1
|
Budge JD. Mapping cellular processes that determine delivery of plasmid DNA to the nucleus: application in Chinese hamster ovary and human embryonic kidney cells to enhance protein production. Front Bioeng Biotechnol 2025; 13:1466671. [PMID: 40190711 PMCID: PMC11969153 DOI: 10.3389/fbioe.2025.1466671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/10/2025] [Indexed: 04/09/2025] Open
Abstract
Delivery of DNA into nucleated eukaryotic cells is known as transfection and has been essential in establishing technologies such as recombinant protein production and gene therapy. Considerable research efforts have led to development of a variety of transfection methods for a multitude of applications and cell types. Many methods are efficient in delivering DNA across the plasma membrane but few focus on subsequent delivery into the nucleus, a necessary step in expression of a recombinant transgene, and the cellular processes governing nuclear import of DNA during transfection have proved elusive. Herein, live confocal microscopy was used to track plasmid DNA during transfection of Chinese hamster ovary (CHO) and human embryonic kidney (HEK) cells to map key cellular processes central to nuclear import of DNA showing that there is a strong relationship between events of cell division, promotion of DNA dispersal from endosomes and subsequent nuclear import leading to gene expression. Furthermore, cationic lipid-mediated transfection is more dependent on events of the cell cycle than electroporation to deliver DNA into the nucleus. These findings have informed the design of a method where both CHO and HEK cells are synchronised at G2 phase of the cell cycle followed by timely release enabling cell cycle progression to maximise the frequency of division events immediately after transfection. This led to a 1.2-1.5 fold increase in transfection efficiency for polyethylenimine (PEI) mediated and electroporation transfection respectively. This process enhanced production yields of a monoclonal antibody 4.5 fold in HEK and 18 fold in CHO cells in the first 24 h post transfection. Overall, this study elucidated key cellular processes fundamental to transfection of CHO and HEK cells providing knowledge which can be applied to DNA delivery technologies in a plethora of fields.
Collapse
Affiliation(s)
- James D. Budge
- School of Natural Sciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
2
|
Reyes SJ, Lemire L, Durocher Y, Voyer R, Henry O, Pham PL. Investigating the metabolic load of monoclonal antibody production conveyed to an inducible CHO cell line using a transfer-rate online monitoring system. J Biotechnol 2025; 399:47-62. [PMID: 39828082 DOI: 10.1016/j.jbiotec.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Shake flasks are a foundational tool in early process development by allowing high throughput exploration of the design space. However, lack of online data at this scale can hamper rapid decision making. Oxygen transfer rate (OTR) monitoring has been readily applied as an online process characterization tool at the benchtop bioreactor scale. Recent advances in modern sensing technology have allowed OTR monitoring to be available at the shake flask level. It is now possible to multiplex time-of-action (e.g., Induction, temperature shift, pH shift, feeding initiation, point of harvest) characterization studies by relying on careful analysis of OTR profile kinetics. As a result, there is potential to save time and capital expenditures while exploring process intensification studies though accurate and physiologically relevant online data. In this article, we detail the application of OTR monitoring to characterize the impact that recombinant protein production has on an inducible CHO cell line expressing Palivizumab. We then test out time-of-action studies to intensify protein production outcomes. We observe that recombinant protein expression causes a metabolic load that diminishes potential biomass growth. As a result, when compared to a control standard process, delaying induction and temperature shift has the potential to improve viable cell densities (VCD) by 2-fold thus increasing recombinant protein yield by over 30 %. The study also demonstrates that OTR can serve as a useful tool to detect cessation of exponential growth. Consequently, time-of-action points that are characteristic of inducible systems can be formulated accurately and reliably to maximize production performance.
Collapse
Affiliation(s)
- Sebastian-Juan Reyes
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Lucas Lemire
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada; Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Robert Voyer
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada.
| | - Phuong Lan Pham
- Human Health Therapeutics Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montréal, Quebec H4P 2R2, Canada.
| |
Collapse
|
3
|
Agarwal P, McCready C, Ng SK, Ng JC, van de Laar J, Pennings M, Zijlstra G. Hybrid modeling for in silico optimization of a dynamic perfusion cell culture process. Biotechnol Prog 2025; 41:e3503. [PMID: 39291457 PMCID: PMC11831417 DOI: 10.1002/btpr.3503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
The bio-pharmaceutical industry heavily relies on mammalian cells for the production of bio-therapeutic proteins. The complexity of implementing and high cost-of-goods of these processes are currently limiting more widespread patient access. This is driving efforts to enhance cell culture productivity and cost reduction. Upstream process intensification (PI), using perfusion approaches in the seed train and/or the main bioreactor, has shown substantial promise to enhance productivity. However, developing optimal process conditions for perfusion-based processes remain challenging due to resource and time constraints. Model-based optimization offers a solution by systematically screening process parameters like temperature, pH, and culture media to find the optimum conditions in silico. To our knowledge, this is the first experimentally validated model to explain the perfusion dynamics under different operating conditions and scales for process optimization. The hybrid model accurately describes Chinese hamster ovary (CHO) cell culture growth dynamics and a neural network model explains the production of mAb, allowing for optimization of media exchange rates. Results from six perfusion runs in Ambr® 250 demonstrated high accuracy, confirming the model's utility. Further, the implementation of dynamic media exchange rate schedule determined through model-based optimization resulted in 50% increase in volumetric productivity. Additionally, two 5 L-scale experiments validated the model's reliable extrapolation capabilities to large bioreactors. This approach could reduce the number of wet lab experiments needed for culture process optimization, offering a promising avenue for improving productivity, cost-of-goods in bio-pharmaceutical manufacturing, in turn improving patient access to pivotal medicine.
Collapse
Affiliation(s)
| | | | - Say Kong Ng
- Bioprocessing Technology Institute (BTI)A*STARBiopolis WaySingapore
| | | | | | | | | |
Collapse
|
4
|
Mao L, Sonbati SM, Schneider JW, Robinson AS. Autophagy and Akt-Stimulated Cellular Proliferation Synergistically Improve Antibody Production in CHO Cells. Biotechnol J 2024; 19:e202400033. [PMID: 39623740 PMCID: PMC11612535 DOI: 10.1002/biot.202400033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/06/2024]
Abstract
Over the past decade, engineered producer cell lines have led 10-fold increases in antibody yield, based on an improved understanding of the cellular machinery influencing cell health and protein production. With prospects for further production improvements, increased antibody production would enable a significant cost reduction for life-saving therapies. In this study, we strategized methods to increase cell viability and the resulting cell culture duration to improve production lifetimes. By overexpressing the cell surface adenosine A2A receptor (A2AR), the Akt pathway was activated, resulting in improved cellular proliferation. Alternatively, by inducing autophagy through temperature downshift, we were able to significantly enhance cellular-specific productivity, with up to a three-fold increase in total antibody production as well as three-fold higher cell-specific productivity. Interestingly, the expression levels of the autophagy pathway protein Beclin-1 appeared to correlate best with the total antibody production, of autophagy-related proteins examined. Thus, during cell clonal development Beclin-1 levels may serve as a marker to screen for conditions that optimize antibody titer.
Collapse
Affiliation(s)
- Leran Mao
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | | | - James W. Schneider
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| | - Anne S. Robinson
- Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghPennsylvaniaUSA
| |
Collapse
|
5
|
Park SY, Choi DH, Song J, Lakshmanan M, Richelle A, Yoon S, Kontoravdi C, Lewis NE, Lee DY. Driving towards digital biomanufacturing by CHO genome-scale models. Trends Biotechnol 2024; 42:1192-1203. [PMID: 38548556 DOI: 10.1016/j.tibtech.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 05/20/2024]
Abstract
Genome-scale metabolic models (GEMs) of Chinese hamster ovary (CHO) cells are valuable for gaining mechanistic understanding of mammalian cell metabolism and cultures. We provide a comprehensive overview of past and present developments of CHO-GEMs and in silico methods within the flux balance analysis (FBA) framework, focusing on their practical utility in rational cell line development and bioprocess improvements. There are many opportunities for further augmenting the model coverage and establishing integrative models that account for different cellular processes and data for future applications. With supportive collaborative efforts by the research community, we envisage that CHO-GEMs will be crucial for the increasingly digitized and dynamically controlled bioprocessing pipelines, especially because they can be successfully deployed in conjunction with artificial intelligence (AI) and systems engineering algorithms.
Collapse
Affiliation(s)
- Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Dong-Hyuk Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jinsung Song
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Meiyappan Lakshmanan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, and Centre for Integrative Biology and Systems Medicine (IBSE), Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Anne Richelle
- Sartorius Corporate Research, Avenue Ariane 5, 1200 Brussels, Belgium
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell, MA 01850, USA
| | - Cleo Kontoravdi
- Department of Chemical Engineering and Chemical Technology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Nathan E Lewis
- Departments of Pediatrics and Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
6
|
Nöbel M, Barry C, MacDonald MA, Baker K, Shave E, Mahler S, Munro T, Martínez VS, Nielsen LK, Marcellin E. Harnessing metabolic plasticity in CHO cells for enhanced perfusion cultivation. Biotechnol Bioeng 2024; 121:1371-1383. [PMID: 38079117 DOI: 10.1002/bit.28613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 04/01/2024]
Abstract
Chinese Hamster Ovary (CHO) cells have rapidly become a cornerstone in biopharmaceutical production. Recently, a reinvigoration of perfusion culture mode in CHO cell cultivation has been observed. However, most cell lines currently in use have been engineered and adapted for fed-batch culture methods, and may not perform optimally under perfusion conditions. To improve the cell's resilience and viability during perfusion culture, we cultured a triple knockout CHO cell line, deficient in three apoptosis related genes BAX, BAK, and BOK in a perfusion system. After 20 days of culture, the cells exhibited a halt in cell proliferation. Interestingly, following this phase of growth arrest, the cells entered a second growth phase. During this phase, the cell numbers nearly doubled, but cell specific productivity decreased. We performed a proteomics investigation, elucidating a distinct correlation between growth arrest and cell cycle arrest and showing an upregulation of the central carbon metabolism and oxidative phosphorylation. The upregulation was partially reverted during the second growth phase, likely caused by intragenerational adaptations to stresses encountered. A phase-dependent response to oxidative stress was noted, indicating glutathione has only a secondary role during cell cycle arrest. Our data provides evidence of metabolic regulation under high cell density culturing conditions and demonstrates that cell growth arrest can be overcome. The acquired insights have the potential to not only enhance our understanding of cellular metabolism but also contribute to the development of superior cell lines for perfusion cultivation.
Collapse
Affiliation(s)
- Matthias Nöbel
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Craig Barry
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
| | - Michael A MacDonald
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Kym Baker
- Thermo Fisher Scientific, Woolloongabba, Australia
| | - Evan Shave
- Thermo Fisher Scientific, Woolloongabba, Australia
| | - Stephen Mahler
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Trent Munro
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Verónica S Martínez
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St. Lucia, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, ARC Training Centre for Biopharmaceutical Innovation, The University of Queensland, St. Lucia, Australia
- ARC Centre of Excellence in Synthetic Biology (COESB), The University of Queensland, St. Lucia, Australia
- Queensland Metabolomics and Proteomics (Q-MAP), The University of Queensland, St. Lucia, Australia
| |
Collapse
|
7
|
Keysberg C, Hertel O, Hoffrogge R, Reich S, Hornung N, Holzmann K, Otte K. Hyperthermic shift and cell engineering increase small extracellular vesicle production in HEK293F cells. Biotechnol Bioeng 2024; 121:942-958. [PMID: 38037755 DOI: 10.1002/bit.28612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/11/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023]
Abstract
Although small extracellular vesicles (sEVs) have promising features as an emerging therapeutic format for a broad spectrum of applications, for example, blood-brain-barrier permeability, low immunogenicity, and targeted delivery, economic manufacturability will be a crucial factor for the therapeutic applicability of sEVs. In the past, bioprocess optimization and cell line engineering improved titers of classical biologics multifold. We therefore performed a design of experiments (DoE) screening to identify beneficial bioprocess conditions for sEV production in HEK293F suspension cells. Short-term hyperthermia at 40°C elevated volumetric productivity 5.4-fold while sEVs displayed improved exosomal characteristics and cells retained >90% viability. Investigating the effects of hyperthermia via transcriptomics and proteomics analyses, an expectable, cellular heat-shock response was found together with an upregulation of many exosome biogenesis and vesicle trafficking related molecules, which could cause the productivity boost in tandem with heat shock proteins (HSPs), like HSP90 and HSC70. Because of these findings, a selection of 44 genes associated with exosome biogenesis, vesicle secretion machinery, or heat-shock response was screened for their influence on sEV production. Overexpression of six genes, CHMP1A, CHMP3, CHMP5, VPS28, CD82, and EZR, significantly increased both sEV secretion and titer, making them suitable targets for cell line engineering.
Collapse
Affiliation(s)
- Christoph Keysberg
- Institute for Applied Biotechnology (IAB), University of Applied Sciences Biberach, Biberach, Germany
- International Graduate School in Molecular Medicine (IGradU), Ulm University, Ulm, Germany
| | - Oliver Hertel
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Raimund Hoffrogge
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Cell Culture Technology, Bielefeld University, Bielefeld, Germany
| | - Sibylle Reich
- Institute for Applied Biotechnology (IAB), University of Applied Sciences Biberach, Biberach, Germany
| | - Nadine Hornung
- Institute for Applied Biotechnology (IAB), University of Applied Sciences Biberach, Biberach, Germany
| | | | - Kerstin Otte
- Institute for Applied Biotechnology (IAB), University of Applied Sciences Biberach, Biberach, Germany
| |
Collapse
|
8
|
Xing Z, Nguyen TB, Kanai-Bai G, Yamano-Adachi N, Omasa T. Construction of a novel kinetic model for the production process of a CVA6 VLP vaccine in CHO cells. Cytotechnology 2024; 76:69-83. [PMID: 38304624 PMCID: PMC10828271 DOI: 10.1007/s10616-023-00598-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/22/2023] [Indexed: 02/03/2024] Open
Abstract
Bioprocess development benefits from kinetic models in many aspects, including scale-up, optimization, and process understanding. However, current models are unable to simulate the production process of a coxsackievirus A6 (CVA6) virus-like particle (VLP) vaccine using Chinese hamster ovary cell culture. In this study, a novel kinetic model was constructed, correlating (1) cell growth, death, and lysis kinetics, (2) metabolism of major metabolites, and (3) CVA6 VLP production. To construct the model, two batches of a laboratory-scale 2 L bioreactor cell culture were prepared and various pH shift strategies were applied to examine the effect of pH shift. The proposed model described the experimental data under various conditions with high accuracy and quantified the effect of pH shift. Next, cell culture performance with various pH shift timings was predicted by the calibrated model. A trade-off relationship was found between product yield and quality. Consequently, multiple objective optimization was performed by integrating desirability methodology with model simulation. Finally, the optimal operating conditions that balanced product yield and quality were predicted. In general, the proposed model improved the process understanding and enabled in silico process development of a CVA6 VLP vaccine. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-023-00598-8.
Collapse
Affiliation(s)
- Zhou Xing
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Thao Bich Nguyen
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
- Present Address: Tsukuba Research Laboratories, Eisai Co. Ltd, 5-1-3 Tokodai, Tsukuba, Ibaraki 300-2635 Japan
| | - Guirong Kanai-Bai
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
- Institute for Open and Transdisciplinary Research Initiatives, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Noriko Yamano-Adachi
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
- Institute for Open and Transdisciplinary Research Initiatives, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, U1E801, 2-1Yamadaoka, Suita, Osaka 565-0871 Japan
- Institute for Open and Transdisciplinary Research Initiatives, U1E801, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
9
|
Syddall KL, Fernandez-Martell A, Cartwright JF, Alexandru-Crivac CN, Hodgson A, Racher AJ, Young RJ, James DC. Directed evolution of biomass intensive CHO cells by adaptation to sub-physiological temperature. Metab Eng 2024; 81:53-69. [PMID: 38007176 DOI: 10.1016/j.ymben.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
We report a simple and effective means to increase the biosynthetic capacity of host CHO cells. Lonza proprietary CHOK1SV® cells were evolved by serial sub-culture for over 150 generations at 32 °C. During this period the specific proliferation rate of hypothermic cells gradually recovered to become comparable to that of cells routinely maintained at 37 °C. Cold-adapted cell populations exhibited (1) a significantly increased volume and biomass content (exemplified by total RNA and protein), (2) increased mitochondrial function, (3) an increased antioxidant capacity, (4) altered central metabolism, (5) increased transient and stable productivity of a model IgG4 monoclonal antibody and Fc-fusion protein, and (6) unaffected recombinant protein N-glycan processing. This phenotypic transformation was associated with significant genome-scale changes in both karyotype and the relative abundance of thousands of cellular mRNAs across numerous functional groups. Taken together, these observations provide evidence of coordinated cellular adaptations to sub-physiological temperature. These data reveal the extreme genomic/functional plasticity of CHO cells, and that directed evolution is a viable genome-scale cell engineering strategy that can be exploited to create host cells with an increased cellular capacity for recombinant protein production.
Collapse
Affiliation(s)
- Katie L Syddall
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Alejandro Fernandez-Martell
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Joseph F Cartwright
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Cristina N Alexandru-Crivac
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK
| | - Adam Hodgson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, UK.
| |
Collapse
|
10
|
Marschall L, Gottimukkala CB, Kayal B, Veeraraghavan VM, Mandal SK, Bandyopadhyay S, Herwig C. Temperature Upshifts in Mammalian Cell Culture: A Suitable Strategy for Biosimilar Monoclonal Antibodies? Bioengineering (Basel) 2023; 10:1149. [PMID: 37892879 PMCID: PMC10603922 DOI: 10.3390/bioengineering10101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Temperature downshifts are the gold standard when setting up control strategies for mammalian cell culture processes. These shifts are performed to prolong production phases and attain heightened levels of productivity. For the development of biosimilars, however, the bottleneck is in achieving a prespecified product quality. In a late-stage development project, we investigated the impact of temperature shifts and other process parameters with the aim of optimizing the glycosylation profile of a monoclonal antibody (mAb). We applied a design of experiments approach on a 3 L scale. The optimal glycosylation profile was achieved when performing a temperature upshift from 35.8 °C to 37 °C. Total afucosylated glycan (TAF) decreased by 1.2%, and galactosylated glycan species (GAL) increased by up to 4.5%. The optimized control strategy was then successfully taken to the manufacturing scale (1000 L). By testing two sets of set points at the manufacturing scale, we demonstrated that the statistical models predicting TAF and GAL trained with small-scale data are representative of the manufacturing scale. We hope this study encourages researchers to widen the screening ranges in process development and investigate whether temperature upshifts are also beneficial for other mAbs.
Collapse
Affiliation(s)
- Lukas Marschall
- TU Wien, Faculty of Technical Chemistry, Research Unit Biochemical Engineering, Gumpendorferstrasse 1a, 1060 Vienna, Austria
- Körber Pharma Austria GmbH, Mariahilfer Straße 88A/1/9, 1070 Vienna, Austria
| | - Chitti Babu Gottimukkala
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Biswajit Kayal
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Veerabhadra Madurai Veeraraghavan
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Samir Kumar Mandal
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Suman Bandyopadhyay
- Dr. Reddy’s Laboratories Ltd., Biologics, Survey No. 47, Bachupally, Hyderabad 500090, India; (C.B.G.); (B.K.); (V.M.V.); (S.K.M.); (S.B.)
| | - Christoph Herwig
- TU Wien, Faculty of Technical Chemistry, Research Unit Biochemical Engineering, Gumpendorferstrasse 1a, 1060 Vienna, Austria
- Körber Pharma Austria GmbH, Mariahilfer Straße 88A/1/9, 1070 Vienna, Austria
| |
Collapse
|
11
|
Masson HO, Karottki KJLC, Tat J, Hefzi H, Lewis NE. From observational to actionable: rethinking omics in biologics production. Trends Biotechnol 2023; 41:1127-1138. [PMID: 37062598 PMCID: PMC10524802 DOI: 10.1016/j.tibtech.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 04/18/2023]
Abstract
As the era of omics continues to expand with increasing ubiquity and success in both academia and industry, omics-based experiments are becoming commonplace in industrial biotechnology, including efforts to develop novel solutions in bioprocess optimization and cell line development. Omic technologies provide particularly valuable 'observational' insights for discovery science, especially in academic research and industrial R&D; however, biomanufacturing requires a different paradigm to unlock 'actionable' insights from omics. Here, we argue the value of omic experiments in biotechnology can be maximized with deliberate selection of omic approaches and forethought about analysis techniques. We describe important considerations when designing and implementing omic-based experiments and discuss how systems biology analysis strategies can enhance efforts to obtain actionable insights in mammalian-based biologics production.
Collapse
Affiliation(s)
- Helen O Masson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | | | - Jasmine Tat
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Amgen Inc., Thousand Oaks, CA, USA
| | | | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Billerhart M, Hunjadi M, Hawlin V, Grünwald-Gruber C, Maresch D, Mayrhofer P, Kunert R. Recombinant Human CD19 in CHO-K1 Cells: Glycosylation Patterns as a Quality Attribute of High Yield Processes. Int J Mol Sci 2023; 24:10891. [PMID: 37446069 PMCID: PMC10341778 DOI: 10.3390/ijms241310891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
CD19 is an essential protein in personalized CD19-targeting chimeric antigen receptor (CAR)-T cell-based cancer immunotherapies and CAR-T cell functionality evaluation. However, the recombinant expression of this "difficult to-express" (DTE) protein is challenging, and therefore, commercial access to the protein is limited. We have previously described the successful stable expression of our soluble CD19-AD2 fusion protein of the CD19 extracellular part fused with human serum albumin domain 2 (AD2) in CHO-K1 cells. The function, stability, and secretion rate of DTE proteins can be improved by culture conditions, such as reduced temperature and a shorter residence time. Moreover, glycosylation, as one of the most important post-translational modifications, represents a critical quality attribute potentially affecting CAR-T cell effector function and thus impacting therapy's success. In this study, we increased the production rate of CD19-AD2 by 3.5-fold through applying hypothermic culture conditions. We efficiently improved the purification of our his-tagged CD19-AD2 fusion protein via a Ni-NTA-based affinity column using a stepwise increase in the imidazole concentration. The binding affinity to commercially available anti-CD19 antibodies was evaluated via Bio-Layer Interferometry (BLI). Furthermore, we revealed glycosylation patterns via Electrospray Ionization Mass Spectrometry (ESI-MS), and five highly sialylated and multi-antennary N-glycosylation sites were identified. In summary, we optimized the CD19-AD2 production and purification process and were the first to characterize five highly complex N-glycosylation sites.
Collapse
Affiliation(s)
- Magdalena Billerhart
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (M.B.); (M.H.)
| | - Monika Hunjadi
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (M.B.); (M.H.)
| | - Vanessa Hawlin
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (M.B.); (M.H.)
| | - Clemens Grünwald-Gruber
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (C.G.-G.)
| | - Daniel Maresch
- BOKU Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria; (C.G.-G.)
| | - Patrick Mayrhofer
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (M.B.); (M.H.)
| | - Renate Kunert
- Institute of Animal Cell Technology and Systems Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (M.B.); (M.H.)
| |
Collapse
|
13
|
The Role of Process Systems Engineering in Applying Quality by Design (QbD) in Mesenchymal Stem Cell Production. Comput Chem Eng 2023. [DOI: 10.1016/j.compchemeng.2023.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Sedighikamal H, Karimi Mostofi R, Sattarzadeh A, Shahbazi M, Aghazadeh H. Comparative study of commercial media to improve GMP manufacturing of recombinant human interferon β-1a by CHO cells in perfusion bioreactor. Cytotechnology 2022; 74:669-680. [PMID: 36389287 PMCID: PMC9652187 DOI: 10.1007/s10616-022-00554-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
Chinese hamster ovary cells are the main cellular factories for production of a wide range of recombinant proteins in biopharmaceutical industry. Recombinant human Interferon beta-1a (rh-IFN β-1a), as a cytokine is broadly used to treat multiple sclerosis. In this work, the cell line producing rh-IFN β-1a was studied to improve cell density along with the specific expression. For this reason different cell culture experiments were done using different commercial serum-free media to find the appropriate media providing higher cell density. It was shown DMEMF12, DMEM:ProCHO5, and CHO-S-SFM II led to higher cell density and shorter doubling time. Next, using these media, fed-batch, and perfusion culture with temperature shift were implemented to investigate the best condition for industrial-scale manufacturing of rh-IFN β-1a in terms of higher cell density and product expression yield. The results demonstrated that CHO-S-SFM II media and a thermally biphasic condition provide enhanced expression of rh-IFN β-1a in perfusion bioreactor.
Collapse
Affiliation(s)
- Hossein Sedighikamal
- API Production Plant, Actoverco Biotech Company, Alborz, Iran
- Division of Industrial Biotechnology, Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Reza Karimi Mostofi
- API Production Plant, Actoverco Biotech Company, Alborz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | |
Collapse
|
15
|
Ding SL, Liu X, Zhao XY, Wang KT, Xiong W, Gao ZL, Sun CY, Jia MX, Li C, Gu Q, Zhang MZ. Microcarriers in application for cartilage tissue engineering: Recent progress and challenges. Bioact Mater 2022; 17:81-108. [PMID: 35386447 PMCID: PMC8958326 DOI: 10.1016/j.bioactmat.2022.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Successful regeneration of cartilage tissue at a clinical scale has been a tremendous challenge in the past decades. Microcarriers (MCs), usually used for cell and drug delivery, have been studied broadly across a wide range of medical fields, especially the cartilage tissue engineering (TE). Notably, microcarrier systems provide an attractive method for regulating cell phenotype and microtissue maturations, they also serve as powerful injectable carriers and are combined with new technologies for cartilage regeneration. In this review, we introduced the typical methods to fabricate various types of microcarriers and discussed the appropriate materials for microcarriers. Furthermore, we highlighted recent progress of applications and general design principle for microcarriers. Finally, we summarized the current challenges and promising prospects of microcarrier-based systems for medical applications. Overall, this review provides comprehensive and systematic guidelines for the rational design and applications of microcarriers in cartilage TE.
Collapse
Affiliation(s)
- Sheng-Long Ding
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xin Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi-Yuan Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Tao Wang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei Xiong
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zi-Li Gao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Yi Sun
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Min-Xuan Jia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng Li
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, 100083, China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Ming-Zhu Zhang
- Center of Foot and Ankle Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| |
Collapse
|
16
|
Wang Z, Wang C, Chen G. Kinetic modeling: A tool for temperature shift and feeding optimization in cell culture process development. Protein Expr Purif 2022; 198:106130. [PMID: 35691496 DOI: 10.1016/j.pep.2022.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Mammalian cells have dominated the biopharmaceutical industry for biotherapeutic protein production and tremendous efforts have been devoted to enhancing productivity during the cell culture process development. However, determining the optimal process conditions is still a huge challenge. Constrained by the limited resources and timeline, usually it is impossible to fully explore the optimal range of all process parameters (temperature, pH, dissolved oxygen, basal and feeding medium, additives, etc.). Kinetic modeling, which finds out the global optimum by systematically screening all potential conditions for cell culture process, provides a solution to this dilemma. However, studies on optimizing temperature shift and feeding strategies simultaneously using this approach have not been reported. In this study, we built up a kinetic model of fed-batch culture process for simultaneous optimization of temperature shift and feeding strategies. The fitting results showed high accuracy and demonstrated that the kinetic model can be used to describe the mammalian cell culture performance. In addition, five more fed-batch experiments were conducted to test this model's predicting power on different temperature shift and feeding strategies. It turned out that the predicted data matched well with experimental ones on viable cell density (VCD), metabolites, and titer for the entire culture duration and allowed selecting the same best condition with the experimental results. Therefore, adopting this approach can potentially reduce the number of experiments required for culture process optimization.
Collapse
Affiliation(s)
- Zheyu Wang
- Technology and Process Development (TPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Caixia Wang
- Technology and Process Development (TPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Gong Chen
- Technology and Process Development (TPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
17
|
Xu J, Santos J, Anderson NS, Borys MC, Pendse G, Li ZJ. Antibody charge variant modulation by in vitro enzymatic treatment in different CHO cell cultures. Biotechnol Prog 2022; 38:e3268. [PMID: 35536540 DOI: 10.1002/btpr.3268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/10/2022]
Abstract
Charge variants represent a critical quality attribute that must be controlled during the development and manufacturing of monoclonal antibodies (mAb). Previously, we reported the development of a cost-effective enzymatic treatment capable of removing the C-terminal lysine from a mAb produced by a Chinese hamster ovary (CHO) GS cell line. This treatment resulted in a significant decrease in basic charge variants and a corresponding improvement in the main peak, enabling a longer cell culture production duration for titer improvement. Here, we describe this enzymatic treatment protocol in detail and demonstrate its applicability to two additional mAbs produced by distinct industrial cell lines. The simple addition of carboxypeptidase B (CpB) at a ratio of 1:10,000 (w/w) to whole cell cultures significantly improved the main peaks for both mAbs without affecting other critical quality attributes, including size exclusion chromatography impurities and N-glycans. Our results demonstrate that this in vitro CpB treatment protocol can be used as a platform strategy to improve main peak for mAbs that exhibit high levels of basic variants attributable to C-terminal lysines. An in vitro enzymatic treatment in general may be another good addition to existing in vivo CHO cell culture strategies for titer improvement and control of critical quality attributes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianlin Xu
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Johanna Santos
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Nadine S Anderson
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Michael C Borys
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Girish Pendse
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| | - Zheng Jian Li
- Biologics Development, Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, United States
| |
Collapse
|
18
|
Screening of CHO-K1 endogenous promoters for expressing recombinant proteins in mammalian cell cultures. Plasmid 2022; 119-120:102620. [DOI: 10.1016/j.plasmid.2022.102620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
|
19
|
Modern Sensor Tools and Techniques for Monitoring, Controlling, and Improving Cell Culture Processes. Processes (Basel) 2022. [DOI: 10.3390/pr10020189] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The growing biopharmaceutical industry has reached a level of maturity that allows for the monitoring of numerous key variables for both process characterization and outcome predictions. Sensors were historically used in order to maintain an optimal environment within the reactor to optimize process performance. However, technological innovation has pushed towards on-line in situ continuous monitoring of quality attributes that could previously only be estimated off-line. These new sensing technologies when coupled with software models have shown promise for unique fingerprinting, smart process control, outcome improvement, and prediction. All this can be done without requiring invasive sampling or intervention on the system. In this paper, the state-of-the-art sensing technologies and their applications in the context of cell culture monitoring are reviewed with emphasis on the coming push towards industry 4.0 and smart manufacturing within the biopharmaceutical sector. Additionally, perspectives as to how this can be leveraged to improve both understanding and outcomes of cell culture processes are discussed.
Collapse
|
20
|
Heng ZSL, Yeo JY, Koh DWS, Gan SKE, Ling WL. Augmenting recombinant antibody production in HEK293E cells: Optimising transfection and culture parameters. Antib Ther 2022; 5:30-41. [PMID: 35146331 PMCID: PMC8825235 DOI: 10.1093/abt/tbac003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/13/2021] [Accepted: 01/06/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
Optimising recombinant antibody production is important for cost-effective therapeutics and diagnostics. With impact on commercialisation, higher productivity beyond laboratory scales is highly sought, where efficient production can also accelerate antibody characterisations and investigations.
Methods
Investigating HEK293E cells for mammalian antibody production, various transfection and culture parameters were systematically analysed for antibody light chain production before evaluating them for whole antibody production. Transfection parameters investigated include seeding cell density, the concentration of the transfection reagent and DNA, complexation time, temperature, and volume, as well as culture parameters such as medium replacement, serum deprivation, use of cell maintenance antibiotic, incubation temperature, medium volume, post-transfection harvest day and common nutrient supplements.
Results
Using 2 mL adherent HEK293E cell culture transfections with 25 kDa linear Polyethylenimine in the most optimised parameters, we demonstrated a ~ 2-fold production increase for light chain alone and for whole antibody production reaching 536 and 49 μg respectively in a cost-effective manner. With the addition of peptone, κ light chain increased by ~ 4-fold to 1032 μg while whole antibody increased to a lesser extent by ~ 2.5-fold to 51 μg, with benefits potentially for antibodies limited by their light chains in production.
Conclusions
Our optimised findings show promise for a more efficient and convenient antibody production method through transfection and culture optimisations that can be incorporated to scale up processes and with potential transferability to other mammalian-based recombinant protein production using HEK293E cells.
Statement of Significance
Recombinant antibody production is crucial for antibody research and development. Systematically investigating transfection and culture parameters such as PEI/DNA concentrations, complexation time, volume, and temperature, supplements, etc., we demonstrated a ~ 4-fold light chain alone production increase to 1032 μg and a 2.5-fold whole antibody production increase to 51 μg from 2 mL transfections.
Collapse
Affiliation(s)
- Zealyn Shi-Lin Heng
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Joshua Yi Yeo
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Darius Wen-Shuo Koh
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Samuel Ken-En Gan
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
- APD SKEG Pte Ltd., Singapore 439444, Singapore
- James Cook University, Singapore 387380, Singapore
| | - Wei-Li Ling
- Antibody & Product Development Lab, EDDC-BII, Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| |
Collapse
|
21
|
Benchtop Bioreactors in Mammalian Cell Culture: Overview and Guidelines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2436:1-15. [PMID: 34611816 DOI: 10.1007/7651_2021_441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bioreactors are manufactured apparatuses that allow the generation of a specific environment for the highly controlled cultivation of living cells. Originally used for microbial production systems, they have found widespread applications in fields as diverse as vaccine production, plant cell cultivation, and the growth of human brain organoids and exist in equally diverse designs (Chu and Robinson, Curr Opin Biotechnol 12(2):180-187, 2001; Qian et al., Nat Protoc 13:565-580, 2018). Manufacturing of biologics is currently mostly performed using a stirred tank bioreactor and CHO host cells and represents the most "classical" bioreactor production process. In this chapter, we will therefore use the cultivation of suspension Chinese hamster ovary (CHO) cells for recombinant protein production in a stirred tank bioreactor as an example. However, general guidelines provided in this chapter are transferable to different bioreactor types and host cells (Li et al., MAbs 2(5):466-479, 2010).The preparation and operation of a bioreactor (also referred to as upstream process in a biotechnological/industrial setting) is comprised of three main steps: expansion (generation of biomass), production (batch, fed-batch, or continuous process), and harvest. The expansion of cells can last from few days to weeks depending on the number of cells at the start, the cellular doubling time, and the required biomass to inoculate the production bioreactor. The production phase lasts a few weeks and is a highly sensitive phase as the concentration of different chemicals and physical parameters need to be tightly controlled. Finally, the harvest will allow the separation of the product of interest from large particles and then the desired material (cell culture supernatant or cells) is transferred to the downstream process.The raw materials used during the upstream phase (all three steps) need to be aligned with the final purpose of the manufactured product, as the presence of residual impurities may have an impact on suitability of the final product for a desired purpose.
Collapse
|
22
|
Park SY, Park CH, Choi DH, Hong JK, Lee DY. Bioprocess digital twins of mammalian cell culture for advanced biomanufacturing. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Donaldson JS, Dale MP, Rosser SJ. Decoupling Growth and Protein Production in CHO Cells: A Targeted Approach. Front Bioeng Biotechnol 2021; 9:658325. [PMID: 34150726 PMCID: PMC8207133 DOI: 10.3389/fbioe.2021.658325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/09/2021] [Indexed: 11/28/2022] Open
Abstract
Fed-batch cultures of Chinese Hamster Ovary cells have been used to produce high quantities of biotherapeutics, particularly monoclonal antibodies. However, a growing number of next-generation biotherapeutics, such as bi-specific antibodies and fusion proteins, are difficult to express using standard fed-batch processes. Decoupling cell growth and biotherapeutic production is becoming an increasingly desired strategy for the biomanufacturing industry, especially for difficult-to-express products. Cells are grown to a high cell density in the absence of recombinant protein production (the growth phase), then expression of the recombinant protein is induced and cell proliferation halted (the production phase), usually by combining an inducible gene expression system with a proliferation control strategy. Separating the growth and production phases allows cell resources to be more efficiently directed toward either growth or production, improving growth characteristics and enhancing the production of difficult to express proteins. However, current mammalian cell proliferation control methods rely on temperature shifts and chemical agents, which interact with many non-proliferation pathways, leading to variable impacts on product quality and culture viability. Synthetic biology offers an alternative approach by strategically targeting proliferation pathways to arrest cell growth but have largely remained unused in industrial bioproduction. Due to recent developments in microbial decoupling systems and advances in available mammalian cell engineering tools, we propose that the synthetic biology approach to decoupling growth and production needs revisiting.
Collapse
Affiliation(s)
- James S Donaldson
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew P Dale
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
24
|
Arifin MA, Mel M, Swan SY, Samsudin N, Hashim YZHY, Salleh HM. Optimization of ultraviolet/ozone (UVO 3) process conditions for the preparation of gelatin coated polystyrene (PS) microcarriers. Prep Biochem Biotechnol 2021; 52:181-196. [PMID: 34010098 DOI: 10.1080/10826068.2021.1923031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The aim of this study was to develop gelatin coated polystyrene (PS) microcarriers with good cell adhesion and proliferation properties. PS microspheres, prepared using oil-in water (o/w) solvent evaporation method, were loaded with oxygen containing functional groups using an ultraviolet/ozone (UVO3) system. Using water-soluble carbodiimide chemistry, gelatin was subsequently immobilized on UVO3 treated PS microspheres. The amount of immobilized gelatin was found to be directly proportional to the surface carboxyl (COOH) concentration on PS microspheres. Face Centered Central Composite Design (FCCD) was employed to optimize the process conditions of UVO3 treatment to maximize the surface COOH concentration on PS microspheres for allowing higher gelatin immobilization. Statistical results revealed that, the optimized process conditions were ozone flow rate of ∼64,603 ppm, exposure time of ∼60 minutes and sample amount of 5.05 g. Under these conditions, the surface COOH concentration on PS microspheres was ∼1,505 nmol/g with the corresponding amount of immobilized gelatin was ∼2,725 µg/g. Characterization analyses strongly suggest that the optimized UVO3 treatment and successive gelatin immobilization have successfully improved surface wettability and dispersion stability of PS microspheres. Moreover, gelatin coated PS microcarriers were also proven as able to support the growth of CHO-K1 cells in high cell density culture.
Collapse
Affiliation(s)
- Mohd Azmir Arifin
- Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Maizirwan Mel
- Department of Biotechnology Engineering, International Islamic University Malaysia Kulliyyah of Engineering, Kuala Lumpur, Malaysia
| | - Sia Yiik Swan
- Faculty of Chemical and Process Engineering Technology, Lebuhraya Tun Razak, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Nurhusna Samsudin
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Yumi Zuhanis Has-Yun Hashim
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Hamzah Mohd Salleh
- International Institute for Halal Research and Training, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Frese L, Darwiche SE, von Rechenberg B, Hoerstrup SP, Giovanoli P, Calcagni M. Thermal conditioning improves quality and speed of keratinocyte sheet production for burn wound treatment. Cytotherapy 2021; 23:536-547. [PMID: 33685808 DOI: 10.1016/j.jcyt.2021.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/06/2021] [Accepted: 01/20/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AIMS Cultured patient-specific keratinocyte sheets have been used clinically since the 1970s for the treatment of large severe burns. However, despite significant developments in recent years, successful and sustainable treatment is still a challenge. Reliable, high-quality grafts with faster availability and a flexible time window for transplantation are required to improve clinical outcomes. METHODS Keratinocytes are usually grown in vitro at 37°C. Given the large temperature differences in native skin tissue, the aim of the authors' study was to investigate thermal conditioning of keratinocyte sheet production. Therefore, the influence of 31°C, 33°C and 37°C on cell expansion and differentiation in terms of proliferation and sheet formation efficacy was investigated. In addition, the thermal effect on the biological status and thus the quality of the graft was assessed on the basis of the release of wound healing-related biofactors in various stages of graft development. RESULTS The authors demonstrated that temperature is a decisive factor in the production of human keratinocyte sheets. By using specific temperature ranges, the authors have succeeded in optimizing the individual manufacturing steps. During the cell expansion phase, cultivation at 37°C was most effective. After 6 days of culture at 37°C, three times and six times higher numbers of viable cells were obtained compared with 33°C and 31°C. During the cell differentiation and sheet formation phase, however, the cells benefited from a mildly hypothermic temperature of 33°C. Keratinocytes showed increased differentiation potential and formed better epidermal structures, which led to faster biomechanical sheet stability at day 18. In addition, a cultivation temperature of 33°C resulted in a longer lasting and higher secretion of the investigated immunomodulatory, anti-inflammatory, angiogenic and pro-inflammatory biofactors. CONCLUSIONS These results show that by using specific temperature ranges, it is possible to accelerate the large-scale production of cultivated keratinocyte sheets while at the same time improving quality. Cultivated keratinocyte sheets are available as early as 18 days post-biopsy and at any time for 7 days thereafter, which increases the flexibility of the process for surgeons and patients alike. These findings will help to provide better clinical outcomes, with an increased take rate in severe burn patients.
Collapse
Affiliation(s)
- Laura Frese
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; La Colline Research Fellow, La Colline, Sion, Switzerland.
| | - Salim E Darwiche
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Musculoskeletal Research Unit, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Brigitte von Rechenberg
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Musculoskeletal Research Unit, VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Simon P Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland; Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maurizio Calcagni
- Center for Applied Biotechnology and Molecular Medicine, Zurich, Switzerland; Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Xu J, Zheng S, Dawood Z, Hill C, Jin W, Xu X, Ding J, Borys MC, Ghose S, Li ZJ, Pendse G. Productivity improvement and charge variant modulation for intensified cell culture processes by adding a carboxypeptidase B (CpB) treatment step. Biotechnol Bioeng 2021; 118:3334-3347. [PMID: 33624836 DOI: 10.1002/bit.27723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/11/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
The goal of cell culture process intensification is to improve productivity while maintaining acceptable quality attributes. In this report, four processes, namely a conventional manufacturing Process A, and processes intensified by enriched N-1 seed (Process B), by perfusion N-1 seed (Process C), and by perfusion production (Process D) were developed for the production of a monoclonal antibody. The three intensified processes substantially improved productivity, however, the product either failed to meet the specification for charge variant species (main peak) for Process D or the production process required early harvest to meet the specification for charge variant species, Day 10 or Day 6 for Processes B and C, respectively. The lower main peak for the intensified processes was due to higher basic species resulting from higher C-terminal lysine. To resolve this product quality issue, we developed an enzyme treatment method by introducing carboxypeptidase B (CpB) to clip the C-terminal lysine, leading to significantly increased main peak and an acceptable and more homogenous product quality for all the intensified processes. Additionally, Processes B and C with CpB treatment extended bioreactor durations to Day 14 increasing titer by 38% and 108%, respectively. This simple yet effective enzyme treatment strategy could be applicable to other processes that have similar product quality issues.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Shun Zheng
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zeinab Dawood
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Charles Hill
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Weixin Jin
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Xuankuo Xu
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Julia Ding
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Michael C Borys
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol Myers Squibb Company, Devens, Massachusetts, USA
| | - Girish Pendse
- Global Product Development and Supply, Bristol Myers Squibb Company, Summit, New Jersey, USA
| |
Collapse
|
27
|
mAb Production Modeling and Design Space Evaluation Including Glycosylation Process. Processes (Basel) 2021. [DOI: 10.3390/pr9020324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Due to high demand, monoclonal antibodies (mAbs) production needs to be efficient, as well as maintaining a high product quality. Quality by design (QbD) via predictive process modeling greatly facilitates process understanding and can be used to adjust process parameters to further improve the unit operations. In this work, mechanistic and dynamic kriging models are developed to capture the protein productivity and glycan fractions under different temperatures and pH levels. The design of experiments is used to generate input and output data for model training. The dynamic kriging model shows good performance in capturing the dynamic profiles of cell cultures and glycosylation using only limited input data. The developed model is further used for feasibility analysis, and successfully identifies the operating design space, maintaining high productivity and guaranteed product quality.
Collapse
|
28
|
Arndt L, Wiegmann V, Kuchemüller KB, Baganz F, Pörtner R, Möller J. Model-based workflow for scale-up of process strategies developed in miniaturized bioreactor systems. Biotechnol Prog 2021; 37:e3122. [PMID: 33438830 DOI: 10.1002/btpr.3122] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/02/2020] [Accepted: 12/29/2020] [Indexed: 11/06/2022]
Abstract
Miniaturized bioreactor (MBR) systems are routinely used in the development of mammalian cell culture processes. However, scale-up of process strategies obtained in MBR- to larger scale is challenging due to mainly non-holistic scale-up approaches. In this study, a model-based workflow is introduced to quantify differences in the process dynamics between bioreactor scales and thus enable a more knowledge-driven scale-up. The workflow is applied to two case studies with antibody-producing Chinese hamster ovary cell lines. With the workflow, model parameter distributions are estimated first under consideration of experimental variability for different scales. Second, the obtained individual model parameter distributions are tested for statistical differences. In case of significant differences, model parametric distributions are transferred between the scales. In case study I, a fed-batch process in a microtiter plate (4 ml working volume) and lab-scale bioreactor (3750 ml working volume) was mathematically modeled and evaluated. No significant differences were identified for model parameter distributions reflecting process dynamics. Therefore, the microtiter plate can be applied as scale-down tool for the lab-scale bioreactor. In case study II, a fed-batch process in a 24-Deep-Well-Plate (2 ml working volume) and shake flask (40 ml working volume) with two feed media was investigated. Model parameter distributions showed significant differences. Thus, process strategies were mathematically transferred, and model predictions were simulated for a new shake flask culture setup and confirmed in validation experiments. Overall, the workflow enables a knowledge-driven evaluation of scale-up for a more efficient bioprocess design and optimization.
Collapse
Affiliation(s)
- Lukas Arndt
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Hamburg, Germany
| | - Vincent Wiegmann
- University College London, The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, London, UK
| | - Kim B Kuchemüller
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Hamburg, Germany
| | - Frank Baganz
- University College London, The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, London, UK
| | - Ralf Pörtner
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Hamburg, Germany
| | - Johannes Möller
- Hamburg University of Technology, Bioprocess and Biosystems Engineering, Hamburg, Germany
| |
Collapse
|
29
|
Establishment of fast-growing serum-free immortalised cells from Chinese hamster lung tissues for biopharmaceutical production. Sci Rep 2020; 10:17612. [PMID: 33077772 PMCID: PMC7572389 DOI: 10.1038/s41598-020-74735-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Chinese hamster (Cricetulus griseus) ovary-derived Chinese hamster ovary (CHO) cells are the most commonly used mammalian hosts for the industrial production of recombinant therapeutics because of their ability to fold, assemble, and perform post-translational modifications, such as glycosylation, on proteins. They are also valuable for their ability to grow in serum-free suspension cultures. In this study, we established a cell line derived from lung tissue of Chinese hamsters, named Chinese hamster lung (CHL)-YN cells. The biosafety of CHL-YN cells was confirmed by in vitro sterility testing, mycoplasma detection, and reverse transcriptase assays. One of the key characteristics of CHL-YN cells was their doubling time of 8.1 h in chemically defined culture medium; thus, they proliferate much faster than conventional CHO cells and general mammalian cells. Transgenes could be introduced into CHL-YN cells with high efficiency. Finally, between 50% to > 100% of the amount of glycosylated immunoglobulin G (IgG)1 produced by CHO-K1 cells was produced by CHL-YN cells over a shorter period of time. In summary, fast-growing CHL-YN cells are a unique cell line for producing recombinant proteins.
Collapse
|
30
|
Digital Twins in Pharmaceutical and Biopharmaceutical Manufacturing: A Literature Review. Processes (Basel) 2020. [DOI: 10.3390/pr8091088] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The development and application of emerging technologies of Industry 4.0 enable the realization of digital twins (DT), which facilitates the transformation of the manufacturing sector to a more agile and intelligent one. DTs are virtual constructs of physical systems that mirror the behavior and dynamics of such physical systems. A fully developed DT consists of physical components, virtual components, and information communications between the two. Integrated DTs are being applied in various processes and product industries. Although the pharmaceutical industry has evolved recently to adopt Quality-by-Design (QbD) initiatives and is undergoing a paradigm shift of digitalization to embrace Industry 4.0, there has not been a full DT application in pharmaceutical manufacturing. Therefore, there is a critical need to examine the progress of the pharmaceutical industry towards implementing DT solutions. The aim of this narrative literature review is to give an overview of the current status of DT development and its application in pharmaceutical and biopharmaceutical manufacturing. State-of-the-art Process Analytical Technology (PAT) developments, process modeling approaches, and data integration studies are reviewed. Challenges and opportunities for future research in this field are also discussed.
Collapse
|
31
|
Huang Z, Xu J, Yongky A, Morris CS, Polanco AL, Reily M, Borys MC, Li ZJ, Yoon S. CHO cell productivity improvement by genome-scale modeling and pathway analysis: Application to feed supplements. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107638] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Xu J, Xu X, Huang C, Angelo J, Oliveira CL, Xu M, Xu X, Temel D, Ding J, Ghose S, Borys MC, Li ZJ. Biomanufacturing evolution from conventional to intensified processes for productivity improvement: a case study. MAbs 2020; 12:1770669. [PMID: 32425110 PMCID: PMC7531520 DOI: 10.1080/19420862.2020.1770669] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Process intensification has shown great potential to increase productivity and reduce costs in biomanufacturing. This case study describes the evolution of a manufacturing process from a conventional processing scheme at 1000-L scale (Process A, n = 5) to intensified processing schemes at both 1000-L (Process B, n = 8) and 2000-L scales (Process C, n = 3) for the production of a monoclonal antibody by a Chinese hamster ovary cell line. For the upstream part of the process, we implemented an intensified seed culture scheme to enhance cell densities at the seed culture step (N-1) prior to the production bioreactor (N) by using either enriched N-1 seed culture medium for Process B or by operating the N-1 step in perfusion mode for Process C. The increased final cell densities at the N-1 step allowed for much higher inoculation densities in the production bioreactor operated in fed-batch mode and substantially increased titers by 4-fold from Process A to B and 8-fold from Process A to C, while maintaining comparable final product quality. Multiple changes were made to intensify the downstream process to accommodate the increased titers. New high-capacity resins were implemented for the Protein A and anion exchange chromatography (AEX) steps, and the cation exchange chromatography (CEX) step was changed from bind-elute to flow-through mode for the streamlined Process B. Multi-column chromatography was developed for Protein A capture, and an integrated AEX-CEX pool-less polishing steps allowed semi-continuous Process C with increased productivity as well as reductions in resin requirements, buffer consumption, and processing times. A cost-of-goods analysis on consumables showed 6.7–10.1 fold cost reduction from the conventional Process A to the intensified Process C. The hybrid-intensified process described here is easy to implement in manufacturing and lays a good foundation to develop a fully continuous manufacturing with even higher productivity in the future.
Collapse
Affiliation(s)
- Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Xuankuo Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Chao Huang
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - James Angelo
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | | | - Mengmeng Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Xia Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Deniz Temel
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Julia Ding
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Sanchayita Ghose
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Michael C Borys
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company , Devens, MA, USA
| |
Collapse
|
33
|
Abstract
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engineering also to CHO. The availability of a reference genome sequence, genome-scale metabolic models and the growing number of various “omics” datasets can help overcome the complexity of CHO cells and support design strategies to boost their production performance. Modular design approaches applied to engineer industrially relevant cell lines have evolved to reduce the time and effort needed for the generation of new producer cells and to allow the achievement of desired product titers and quality. Nevertheless, important steps to enable the design of a chassis platform similar to those in use in the microbial world are still missing. In this review, we highlight the importance of mammalian cellular platforms for the production of biopharmaceuticals and compare them to microbial platforms, with an emphasis on describing novel approaches and discussing still open questions that need to be resolved to reach the objective of designing enhanced modular chassis CHO cell lines.
Collapse
|
34
|
Xu J, Rehmann MS, Xu M, Zheng S, Hill C, He Q, Borys MC, Li ZJ. Development of an intensified fed-batch production platform with doubled titers using N-1 perfusion seed for cell culture manufacturing. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00304-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AbstractThe goal of cell culture process intensification is to increase volumetric productivity, generally by increasing viable cell density (VCD), cell specific productivity or production bioreactor utilization in manufacturing. In our previous study, process intensification in fed-batch production with higher titer or shorter duration was demonstrated by increasing the inoculation seeding density (SD) from ~ 0.6 (Process A) to 3–6 × 106 cells/mL (Process B) in combination with media enrichment. In this study, we further increased SD to 10–20 × 106 cells/mL (Process C) using perfusion N-1 seed cultures, which increased titers already at industrially relevant levels by 100% in 10–14 day bioreactor durations for four different mAb-expressing CHO cell lines. Redesigned basal and feed media were critical for maintaining higher VCD and cell specific productivity during the entire production duration, while medium enrichment, feeding strategies and temperature shift optimization to accommodate high VCDs were also important. The intensified Process C was successfully scaled up in 500-L bioreactors for 3 of the 4 mAbs, and quality attributes were similar to the corresponding Process A or Process B at 1000-L scale. The fed-batch process intensification strategies developed in this study could be applied for manufacturing of other mAbs using CHO and other host cells.
Collapse
|
35
|
A PSE perspective for the efficient production of monoclonal antibodies: integration of process, cell, and product design aspects. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
McHugh KP, Xu J, Aron KL, Borys MC, Li ZJ. Effective temperature shift strategy development and scale confirmation for simultaneous optimization of protein productivity and quality in Chinese hamster ovary cells. Biotechnol Prog 2020; 36:e2959. [DOI: 10.1002/btpr.2959] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/17/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Kyle P. McHugh
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Jianlin Xu
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Kathryn L. Aron
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Michael C. Borys
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| | - Zheng Jian Li
- Global Product Development and SupplyBristol‐Myers Squibb Company Devens Massachusetts
| |
Collapse
|
37
|
Tang P, Xu J, Louey A, Tan Z, Yongky A, Liang S, Li ZJ, Weng Y, Liu S. Kinetic modeling of Chinese hamster ovary cell culture: factors and principles. Crit Rev Biotechnol 2020; 40:265-281. [DOI: 10.1080/07388551.2019.1711015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Peifeng Tang
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Alastair Louey
- Elpiscience Biopharma, Cayman Islands George Town, Grand Cayman, UK
| | - Zhijun Tan
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Andrew Yongky
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Shaoyan Liang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Yongyan Weng
- Department of Civil Engineering, University of Nottingham, Nottingham, UK
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY-ESF, Syracuse, NY, USA
| |
Collapse
|
38
|
Yongky A, Xu J, Tian J, Oliveira C, Zhao J, McFarland K, Borys MC, Li ZJ. Process intensification in fed-batch production bioreactors using non-perfusion seed cultures. MAbs 2019; 11:1502-1514. [PMID: 31379298 PMCID: PMC6816350 DOI: 10.1080/19420862.2019.1652075] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
Although process intensification by continuous operation has been successfully applied in the chemical industry, the biopharmaceutical industry primarily uses fed-batch, rather than continuous or perfusion methods, to produce stable monoclonal antibodies (mAbs) from Chinese hamster ovary (CHO) cells. Conventional fed-batch bioreactors may start with an inoculation viable cell density (VCD) of ~0.5 × 106 cells/mL. Increasing the inoculation VCD in the fed-batch production bioreactor (referred to as N stage bioreactor) to 2-10 × 106 cells/mL by introducing perfusion operation or process intensification at the seed step (N-1 step) prior to the production bioreactor has recently been used because it increases manufacturing output by shortening cell culture production duration. In this study, we report that increasing the inoculation VCD significantly improved the final titer in fed-batch production within the same 14-day duration for 3 mAbs produced by 3 CHO GS cell lines. We also report that other non-perfusion methods at the N-1 step using either fed batch or batch mode with enriched culture medium can similarly achieve high N-1 final VCD of 22-34 × 106 cells/mL. These non-perfusion N-1 seeds supported inoculation of subsequent production fed-batch production bioreactors at increased inoculation VCD of 3-6 × 106 cells/mL, where these achieved titer and product quality attributes comparable to those inoculated using the perfusion N-1 seeds demonstrated in both 5-L bioreactors, as well as scaled up to 500-L and 1000-L N-stage bioreactors. To operate the N-1 step using batch mode, enrichment of the basal medium was critical at both the N-1 and subsequent intensified fed-batch production steps. The non-perfusion N-1 methodologies reported here are much simpler alternatives in operation for process development, process characterization, and large-scale commercial manufacturing compared to perfusion N-1 seeds that require perfusion equipment, as well as preparation and storage vessels to accommodate large volumes of perfusion media. Although only 3 stable mAbs produced by CHO cell cultures are used in this study, the basic principles of the non-perfusion N-1 seed strategies for shortening seed train and production culture duration or improving titer should be applicable to other protein production by different mammalian cells and other hosts at any scale biologics facilities.
Collapse
Affiliation(s)
- Andrew Yongky
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Jianlin Xu
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Jun Tian
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Christopher Oliveira
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Jia Zhao
- Department of Chemical & Biological Engineering, Polytechnic Institute, Troy, NY, USA
| | - Kevin McFarland
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C. Borys
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| | - Zheng Jian Li
- Global Product Development and Supply, Bristol-Myers Squibb Company, Devens, MA, USA
| |
Collapse
|