1
|
Grassi L, Harris C, Zhu J, Hatton D, Dunn S. Next-generation sequencing: A powerful multi-purpose tool in cell line development for biologics production. Comput Struct Biotechnol J 2025; 27:1511-1517. [PMID: 40265158 PMCID: PMC12013335 DOI: 10.1016/j.csbj.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Within the biopharmaceutical industry, the cell line development (CLD) process generates recombinant mammalian cell lines for the expression of therapeutic proteins. Analytical methods for the extensive characterisation of the protein product are well established; however, over recent years, next-generation sequencing (NGS) technologies have rapidly become an integral part of the CLD workflow. NGS can be used for different applications to characterise the genome, epigenome and transcriptome of cell lines. The resulting extensive datasets, especially when integrated with systems biology models, can give comprehensive insights that can be applied to optimize cell lines, media, and fermentation processes. NGS also provides comprehensive methods to monitor genetic variability during CLD. High coverage NGS experiments can indeed be used to ensure the integrity of plasmids, identify integration sites, and verify monoclonality of the cell lines. This review summarises the role of NGS in advancing biopharmaceutical production to ensure safety and efficacy of therapeutic proteins.
Collapse
Affiliation(s)
- Luigi Grassi
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Claire Harris
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Jie Zhu
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Diane Hatton
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah Dunn
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
2
|
Skinner KA, Fisher TD, Lee A, Su T, Forte E, Sanchez A, Caldwell MA, Kelleher NL. Next-Generation Protein Sequencing and individual ion mass spectrometry enable complementary analysis of interleukin-6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637157. [PMID: 39975277 PMCID: PMC11839055 DOI: 10.1101/2025.02.07.637157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The vast complexity of the proteome currently overwhelms any single analytical technology in capturing the full spectrum of proteoform diversity. In this study, we evaluated the complementarity of two cutting-edge proteomic technologies-single-molecule protein sequencing and individual ion mass spectrometry-for analyzing recombinant human IL-6 (rhIL-6) at the amino acid, peptide, and intact proteoform levels. For single-molecule protein sequencing, we employ the recently released Platinum® instrument. Next-Generation Protein Sequencing™ (NGPS™) on Platinum utilizes cycles of N-terminal amino acid recognizer binding and aminopeptidase cleavage to enable parallelized sequencing of single peptide molecules. We found that NGPS produces single amino acid coverage of multiple key regions of IL-6, including two peptides within helices A and C which harbor residues that reportedly impact IL-6 function. For top-down proteoform evaluation, we use individual ion mass spectrometry (I2MS), a highly parallelized orbitrap-based charge detection MS platform. Single ion detection of gas-phase fragmentation products (I2MS2) gives significant sequence coverage in key regions in IL-6, including two regions within helices B and D that are involved in IL-6 signaling. Together, these complementary technologies deliver a combined 52% sequence coverage, offering a more complete view of IL-6 structural and functional diversity than either technology alone. This study highlights the synergy of complementary protein detection methods to more comprehensively cover protein segments relevant to biological interactions.
Collapse
Affiliation(s)
| | - Troy D. Fisher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
| | - Andrew Lee
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Taojunfeng Su
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
| | - Eleonora Forte
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Department of Surgery, Feinberg School of Medicine, Comprehensive Transplant Center, Northwestern University, Chicago, Illinois, United States
| | - Aniel Sanchez
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
| | - Michael A. Caldwell
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Department of Medicine, Division of Hematology Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Neil L. Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, United States
- Departments of Molecular Biosciences, Chemistry and Chemical and Biological Engineering, Northwestern University, Evanston, IL, United States
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Zhang J, Shih M, Yan H, O'Connor T, Ji C, Faustino PJ. A Spike-Control Approach that Evaluates High Resolution Mass Spectrometry-Based Sequence Variant Analytical Method Performance for Therapeutic Proteins. Pharm Res 2023; 40:1425-1433. [PMID: 37127779 DOI: 10.1007/s11095-023-03527-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
An amino acid sequence variant (SV) is defined as an unintended amino acid substitution in protein drug products. SVs contribute to product heterogeneity and can potentially impact product quality, safety, immunogenicity, and efficacy. The analysis of biotherapeutics for SVs is important throughout the product life cycle including clone selection, development of nutrient feed strategies, commercial manufacturing process, and post-approval changes to monitor product quality. The proposed analytical procedure for SVs consists of both qualitative (identification of SVs) and quantitative (quantitation of identified SVs) components. The complexities of SV analysis and the variety of current procedures highlight the need for a systematic approach for assessing the capability of these methodologies to reliably identify and quantitate SVs in biotherapeutics. We described here a "spike-control" approach for evaluating SV analytical procedure. The concept was adopted from quality control samples routinely used in analytical procedure validation. One FDA approved monoclonal antibody (mAb) was spiked with accurate amounts of highly homologous mAb to create mAb samples containing low yet accurate levels of "artificial" SVs. Spike-control samples were denatured, reduced, alkylated, digested and then analyzed by high resolution Orbitrap mass spectrometry. In silico analysis revealed four single amino acid differences between the two mAbs that could be used to represent SVs in the spike-control samples. All four "artificial" SVs were reliably identified by the current workflow. Analytical range (0.01% to 2%), accuracy and precision of identified SVs have also been evaluated. Overall, spike-control sample(s) helped to demonstrate that the SV analytical procedure (i.e., sample preparation, LC separation, mass spectrometry determinations and bioinformatic software) was fit for purpose and suitable for the identification and quantitation of SVs at a pre-determined threshold.
Collapse
Affiliation(s)
- Jinhui Zhang
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA.
| | - Mack Shih
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Haoheng Yan
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- Global Regulatory Affairs, Shanghai Henlius Biotech Inc., 9F, Innov Tower, 1801 Hongmei Road, Shanghai, China
| | - Thomas O'Connor
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Chengjie Ji
- NovaBioAssays, 52 Dragon Court, Woburn, MA, 01801, USA
| | - Patrick J Faustino
- Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| |
Collapse
|
4
|
Cadang L, Tam CYJ, Moore BN, Fichtl J, Yang F. A Highly Efficient Workflow for Detecting and Identifying Sequence Variants in Therapeutic Proteins with a High Resolution LC-MS/MS Method. Molecules 2023; 28:molecules28083392. [PMID: 37110623 PMCID: PMC10144261 DOI: 10.3390/molecules28083392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Large molecule protein therapeutics have steadily grown and now represent a significant portion of the overall pharmaceutical market. These complex therapies are commonly manufactured using cell culture technology. Sequence variants (SVs) are undesired minor variants that may arise from the cell culture biomanufacturing process that can potentially affect the safety and efficacy of a protein therapeutic. SVs have unintended amino acid substitutions and can come from genetic mutations or translation errors. These SVs can either be detected using genetic screening methods or by mass spectrometry (MS). Recent advances in Next-generation Sequencing (NGS) technology have made genetic testing cheaper, faster, and more convenient compared to time-consuming low-resolution tandem MS and Mascot Error Tolerant Search (ETS)-based workflows which often require ~6 to 8 weeks data turnaround time. However, NGS still cannot detect non-genetic derived SVs while MS analysis can do both. Here, we report a highly efficient Sequence Variant Analysis (SVA) workflow using high-resolution MS and tandem mass spectrometry combined with improved software to greatly reduce the time and resource cost associated with MS SVA workflows. Method development was performed to optimize the high-resolution tandem MS and software score cutoff for both SV identification and quantitation. We discovered that a feature of the Fusion Lumos caused significant relative under-quantitation of low-level peptides and turned it off. A comparison of common Orbitrap platforms showed that similar quantitation values were obtained on a spiked-in sample. With this new workflow, the amount of false positive SVs was decreased by up to 93%, and SVA turnaround time by LC-MS/MS was shortened to 2 weeks, comparable to NGS analysis speed and making LC-MS/MS the top choice for SVA workflow.
Collapse
Affiliation(s)
- Lance Cadang
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | - Chi Yan Janet Tam
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| | | | - Juergen Fichtl
- Pharma Technical Development, Roche Diagnostics GmbH, 82377 Penzberg, Germany
| | - Feng Yang
- Pharma Technical Development, Genentech, South San Francisco, CA 94080, USA
| |
Collapse
|
5
|
Niu B, Lu Y, Chen X, Xu W. Using New Peak Detection to Solve Sequence Variants Analysis Challenges in Bioprocess Development. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:401-408. [PMID: 36705517 DOI: 10.1021/jasms.2c00292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Recombinant therapeutic proteins have become the major class of drugs to treat various human diseases in recent years. Low levels of protein sequence variants (SVs) have been reported to be present in recombinant therapeutic proteins. The consequences of potential unwanted immune response from SVs of recombinant therapeutic proteins have increasingly drawn attention from regulatory authorities and the biopharmaceutical industry. It is highly desirable to detect low-level SVs during clone selection and early process development as part of the control strategy. Peptide mapping with LC-MS/MS analysis has been applied as a powerful tool to characterize post-translation modifications of therapeutic proteins. Despite the recent advancements in mass spectrometry hardware and software, it is still quite challenging and time-consuming to detect and identify low-level SVs. In this study, we present an optimized approach using new peak detection to detect and identify low level SVs with high confidence and high speed. The new approach makes sequence variants analysis by LC-MS/MS broadly applicable and practical in bioprocess development of therapeutic proteins.
Collapse
Affiliation(s)
- Ben Niu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland20878United States
| | - Yali Lu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland20878United States
| | - Xiaoyu Chen
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland20878United States
| | - Wei Xu
- Analytical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland20878United States
| |
Collapse
|
6
|
Tevelev B, Chambers A, Ghosh S, Zhang Y, Marzili L, Rouse JC, Han S, Moffat M, Scarcelli JJ. A genetic off-target event in a site-specific integration cell line expressing monoclonal antibody has no impact on commercial suitability. Biotechnol Prog 2022; 39:e3320. [PMID: 36545889 DOI: 10.1002/btpr.3320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/09/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Site-specific integration (SSI) cell line systems are gaining popularity for biotherapeutic development and production. Despite the proven advantages for these expression hosts, the SSI system is still susceptible to rare off-target events and potential vector rearrangements. Here we describe the development process of an SSI cell line for production of an IgG1 monoclonal antibody (mAb-086). During cell line generational studies to assess suitability of clone C10 for commercial purposes, restriction fragment lengths of genomic DNA harboring the light chain (LC) were not in agreement with the predicted size. We first confirmed that the SSI landing-pad achieved occupancy of the desired expression plasmid. Additional investigation revealed that random integration had occurred, resulting in the acquisition of a partial copy of the LC and a full-length copy of the heavy chain (HC) at a different locus in the host genome. This off-target event had no impact on the genotypic consistency and phenotypic stability of the cell line, the production process, or the drug substance product quality. Given the genetic, phenotypic, and process consistency of the cell line, clone C10 was deemed suitable as a manufacturing cell line.
Collapse
Affiliation(s)
- Barbara Tevelev
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Andre Chambers
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, Missouri, USA
| | - Swap Ghosh
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, Missouri, USA
| | - Ying Zhang
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Lisa Marzili
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Jason C Rouse
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Shu Han
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| | - Mark Moffat
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Chesterfield, Missouri, USA
| | - John J Scarcelli
- Cell Line Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, Massachusetts, USA
| |
Collapse
|
7
|
Lin J, Xie M, Liu D, Gao Z, Zhao X, Ma H, Ding S, Li SM, Li S, Liu Y, Zhou F, Hu H, Chen T, Chen H, Xie M, Yang B, Cheng J, Ma M, Nan Y, Ju D. Characterization of light chain c-terminal extension sequence variant in one bispecific antibody. Front Chem 2022; 10:994472. [PMID: 36204149 PMCID: PMC9530627 DOI: 10.3389/fchem.2022.994472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Protein modifications such as post-translational modifications (PTMs) and sequence variants (SVs) occur frequently during protein biosynthesis and have received great attention by biopharma industry and regulatory agencies. In this study, an aberrant peak near light chain (LC) was observed in the non-reduced capillary electrophoresis sodium dodecyl sulfate (nrCE-SDS) electrophoretogram during cell line development of one bispecific antibody (BsAb) product, and the detected mass was about 944 Da higher than LC. The corresponding peak was then enriched by denaturing size-exclusion chromatography (SEC-HPLC) and further characterized by nrCE-SDS and peptide mapping analyses. De novo mass spectra/mass spectra (MS/MS) analysis revealed that the aberrant peak was LC related sequence variant, with the truncated C-terminal sequence “SFNR” (“GEC”deleted) linked with downstream SV40 promotor sequence “EAEAASASELFQ”. The unusual sequence was further confirmed by comparing with the direct synthetic peptide “SFNREAEAASASELFQ”. It was demonstrated by mRNA sequencing of the cell pool that the sequence variant was caused by aberrant splicing at the transcription step. The prepared product containing this extension variant maintained well-folded structure and good functional properties though the LC/Heavy chain (HC) inter-chain disulfide was not formed. Several control strategies to mitigate the risk of this LC related sequence variant were also proposed.
Collapse
Affiliation(s)
- Jun Lin
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Mengyu Xie
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Dan Liu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Zhen Gao
- Genor Biopharma Co., Ltd., Shanghai, China
| | | | - Hongxia Ma
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Sheng Ding
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Shu mei Li
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Song Li
- Genor Biopharma Co., Ltd., Shanghai, China
| | | | - Fang Zhou
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Hao Hu
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Tao Chen
- Genor Biopharma Co., Ltd., Shanghai, China
| | - He Chen
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Min Xie
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Bo Yang
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Jun Cheng
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Mingjun Ma
- Genor Biopharma Co., Ltd., Shanghai, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
- *Correspondence: Dianwen Ju,
| |
Collapse
|
8
|
Carvalho SB, Gomes RA, Pfenninger A, Fischer M, Strotbek M, Isidro IA, Tugçu N, Gomes-Alves P. Multi attribute method implementation using a High Resolution Mass Spectrometry platform: From sample preparation to batch analysis. PLoS One 2022; 17:e0262711. [PMID: 35085302 PMCID: PMC8794205 DOI: 10.1371/journal.pone.0262711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/01/2022] [Indexed: 11/18/2022] Open
Abstract
Quality control of biopharmaceuticals such as monoclonal antibodies (mAbs) has been evolving and becoming more challenging as the requirements of the regulatory agencies increase due to the demanding complexity of products under evaluation. Mass Spectrometry (MS)-based methods such as the multi-attribute method (MAM) are being explored to achieve a deeper understanding of the attributes critical for the safety, efficacy, and quality of these products. MAM uses high mass accuracy/high-resolution MS data that enables the direct and simultaneous monitoring of relevant product quality attributes (PQAs, in particular, chemical modifications) in a single workflow, replacing several orthogonal methods, reducing time and costs associated with these assays. Here we describe a MAM implementation process using a QTOF high resolution platform. Method implementation was accomplished using NIST (National Institute for Standards and Technology) mAb reference material and an in-process mAb sample. PQAs as glycosylation profiles, methionine oxidation, tryptophan dioxidation, asparagine deamidation, pyro-Glu at N-terminal and glycation were monitored. Focusing on applications that require batch analysis and high-throughput, sample preparation and LC-MS parameters troubleshooting are discussed. This MAM workflow was successfully explored as reference analytical tool for comprehensive characterization of a downstream processing (DSP) polishing platform and for a comparability study following technology transfer between different laboratories.
Collapse
Affiliation(s)
- Sofia B. Carvalho
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ricardo A. Gomes
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Anja Pfenninger
- Sanofi R&D, Biologics Development, Industriepark Höchst, Frankfurt am Main, Germany
| | - Martina Fischer
- Sanofi R&D, Biologics Development, Industriepark Höchst, Frankfurt am Main, Germany
| | - Michaela Strotbek
- Sanofi R&D, Biologics Development, Industriepark Höchst, Frankfurt am Main, Germany
| | - Inês A. Isidro
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Nihal Tugçu
- Mammalian Platform, Global CMC Development, Sanofi, Framingham, MA, United States of America
| | - Patrícia Gomes-Alves
- iBET, Instituto de Biologia Experimental e Tecnologica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
9
|
Apostol I, Bondarenko PV, Ren D, Semin DJ, Wu CH, Zhang Z, Goudar CT. Enabling development, manufacturing, and regulatory approval of biotherapeutics through advances in mass spectrometry. Curr Opin Biotechnol 2021; 71:206-215. [PMID: 34508981 DOI: 10.1016/j.copbio.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/20/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Rapid technological advances have significantly improved the capability, versatility, and robustness of mass spectrometers which has led to them playing a central role in the development, characterization, and regulatory filings of biopharmaceuticals. Their application spans the entire continuum of drug development, starting with discovery research through product development, characterization, and marketing authorization and continues well into product life cycle management. The scope of application extends beyond traditional protein characterization and includes elements like clone selection, cell culture physiology and bioprocess optimization, investigation support, and process analytical technology. More recently, advances in the MS-based multi-attribute method are enabling the introduction of MS in a cGMP environment for routine release and stability testing. While most applications of MS to date have been for monoclonal antibodies, the successes and learnings should translate to the characterization of next-gen biotherapeutics where modalities like multispecifics could be more prevalent. In this review, we describe the most significant advances in MS and correlate them to the broad spectrum of applications to biotherapeutic development. We anticipate rapid technological improvements to continue that will further accelerate widespread deployment of MS, thereby elevating our overall understanding of product quality and enabling attribute-focused product development.
Collapse
Affiliation(s)
- Izydor Apostol
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Pavel V Bondarenko
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Da Ren
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - David J Semin
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chao-Hsiang Wu
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Zhongqi Zhang
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States
| | - Chetan T Goudar
- Attribute Sciences, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, United States.
| |
Collapse
|
10
|
Zhang A, Chen Z, Li M, Qiu H, Lawrence S, Bak H, Li N. A general evidence-based sequence variant control limit for recombinant therapeutic protein development. MAbs 2021; 12:1791399. [PMID: 32744138 PMCID: PMC7531532 DOI: 10.1080/19420862.2020.1791399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sequence variants (SVs) resulting from unintended amino acid substitutions in recombinant therapeutic proteins have increasingly gained attention from both regulatory agencies and the biopharmaceutical industry given their potential impact on efficacy and safety. With well-optimized production systems, such sequence variants usually exist at very low levels in the final protein products due to the high fidelity of DNA replication and protein biosynthesis process in mammalian expression systems such as Chinese hamster ovary cell lines. However, their levels can be significantly elevated in cases where the selected production cell line has unexpected DNA mutations or the manufacturing process is not fully optimized, for example, if depletion of certain amino acids occurs in the cell culture media in bioreactors. Therefore, it is important to design and implement an effective monitoring and control strategy to prevent or minimize the possible risks of SVs during the early stage of product and process development. However, there is no well-established guidance from the regulatory agencies or consensus across the industry to assess and manage SV risks. A question frequently asked is: What levels of SVs can be considered acceptable during product and process development, but also have no negative effects on drug safety and efficacy in patients? To address this critical question, we have taken a holistic approach and conducted a comprehensive sequence variant analysis. To guide biologic development, a general SV control limit of 0.1% at individual amino acid sites was proposed and properly justified based on extensive literature review, SV benchmark survey of approved therapeutic proteins, and accumulated experience on SV control practice at Regeneron.
Collapse
Affiliation(s)
- Aming Zhang
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Zhengwei Chen
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Meinuo Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Shawn Lawrence
- Preclinical Manufacturing and Process Development , Tarrytown, New York, USA
| | - Hanne Bak
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc ., Tarrytown, New York, USA
| |
Collapse
|
11
|
Identification, characterization and control of a sequence variant in monoclonal antibody drug product: a case study. Sci Rep 2021; 11:13233. [PMID: 34168178 PMCID: PMC8225904 DOI: 10.1038/s41598-021-92338-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Sequence variants (SV) in protein bio therapeutics can be categorized as unwanted impurities and may raise serious concerns in efficacy and safety of the product. Early detection of specific sequence modifications, that can result in altered physicochemical and or biological properties, is therefore desirable in product manufacturing. Because of their low abundance, and finite resolving power of conventional analytical techniques, they are often overlooked in early drug development. Here, we present a case study where trace amount of a sequence variant is identified in a monoclonal antibody (mAb) based therapeutic protein by LC-MS/MS and the structural and functional features of the SV containing mAb is assessed using appropriate analytical techniques. Further, a very sensitive selected reaction monitoring (SRM) technique is developed to quantify the SV which revealed both prominent and inconspicuous nature of the variant in process chromatography. We present the extensive characterization of a sequence variant in protein biopharmaceutical and first report on control of sequence variants to < 0.05% in final drug product by utilizing SRM based mass spectrometry method during the purification steps.
Collapse
|
12
|
Groot J, Zhou Y, Marshall E, Cullen P, Carlile T, Lin D, Xu CF, Crisafulli J, Sun C, Casey F, Zhang B, Alves C. Benchmarking and optimization of a high-throughput sequencing based method for transgene sequence variant analysis in biotherapeutic cell line development. Biotechnol J 2021; 16:e2000548. [PMID: 34018310 DOI: 10.1002/biot.202000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
In recent years, High-Throughput Sequencing (HTS) based methods to detect mutations in biotherapeutic transgene products have become a key quality step deployed during the development of manufacturing cell line clones. Previously we reported on a higher throughput, rapid mutation detection method based on amplicon sequencing (targeting transgene RNA) and detailed its implementation to facilitate cell line clone selection. By gaining experience with our assay in a diverse set of cell line development programs, we improved the computational analysis as well as experimental protocols. Here we report on these improvements as well as on a comprehensive benchmarking of our assay. We evaluated assay performance by mixing amplicon samples of a verified mutated antibody clone with a non-mutated antibody clone to generate spike-in mutations from ∼60% down to ∼0.3% frequencies. We subsequently tested the effect of 16 different sample and HTS library preparation protocols on the assay's ability to quantify mutations and on the occurrence of false-positive background error mutations (artifacts). Our evaluation confirmed assay robustness, established a high confidence limit of detection of ∼0.6%, and identified protocols that reduce error levels thereby significantly reducing a source of false positives that bottlenecked the identification of low-level true mutations.
Collapse
Affiliation(s)
- Joost Groot
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA.,Inzen Therapeutics, Cambridge, Massachusetts, USA
| | - Yizhou Zhou
- Protein Development, Biogen, Cambridge, Massachusetts, USA
| | - Eric Marshall
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Patrick Cullen
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Thomas Carlile
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Dongdong Lin
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Chong-Feng Xu
- Analytical Development, Biogen, Cambridge, Massachusetts, USA
| | | | - Chao Sun
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Fergal Casey
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | - Baohong Zhang
- Genome Technologies and Computational Sciences, Biogen, Cambridge, Massachusetts, USA
| | | |
Collapse
|
13
|
Grassi L, Harris C, Zhu J, Hardman C, Hatton D. DetectIS: a pipeline to rapidly detect exogenous DNA integration sites using DNA or RNA paired-end sequencing data. Bioinformatics 2021; 37:4230-4232. [PMID: 33978747 PMCID: PMC9502153 DOI: 10.1093/bioinformatics/btab366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation Recombinant DNA technology is widely used for different applications in biology, medicine and bio-technology. Viral transduction and plasmid transfection are among the most frequently used techniques to generate recombinant cell lines. Many of these methods result in the random integration of the plasmid into the host genome. Rapid identification of the integration sites is highly desirable in order to characterize these engineered cell lines. Results We developed detectIS: a pipeline specifically designed to identify genomic integration sites of exogenous DNA, either a plasmid containing one or more transgenes or a virus. The pipeline is based on a Nextflow workflow combined with a Singularity image containing all the necessary software, ensuring high reproducibility and scalability of the analysis. We tested it on simulated datasets and RNA-seq data from a human sample infected with Hepatitis B virus. Comparisons with other state of the art tools show that our method can identify the integration site in different recombinant cell lines, with accurate results, lower computational demand and shorter execution times. Availability and implementation The Nextflow workflow, the Singularity image and a test dataset are available at https://github.com/AstraZeneca/detectIS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Luigi Grassi
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZenec, Cambridge, UK a
| | - Claire Harris
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZenec, Cambridge, UK a
| | - Jie Zhu
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Colin Hardman
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Diane Hatton
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZenec, Cambridge, UK a
| |
Collapse
|
14
|
Song YE, Dubois H, Hoffmann M, D́Eri S, Fromentin Y, Wiesner J, Pfenninger A, Clavier S, Pieper A, Duhau L, Roth U. Automated mass spectrometry multi-attribute method analyses for process development and characterization of mAbs. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1166:122540. [DOI: 10.1016/j.jchromb.2021.122540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
|
15
|
Abstract
High-resolution native mass spectrometry (MS) provides accurate mass measurements (within 30 ppm) of intact ADCs and can also yield drug load distribution (DLD) and average drug to antibody ratio (DAR) in parallel with hydrophobic interaction chromatography (HIC). Native MS is furthermore unique in its ability to simultaneously detect covalent and noncovalent species in a mixture and for HIC peak identity assessment offline or online.As an orthogonal method described in this chapter, LC-MS following ADC reduction or IdeS (Fabricator) digestion and reduction can also be used to measure the DLD of light chain and Fd fragments for hinge native cysteine residues such as brentuximab vedotin. Both methods allow also the measurement of average DAR for both monomeric and multimeric species. In addition, the Fc fragments can be analyzed in the same run, providing a complete glycoprofile and the demonstration or absence of additional conjugation of this subdomain involved in FcRn and Fc-gammaR binding.
Collapse
|
16
|
Scientific Best Practices for Primary Sequence Confirmation and Sequence Variant Analysis in the Development of Therapeutic Proteins. J Pharm Sci 2020; 110:619-626. [PMID: 33212163 DOI: 10.1016/j.xphs.2020.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/01/2023]
Abstract
In this commentary, we will provide a high-level introduction into LC-MS product characterization methodologies deployed throughout biopharmaceutical development. The ICH guidelines for early and late phase filings is broad so that it is applicable to diverse biotherapeutic products in the clinic and industry pipelines. This commentary is meant to address areas of protein primary sequence confirmation and sequence variant analysis where ambiguity exists in industry on the specific scope of work that is needed to fulfill the general guidance that is given in sections Q5b and Q6b. This commentary highlights the discussion and outcomes of two recent workshops centering on the application of LC-MS to primary structure confirmation and sequence variant analysis (SVA) that were held at the 2018 and 2019 CASSS Practical Applications of Mass Spectrometry in the Biotechnology Industry Symposia in San Francisco, CA and Chicago, IL, respectively. Recommendations from the conferences fall into two distinct but related areas; 1) consolidation of opinions amongst industry stakeholders on the specific definitions of peptide mapping and peptide sequencing for primary structure confirmation and the technologies used for both, as they relate to regulatory expectations and submissions and 2) development of fit-for-purpose strategy to define appropriate assay controls in SVA experiments.
Collapse
|
17
|
Boddapati S, Gilmore J, Boone K, Bushey J, Ross J, Gfeller B, McFee W, Rao R, Corrigan G, Chen A, Clarke H, Valliere-Douglass J, Bhargava S. Evidence for co-translational misincorporation of non-canonical amino acid hydroxyproline in recombinant antibodies produced in Chinese Hamster Ovary (CHO) cell lines. PLoS One 2020; 15:e0241250. [PMID: 33119652 PMCID: PMC7595273 DOI: 10.1371/journal.pone.0241250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/09/2020] [Indexed: 02/03/2023] Open
Abstract
With the advent of highly sensitive technologies such as tandem mass spectrometry and next-generation sequencing, recombinant antibodies are now routinely analyzed for the presence of low-level sequence variants including amino acid misincorporations. During mAb cell culture process development, we found that proline was replaced with the non-canonical amino acid, hydroxyproline, in the protein sequence. We investigated the relationship between proline content in the cell culture media and proline sequence variants and found that the proline concentration was inversely correlated with the amount of sequence variants detected in the protein sequence. Hydroxyproline incorporation has been previously reported in recombinant proteins produced in mammalian expression systems as a post-translational modification. Given the dependency on proline levels, the mechanism was then investigated. To address the possibility of co-translational misincorporation of hydroxyproline, we used tandem mass spectrometry to measure incorporation of stable-isotope labelled hydroxyproline added to the feed of a production bioreactor. We discovered co-translational misincorporation of labelled hydroxyproline in the recombinant antibody. These findings are significant, since they underscore the need to track non-canonical amino acid incorporation as a co-translational event in CHO cells. Understanding the mechanism of hydroxyproline incorporation is crucial in developing an appropriate control strategy during biologics production.
Collapse
Affiliation(s)
- Shanta Boddapati
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
- * E-mail:
| | - Jason Gilmore
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Kyle Boone
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - John Bushey
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Jonathan Ross
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Brian Gfeller
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - William McFee
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Romesh Rao
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Greg Corrigan
- Upstream Manufacturing, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Aaron Chen
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | - Howard Clarke
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| | | | - Swapnil Bhargava
- Process Sciences, Seattle Genetics Inc, Bothell, WA, United States of America
| |
Collapse
|
18
|
Perdomo-Abúndez FC, Vallejo-Castillo L, Vázquez-Leyva S, López-Morales CA, Velasco-Velázquez M, Pavón L, Pérez-Tapia SM, Medina-Rivero E. Development and validation of a mass spectrometric method to determine the identity of rituximab based on its microheterogeneity profile. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1139:121885. [PMID: 31806401 DOI: 10.1016/j.jchromb.2019.121885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 11/19/2022]
Abstract
Analytical methods have been considered the "eyes" for development, characterization and batch releasing of biotherapeutics over the past 40 years. One of the most powerful analytical platform for biotherapeutic analysis is mass spectrometry coupled to liquid chromatography (LC-MS). Due to its wide flexibility and instrumental configurations, LC-MS can determine different physicochemical attributes of proteins, e.g. molecular mass, primary sequence, and posttranslational modifications. Intact molecular mass analysis of therapeutic proteins is essential to confirm their identity. Analytical methods must be validated to support drug quality information during its approval process. Although there are international guidelines that provide general information on validation of analytical methods, practical examples about the design, selection of validation attributes and acceptance criteria of identity LC-MS methods are scarce. Here, according to the recommendations of Q2R1 ICH guideline, we showcase the validation of an LC-MS-TOF method to identity rituximab by determining its intact and deglycosylated molecular mass profiles. The proposed method specifically identified the m/z profile and deconvoluted mass profile of rituximab from deglycosylated rituximab and from excipient blank (specificity) with a maximum error of 76.63 ppm (accuracy) and a maximum Relative Standard Deviation (RSD) of 0.00315% (precision). Besides, the system suitability test, which was based on the expected mass value of the mass calibrator, confirmed the reliability of the analytical results. In summary, validation showed that the proposed method is suitable for identifying rituximab based on its glycosylated (intact) and deglycosylated mass profile.
Collapse
Affiliation(s)
- Francisco C Perdomo-Abúndez
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Luis Vallejo-Castillo
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Said Vázquez-Leyva
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Carlos A López-Morales
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Marco Velasco-Velázquez
- Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Translacional (CMN 20 de noviembre, ISSSTE), Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México 04510, Mexico.
| | - Lenin Pavón
- Laboratorio de Psicoinmunología, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente, Ciudad de México 14370, Mexico.
| | - Sonia Mayra Pérez-Tapia
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico; Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México 11340, Mexico; Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| | - Emilio Medina-Rivero
- Unidad de Desarrollo e Investigación en Bioprocesos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico.
| |
Collapse
|
19
|
Harris C, Xu W, Grassi L, Wang C, Markle A, Hardman C, Stevens R, Miro-Quesada G, Hatton D, Wang J. Identification and characterization of an IgG sequence variant with an 11 kDa heavy chain C-terminal extension using a combination of mass spectrometry and high-throughput sequencing analysis. MAbs 2019; 11:1452-1463. [PMID: 31570042 PMCID: PMC6816433 DOI: 10.1080/19420862.2019.1667740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein primary structure is a potential critical quality attribute for biotherapeutics. Identifying and characterizing any sequence variants present is essential for product development. A sequence variant ~11 kDa larger than the expected IgG mass was observed by size-exclusion chromatography and two-dimensional liquid chromatography coupled with online mass spectrometry. Further characterization indicated that the 11 kDa was added to the heavy chain (HC) Fc domain. Despite the relatively large mass addition, only one unknown peptide was detected by peptide mapping. To decipher the sequence, the transcriptome of the manufacturing cell line was characterized by Illumina RNA-seq. Transcriptome reconstruction detected an aberrant fusion transcript, where the light chain (LC) constant domain sequence was fused to the 3ʹ end of the HC transcript. Translation of this fusion transcript generated an extended peptide sequence at the HC C-terminus corresponding to the observed 11 kDa mass addition. Nanopore-based genome sequencing showed multiple copies of the plasmid had integrated in tandem with one copy missing the 5ʹ end of the plasmid, deleting the LC variable domain. The fusion transcript was due to read-through of the HC terminator sequence into the adjacent partial LC gene and an unexpected splicing event between a cryptic splice-donor site at the 3ʹ end of the HC and the splice acceptor site at the 5ʹ end of the LC constant domain. Our study demonstrates that combining protein physicochemical characterization with genomic and transcriptomic analysis of the manufacturing cell line greatly improves the identification of sequence variants and understanding of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Claire Harris
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Weichen Xu
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| | - Luigi Grassi
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Chunlei Wang
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| | - Abigail Markle
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| | - Colin Hardman
- Data Science & Artificial Intelligence, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Richard Stevens
- Antibody Discovery and Protein Engineering, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Guillermo Miro-Quesada
- Data & Quantitative Sciences, Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| | - Diane Hatton
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Cambridge , UK
| | - Jihong Wang
- Biopharmaceutical Development, BioPharmaceuticals R&D, AstraZeneca , Gaithersburg , MD , USA
| |
Collapse
|
20
|
Liang Z, Yu X, Zhong W. Peptide Sequence Influence on the Differentiation of Valine and Norvaline by Hot Electron Capture Dissociation. Anal Chem 2019; 91:4381-4387. [PMID: 30786210 DOI: 10.1021/acs.analchem.8b04808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Isomeric amino acid residues such as valine (Val) and norvaline (Nva) are common in recombinant proteins. The mis-incorporation of Nva for leucine (Leu) causes heterogeneity and in some cases even toxicity. Previous studies have shown that hot electron capture dissociation (HECD) is able to differentiate Val from Nva by producing diagnostic w ions on custom designed synthetic model peptides. To broaden the utilization of HECD in proteomic studies and to define the critical structural features, a thorough investigation was performed on representative peptides including specifically designed synthetic peptides as well as biological peptides bearing tryptic digest-like features and peptides with post-translational modifications. Experimental evidence confirmed that the formation of a w ion is directly dependent upon the presence of the corresponding z ion. The results suggested that a charge carrier residue at the C-terminus is promoting the formation of diagnostic w ions for Nva. Thus, peptides resulting from trypsin digestion, with arginine (Arg) or lysine (Lys) at the C-terminus, can be analyzed using the HECD method. Post-translational modification (PTM) such as phosphorylation did not prevent the generation of the requisite side chain fragmentation w ions. These results suggest the general applicability of HECD for unambiguous identification of Val and Nva especially in structure characterization of therapeutic proteins.
Collapse
Affiliation(s)
- Zhidan Liang
- Analytical Research & Development, Merck Research Laboratories , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| | - Xiang Yu
- Department of Pharmacokinetics, Pharmacodynamics, & Drug Metabolism (PPDM), Merck Research Laboratories , Merck & Co., Inc. , West Point , Pennsylvania 19486 , United States
| | - Wendy Zhong
- Analytical Research & Development, Merck Research Laboratories , Merck & Co., Inc. , Rahway , New Jersey 07065 , United States
| |
Collapse
|