the interaction of PD-1 with PD-L1 and PD-L2. The lack of detectable binding to complement C1q and Fc gamma receptor III-a (FcγRIIIa) suggested that HX008 maintained reduced antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. A comparable enhancement of cytokine production and NFAT-driven luciferase expression in cell-based assays confirmed that HX008 could promote T-cell function as effectively as Nivolumab. In vivo antitumor activity studies were carried out within two special tumor models: 1) the MiXeno model with an adoptive transfer of human peripheral blood mononuclear cells into HCC827 xenograft mice; and 2) HuGEMM with human PD-1 gene knock-in syngeneic MC38-bearing mice. In both models, HX008 significantly inhibits tumor growth and shows an effective antitumor response comparable to approved anti-PD-1 drugs. Furthermore, in a pharmacokinetics study performed in cynomolgus monkeys, HX008 induced no immune-related adverse events when administered at 10 mg/kg. Although some anti-drug antibody effects were observed in the primate PK study, the safety and favorable pharmacokinetics demonstrated in human clinical trials validate HX008 as a suitable candidate for cancer immunotherapy. Taken together, our studies provide a fairly thorough characterization of HX008 and strong support for its further clinical research and application.
Collapse
Affiliation(s)
- Jibin Zhang
- School of Pharmaceutical Science, Wuhan University, Wuhan, China.,Department of Research & Development, HanX Biopharmaceuticals, Inc, Wuhan, China
| | - Ying Huang
- Department of Research & Development, HanX Biopharmaceuticals, Inc, Wuhan, China
| | - Gan Xi
- Department of Research & Development, HanX Biopharmaceuticals, Inc, Wuhan, China
| | - Faming Zhang
- School of Pharmaceutical Science, Wuhan University, Wuhan, China.,Department of Research & Development, HanX Biopharmaceuticals, Inc, Wuhan, China
| |
Collapse
|
49
|
Majc B, Novak M, Kopitar-Jerala N, Jewett A, Breznik B. Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells 2021; 10:265. [PMID: 33572835 PMCID: PMC7912469 DOI: 10.3390/cells10020265] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common brain malignant tumor in the adult population, and immunotherapy is playing an increasingly central role in the treatment of many cancers. Nevertheless, the search for effective immunotherapeutic approaches for glioblastoma patients continues. The goal of immunotherapy is to promote tumor eradication, boost the patient's innate and adaptive immune responses, and overcome tumor immune resistance. A range of new, promising immunotherapeutic strategies has been applied for glioblastoma, including vaccines, oncolytic viruses, immune checkpoint inhibitors, and adoptive cell transfer. However, the main challenges of immunotherapy for glioblastoma are the intracranial location and heterogeneity of the tumor as well as the unique, immunosuppressive tumor microenvironment. Owing to the lack of appropriate tumor models, there are discrepancies in the efficiency of various immunotherapeutic strategies between preclinical studies (with in vitro and animal models) on the one hand and clinical studies (on humans) on the other hand. In this review, we summarize the glioblastoma characteristics that drive tolerance to immunotherapy, the currently used immunotherapeutic approaches against glioblastoma, and the most suitable tumor models to mimic conditions in glioblastoma patients. These models are improving and can more precisely predict patients' responses to immunotherapeutic treatments, either alone or in combination with standard treatment.
Collapse
Affiliation(s)
- Bernarda Majc
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
- International Postgraduate School Jozef Stefan, 39 Jamova ulica, SI-1000 Ljubljana, Slovenia
| | - Metka Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
| | - Nataša Kopitar-Jerala
- Department of Biochemistry, Molecular and Structural Biology, Jozef Stefan Institute, 39 Jamova ulica, SI-1000 Ljubljana, Slovenia;
| | - Anahid Jewett
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, University of California School of Dentistry, 10833 Le Conte Ave, Los Angeles, CA 90095, USA;
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 111 Večna pot, SI-1000 Ljubljana, Slovenia; (B.M.); (M.N.)
| |
Collapse
|
50
|
Myeloid-derived suppressor cells promote lung cancer metastasis by CCL11 to activate ERK and AKT signaling and induce epithelial-mesenchymal transition in tumor cells. Oncogene 2021; 40:1476-1489. [PMID: 33452453 DOI: 10.1038/s41388-020-01605-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) suppress antitumor immune activities and facilitate cancer progression. Although the concept of immunosuppressive MDSCs is well established, the mechanism that MDSCs regulate non-small cell lung cancer (NSCLC) progression through the paracrine signals is still lacking. Here, we reported that the infiltration of MDSCs within NSCLC tissues was associated with the progression of cancer status, and was positively correlated with the Patient-derived xenograft model establishment, and poor patient prognosis. Intratumoral MDSCs directly promoted NSCLC metastasis and highly expressed chemokines that promote NSCLC cells invasion, including CCL11. CCL11 was capable of activating the AKT and ERK signaling pathways to promote NSCLC metastasis through the epithelial-mesenchymal transition (EMT) process. Moreover, high expression of CCL11 was associated with a poor prognosis in lung cancer as well as other types of cancer. Our findings underscore that MDSCs produce CCL11 to promote NSCLC metastasis via activation of ERK and AKT signaling and induction of EMT, suggesting that the MDSCs-CCL11-ERK/AKT-EMT axis contains potential targets for NSCLC metastasis treatment.
Collapse
|