1
|
Zeng YY, Gu Q, Li D, Li AX, Liu RM, Liang JY, Liu JY. Immunocyte membrane-derived biomimetic nano-drug delivery system: a pioneering platform for tumour immunotherapy. Acta Pharmacol Sin 2024; 45:2455-2473. [PMID: 39085407 PMCID: PMC11579519 DOI: 10.1038/s41401-024-01355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024]
Abstract
Tumor immunotherapy characterized by its high specificity and minimal side effects has achieved revolutionary progress in the field of cancer treatment. However, the complex mechanisms of tumor immune microenvironment (TIME) and the individual variability of patients' immune system still present significant challenges to its clinical application. Immunocyte membrane-coated nanocarrier systems, as an innovative biomimetic drug delivery platform, exhibit remarkable advantages in tumor immunotherapy due to their high targeting capability, good biocompatibility and low immunogenicity. In this review we summarize the latest research advances in biomimetic delivery systems based on immune cells for tumor immunotherapy. We outline the existing methods of tumor immunotherapy including immune checkpoint therapy, adoptive cell transfer therapy and cancer vaccines etc. with a focus on the application of various immunocyte membranes in tumor immunotherapy and their prospects and challenges in drug delivery and immune modulation. We look forward to further exploring the application of biomimetic delivery systems based on immunocyte membrane-coated nanoparticles, aiming to provide a new framework for the clinical treatment of tumor immunity.
Collapse
Affiliation(s)
- Yuan-Ye Zeng
- School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qing Gu
- Department of Pharmacy, Jingan District Zhabei Central Hospital, Shanghai, 200070, China
| | - Dan Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ai-Xue Li
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rong-Mei Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jian-Ying Liang
- School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ji-Yong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
3
|
Han J, Zhang B, Zheng S, Jiang Y, Zhang X, Mao K. The Progress and Prospects of Immune Cell Therapy for the Treatment of Cancer. Cell Transplant 2024; 33:9636897241231892. [PMID: 38433349 PMCID: PMC10913519 DOI: 10.1177/09636897241231892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Immune cell therapy as a revolutionary treatment modality, significantly transformed cancer care. It is a specialized form of immunotherapy that utilizes living immune cells as therapeutic reagents for the treatment of cancer. Unlike traditional drugs, cell therapies are considered "living drugs," and these products are currently customized and require advanced manufacturing techniques. Although chimeric antigen receptor (CAR)-T cell therapies have received tremendous attention in the industry regarding the treatment of hematologic malignancies, their effectiveness in treating solid tumors is often restricted, leading to the emergence of alternative immune cell therapies. Tumor-infiltrating lymphocytes (TIL) cell therapy, cytokine-induced killer (CIK) cell therapy, dendritic cell (DC) vaccines, and DC/CIK cell therapy are designed to use the body's natural defense mechanisms to target and eliminate cancer cells, and usually have fewer side effects or risks. On the other hand, cell therapies, such as chimeric antigen receptor-T (CAR-T) cell, T cell receptor (TCR)-T, chimeric antigen receptor-natural killer (CAR-NK), or CAR-macrophages (CAR-M) typically utilize either autologous stem cells, allogeneic or xenogeneic cells, or genetically modified cells, which require higher levels of manipulation and are considered high risk. These high-risk cell therapies typically hold special characteristics in tumor targeting and signal transduction, triggering new anti-tumor immune responses. Recently, significant advances have been achieved in both basic and clinical researches on anti-tumor mechanisms, cell therapy product designs, and technological innovations. With swift technological integration and a high innovation landscape, key future development directions have emerged. To meet the demands of cell therapy technological advancements in treating cancer, we comprehensively and systematically investigate the technological innovation and clinical progress of immune cell therapies in this study. Based on the therapeutic mechanisms and methodological features of immune cell therapies, we analyzed the main technical advantages and clinical transformation risks associated with these therapies. We also analyzed and forecasted the application prospects, providing references for relevant enterprises with the necessary information to make informed decisions regarding their R&D direction selection.
Collapse
Affiliation(s)
- Jia Han
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bowen Zhang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Senyu Zheng
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
- School of Natural and Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Yuan Jiang
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiaopeng Zhang
- Shanghai World Trade Organization Affairs Consultation Center, Shanghai, China
| | - Kaiyun Mao
- Shanghai Information Center for Life Sciences, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
4
|
Stock S, Klüver AK, Fertig L, Menkhoff VD, Subklewe M, Endres S, Kobold S. Mechanisms and strategies for safe chimeric antigen receptor T-cell activity control. Int J Cancer 2023; 153:1706-1725. [PMID: 37350095 DOI: 10.1002/ijc.34635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/07/2023] [Accepted: 06/02/2023] [Indexed: 06/24/2023]
Abstract
The clinical application of chimeric antigen receptor (CAR) T-cell therapy has rapidly changed the treatment options for terminally ill patients with defined blood-borne cancer types. However, CAR T-cell therapy can lead to severe therapy-associated toxicities including CAR-related hematotoxicity, ON-target OFF-tumor toxicity, cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Just as CAR T-cell therapy has evolved regarding receptor design, gene transfer systems and production protocols, the management of side effects has also improved. However, because of measures taken to abrogate adverse events, CAR T-cell viability and persistence might be impaired before complete remission can be achieved. This has fueled efforts for the development of extrinsic and intrinsic strategies for better control of CAR T-cell activity. These approaches can mediate a reversible resting state or irreversible T-cell elimination, depending on the route chosen. Control can be passive or active. By combination of CAR T-cells with T-cell inhibiting compounds, pharmacologic control, mostly independent of the CAR construct design used, can be achieved. Other strategies involve the genetic modification of T-cells or further development of the CAR construct by integration of molecular ON/OFF switches such as suicide genes. Alternatively, CAR T-cell activity can be regulated intracellularly through a self-regulation function or extracellularly through titration of a CAR adaptor or of a priming small molecule. In this work, we review the current strategies and mechanisms to control activity of CAR T-cells reversibly or irreversibly for preventing and for managing therapy-associated toxicities.
Collapse
Affiliation(s)
- Sophia Stock
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- Department of Medicine III, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Anna-Kristina Klüver
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Luisa Fertig
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Vivien D Menkhoff
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
| | - Marion Subklewe
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Stefan Endres
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Ludwig-Maximilians-Universität München (LMU), Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
5
|
Märkl F, Benmebarek MR, Keyl J, Cadilha BL, Geiger M, Karches C, Obeck H, Schwerdtfeger M, Michaelides S, Briukhovetska D, Stock S, Jobst J, Müller PJ, Majed L, Seifert M, Klüver AK, Lorenzini T, Grünmeier R, Thomas M, Gottschlich A, Klaus R, Marr C, von Bergwelt-Baildon M, Rothenfusser S, Levesque MP, Heppt MV, Endres S, Klein C, Kobold S. Bispecific antibodies redirect synthetic agonistic receptor modified T cells against melanoma. J Immunother Cancer 2023; 11:jitc-2022-006436. [PMID: 37208128 DOI: 10.1136/jitc-2022-006436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Melanoma is an immune sensitive disease, as demonstrated by the activity of immune check point blockade (ICB), but many patients will either not respond or relapse. More recently, tumor infiltrating lymphocyte (TIL) therapy has shown promising efficacy in melanoma treatment after ICB failure, indicating the potential of cellular therapies. However, TIL treatment comes with manufacturing limitations, product heterogeneity, as well as toxicity problems, due to the transfer of a large number of phenotypically diverse T cells. To overcome said limitations, we propose a controlled adoptive cell therapy approach, where T cells are armed with synthetic agonistic receptors (SAR) that are selectively activated by bispecific antibodies (BiAb) targeting SAR and melanoma-associated antigens. METHODS Human as well as murine SAR constructs were generated and transduced into primary T cells. The approach was validated in murine, human and patient-derived cancer models expressing the melanoma-associated target antigens tyrosinase-related protein 1 (TYRP1) and melanoma-associated chondroitin sulfate proteoglycan (MCSP) (CSPG4). SAR T cells were functionally characterized by assessing their specific stimulation and proliferation, as well as their tumor-directed cytotoxicity, in vitro and in vivo. RESULTS MCSP and TYRP1 expression was conserved in samples of patients with treated as well as untreated melanoma, supporting their use as melanoma-target antigens. The presence of target cells and anti-TYRP1 × anti-SAR or anti-MCSP × anti-SAR BiAb induced conditional antigen-dependent activation, proliferation of SAR T cells and targeted tumor cell lysis in all tested models. In vivo, antitumoral activity and long-term survival was mediated by the co-administration of SAR T cells and BiAb in a syngeneic tumor model and was further validated in several xenograft models, including a patient-derived xenograft model. CONCLUSION The SAR T cell-BiAb approach delivers specific and conditional T cell activation as well as targeted tumor cell lysis in melanoma models. Modularity is a key feature for targeting melanoma and is fundamental towards personalized immunotherapies encompassing cancer heterogeneity. Because antigen expression may vary in primary melanoma tissues, we propose that a dual approach targeting two tumor-associated antigens, either simultaneously or sequentially, could avoid issues of antigen heterogeneity and deliver therapeutic benefit to patients.
Collapse
Affiliation(s)
- Florian Märkl
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Mohamed-Reda Benmebarek
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Julius Keyl
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Bruno L Cadilha
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Martina Geiger
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Clara Karches
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Hannah Obeck
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Melanie Schwerdtfeger
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Stefanos Michaelides
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Daria Briukhovetska
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Sophia Stock
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Jakob Jobst
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Philipp Jie Müller
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Lina Majed
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Matthias Seifert
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Anna-Kristina Klüver
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Theo Lorenzini
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Ruth Grünmeier
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Moritz Thomas
- Institute of AI for Health, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Freising, Germany
| | - Adrian Gottschlich
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Richard Klaus
- Division of Pediatric Nephrology, Department of Pediatrics, Dr. v. Haunersches Kinderspital, Klinikum der Universität München, Munich, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Simon Rothenfusser
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, Schlieren, Switzerland
| | - Markus Vincent Heppt
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Endres
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Sebastian Kobold
- Department of Medicine IV, Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
6
|
Zhu W, Wang Y, Lv L, Wang H, Shi W, Liu Z, Zhou M, Zhu J, Lu H. Universal chimeric Fcγ receptor T cells with appropriate affinity for IgG1 antibody exhibit optimal antitumor efficacy. Acta Pharm Sin B 2023; 13:2071-2085. [DOI: 10.1016/j.apsb.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 02/11/2023] Open
|
7
|
Harrer DC, Schenkel C, Bezler V, Kaljanac M, Hartley J, Barden M, Pan H, Holzinger A, Herr W, Abken H. CAR Triggered Release of Type-1 Interferon Limits CAR T-Cell Activities by an Artificial Negative Autocrine Loop. Cells 2022; 11:cells11233839. [PMID: 36497099 PMCID: PMC9737386 DOI: 10.3390/cells11233839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
The advent of chimeric antigen receptor (CAR) T cells expedited the field of cancer immunotherapy enabling durable remissions in patients with refractory hematological malignancies. T cells redirected for universal cytokine-mediated killing (TRUCKs), commonly referred to as "fourth generation" CAR T-cells, are designed to release engineered payloads upon CAR-induced T-cell activation. Building on the TRUCK technology, we aimed to generate CAR T-cells with a CAR-inducible artificial, self-limiting autocrine loop. To this end, we engineered CAR T-cells with CAR triggered secretion of type-1 interferons (IFNs). At baseline, IFNα and IFNβ CAR T-cells showed similar capacities in cytotoxicity and cytokine secretion compared to conventional CAR T-cells. However, under "stress" conditions of repetitive rounds of antigen stimulation using BxPC-3 pancreas carcinoma cells as targets, anti-tumor activity faded in later rounds while being fully active in destructing carcinoma cells during first rounds of stimulation. Mechanistically, the decline in activity was primarily based on type-1 IFN augmented CAR T-cell apoptosis, which was far less the case for CAR T-cells without IFN release. Such autocrine self-limiting loops can be used for applications where transient CAR T-cell activity and persistence upon target recognition is desired to avoid lasting toxicities.
Collapse
Affiliation(s)
- Dennis Christoph Harrer
- Department Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
- Correspondence:
| | - Charlotte Schenkel
- Department Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Valerie Bezler
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Marcell Kaljanac
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Jordan Hartley
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Markus Barden
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Hong Pan
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Astrid Holzinger
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| | - Wolfgang Herr
- Department Hematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Hinrich Abken
- Leibniz Institute for Immunotherapy, Division Genetic Immunotherapy, and Chair for Genetic Immunotherapy, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Peng H, Nerreter T, Mestermann K, Wachter J, Chang J, Hudecek M, Rader C. ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene 2022; 41:4104-4114. [PMID: 35859167 PMCID: PMC9398970 DOI: 10.1038/s41388-022-02416-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023]
Abstract
The success of chimeric antigen receptor T cell (CAR-T) therapy in the treatment of hematologic malignancies has prompted the development of numerous CAR-T technologies, including switchable CAR-T (sCAR-T) systems that combine a universal CAR-T with bispecific adapter proteins. Owing to their controllability and versatility, sCAR-Ts have received considerable attention. To explore the therapeutic utility of sCAR-Ts targeting the receptor tyrosine kinase ROR1, which is expressed in hematologic and solid malignancies, and to identify bispecific adaptor proteins that efficiently mediate universal CAR-T engagement, a panel of switches based on ROR1-targeting Fabs with different epitopes and affinities was compared in in vitro and in vivo models of ROR1-expressing cancers. For switches targeting overlapping or identical epitopes, potency correlated with affinity. Surprisingly, however, we identified a switch targeting a unique epitope with low affinity but mediating potent and selective antitumor activity in vitro and in vivo. Converted to a conventional CAR-T, the same anti-ROR1 mAb (324) outperformed a clinically investigated conventional CAR-T that is based on an anti-ROR1 mAb (R12) with ~200-fold higher affinity. Thus, demonstrating therapeutic utility on their own, sCAR-Ts also facilitate higher throughput screening for the identification of conventional CAR-T candidates for preclinical and clinical studies.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jakob Wachter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jing Chang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| |
Collapse
|
9
|
Ramos‑Cardona X, Luo W, Mohammed S. Advances and challenges of CAR T therapy and suitability of animal models (Review). Mol Clin Oncol 2022; 17:134. [PMID: 35949897 PMCID: PMC9353808 DOI: 10.3892/mco.2022.2567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
Chimeric antigen receptors (CARs) recently gained momentum in cancer treatment due to their ability to promote T-cell mediated responses to a specific tumor-associated antigen. CARs are part of the adoptive cell transfer (ACT) strategies that utilize patients' T lymphocytes, genetically engineered to kill cancer cells. However, despite the therapy's success against blood-related malignancies, treating solid tumors has not reached its fullest potential yet. The reasons include the complex suppressive tumor microenvironment, mutations on cancer cells' target receptors, lethal side-effects, restricted trafficking into the tumor, suboptimal persistence in vivo and the lack of animal models that faithfully resemble human tumor's immunological responses. Currently, rodent models are used to investigate the safety and efficacy of CAR therapies. However, these models are limited in representing the human disease faithfully, fail to predict the adverse treatment events and overestimate the efficacy of the therapy. On the other hand, spontaneously developed tumors in dogs are more suited in CAR research and their efficacy has been demonstrated in a number of diseases, including lymphoma, osteosarcoma and mammary tumors. The present review discusses the design and evolution of CARs, challenges of CAR in solid tumors, human and canine clinical trials and advantages of the canine model.
Collapse
Affiliation(s)
- Xavier Ramos‑Cardona
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| | - Weichuan Luo
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Sulma Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN 47907, USA
| |
Collapse
|
10
|
Stock S, Benmebarek MR, Kluever AK, Darowski D, Jost C, Stubenrauch KG, Benz J, Freimoser-Grundschober A, Moessner E, Umana P, Subklewe M, Endres S, Klein C, Kobold S. Chimeric antigen receptor T cells engineered to recognize the P329G-mutated Fc part of effector-silenced tumor antigen-targeting human IgG1 antibodies enable modular targeting of solid tumors. J Immunother Cancer 2022; 10:jitc-2022-005054. [PMID: 35902133 PMCID: PMC9341194 DOI: 10.1136/jitc-2022-005054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2022] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) T cell therapy has proven its clinical utility in hematological malignancies. Optimization is still required for its application in solid tumors. Here, the lack of cancer-specific structures along with tumor heterogeneity represent a critical barrier to safety and efficacy. Modular CAR T cells indirectly binding the tumor antigen through CAR-adaptor molecules have the potential to reduce adverse events and to overcome antigen heterogeneity. We hypothesized that a platform utilizing unique traits of clinical grade antibodies for selective CAR targeting would come with significant advantages. Thus, we developed a P329G-directed CAR targeting the P329G mutation in the Fc part of tumor-targeting human antibodies containing P329G L234A/L235A (LALA) mutations for Fc silencing. METHODS A single chain variable fragment-based second generation P329G-targeting CAR was retrovirally transduced into primary human T cells. These CAR T cells were combined with IgG1 antibodies carrying P329G LALA mutations in their Fc part targeting epidermal growth factor receptor (EGFR), mesothelin (MSLN) or HER2/neu. Mesothelioma, pancreatic and breast cancer cell lines expressing the respective antigens were used as target cell lines. Efficacy was evaluated in vitro and in vivo in xenograft mouse models. RESULTS Unlike CD16-CAR T cells, which bind human IgG in a non-selective manner, P329G-targeting CAR T cells revealed specific effector functions only when combined with antibodies carrying P329G LALA mutations in their Fc part. P329G-targeting CAR T cells cannot be activated by an excess of human IgG. P329G-directed CAR T cells combined with a MSLN-targeting P329G-mutated antibody mediated pronounced in vitro and in vivo antitumor efficacy in mesothelioma and pancreatic cancer models. Combined with a HER2-targeting antibody, P329G-targeting CAR T cells showed substantial in vitro activation, proliferation, cytokine production and cytotoxicity against HER2-expressing breast cancer cell lines and induced complete tumor eradication in a breast cancer xenograft mouse model. The ability of the platform to target multiple antigens sequentially was shown in vitro and in vivo. CONCLUSIONS P329G-targeting CAR T cells combined with antigen-binding human IgG1 antibodies containing the P329G Fc mutation mediate pronounced in vitro and in vivo effector functions in different solid tumor models, warranting further clinical translation of this concept.
Collapse
Affiliation(s)
- Sophia Stock
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany .,Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Mohamed-Reda Benmebarek
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,National Cancer Institute (NCI), Bethesda, Maryland, USA
| | - Anna-Kristina Kluever
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany
| | - Diana Darowski
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland.,Innovent Biologics (Suzhou) Co., Ltd, Suzhou, Jiangsu, China
| | - Christian Jost
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland.,Athebio AG, Schlieren, Switzerland
| | | | - Joerg Benz
- Roche Innovation Center Basel, Basel, Switzerland
| | | | - Ekkehard Moessner
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Pablo Umana
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Stefan Endres
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Sebastian Kobold
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig Maximilian University (LMU), Munich, Germany .,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.,Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
11
|
Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, Grimminger F, Savai R. Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Front Immunol 2022; 13:903562. [PMID: 35720364 PMCID: PMC9201083 DOI: 10.3389/fimmu.2022.903562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
The present treatments for lung cancer include surgical resection, radiation, chemotherapy, targeted therapy, and immunotherapy. Despite advances in therapies, the prognosis of lung cancer has not been substantially improved in recent years. Chimeric antigen receptor (CAR)-T cell immunotherapy has attracted growing interest in the treatment of various malignancies. Despite CAR-T cell therapy emerging as a novel potential therapeutic option with promising results in refractory and relapsed leukemia, many challenges limit its therapeutic efficacy in solid tumors including lung cancer. In this landscape, studies have identified several obstacles to the effective use of CAR-T cell therapy including antigen heterogeneity, the immunosuppressive tumor microenvironment, and tumor penetration by CAR-T cells. Here, we review CAR-T cell design; present the results of CAR-T cell therapies in preclinical and clinical studies in lung cancer; describe existing challenges and toxicities; and discuss strategies to improve therapeutic efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Prameela Kandra
- Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) Institute of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Visakhapatnam, India
| | - Rajender Nandigama
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Bastian Eul
- Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Member of the Deutsches Zentrum für Lungenforschung (DZL), University Hospital Munich, Munich, Germany.,German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Munich, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
12
|
Choudhary MC, Cyktor JC, Riddler SA. Advances in HIV-1-specific chimeric antigen receptor cells to target the HIV-1 reservoir. J Virus Erad 2022; 8:100073. [PMID: 35784676 PMCID: PMC9241028 DOI: 10.1016/j.jve.2022.100073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/15/2022] [Indexed: 01/09/2023] Open
Abstract
Antiretroviral therapy (ART) for HIV-1 has dramatically improved outcomes for people living with HIV-1 but requires life-long adherence and can be associated with short and long-term toxicity. Numerous pre-clinical and clinical investigations are underway to develop therapies for immune control of HIV-1 in the absence of ART. The success of chimeric antigen receptor (CAR) cell therapy for hematological malignancy has renewed efforts to develop and investigate CAR cells as strategies to enhance HIV-1 immunity, enable virus control or elimination, and allow ART-free HIV-1 remission. Here, we review the improvements in anti-HIV-1 CAR cell therapy in the two decades since their initial clinical trials were conducted, describe the additional engineering required to protect CAR cells from HIV-1 infection, and preview the current landscape of CAR cell therapies advancing to HIV-1 clinical trials.
Collapse
Affiliation(s)
- Madhu C. Choudhary
- Corresponding author. Division of Infectious Diseases, University of Pittsburgh, Suite 510, 3601 5Th Ave., Pittsburgh, PA, 15213, USA.
| | | | | |
Collapse
|
13
|
Leclercq G, Steinhoff N, Haegel H, De Marco D, Bacac M, Klein C. Novel strategies for the mitigation of cytokine release syndrome induced by T cell engaging therapies with a focus on the use of kinase inhibitors. Oncoimmunology 2022; 11:2083479. [PMID: 35694193 PMCID: PMC9176235 DOI: 10.1080/2162402x.2022.2083479] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 11/03/2022] Open
Abstract
T cell engaging therapies, like CAR-T cells and T cell engagers, redirect T cells toward tumor cells, facilitating the formation of a cytotoxic synapse and resulting in subsequent tumor cell killing. T cell receptor or CAR-T downstream signaling triggers a release of pro-inflammatory cytokines, which can induce a Cytokine Release Syndrome (CRS). The incidence of CRS is still hardly predictable among individuals and remains one of the major dose-limiting safety liabilities associated with on-target activity of T cell engaging therapies. This emphasizes the need to elaborate mitigation strategies, which reduce cytokine release while retaining efficacy. Here, we review pre-clinical and clinical approaches applied for the management of CRS symptoms in the context of T cell engaging therapies, highlighting the use of tyrosine kinase inhibitors as an emerging mitigation strategy. In particular, we focus on the effects of Bruton's tyrosine kinase (BTK), Src family including Lck, mammalian target of rapamycin (mTOR) and Janus tyrosine kinase (JAK) inhibitors on T cell functionality and cytokine release, to provide a rationale for their use as mitigation strategies against CRS in the context of T cell engaging therapies.
Collapse
Affiliation(s)
- Gabrielle Leclercq
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Nathalie Steinhoff
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Hélène Haegel
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Donata De Marco
- Phamaceutical Sciences, Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, pRED, Basel, Switzerland
| | - Marina Bacac
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| | - Christian Klein
- Oncology Disease Therapeutic Area, Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, pRED, Schlieren, Switzerland
| |
Collapse
|
14
|
Labanieh L, Majzner RG, Klysz D, Sotillo E, Fisher CJ, Vilches-Moure JG, Pacheco KZB, Malipatlolla M, Xu P, Hui JH, Murty T, Theruvath J, Mehta N, Yamada-Hunter SA, Weber EW, Heitzeneder S, Parker KR, Satpathy AT, Chang HY, Lin MZ, Cochran JR, Mackall CL. Enhanced safety and efficacy of protease-regulated CAR-T cell receptors. Cell 2022; 185:1745-1763.e22. [PMID: 35483375 PMCID: PMC9467936 DOI: 10.1016/j.cell.2022.03.041] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
Abstract
Regulatable CAR platforms could circumvent toxicities associated with CAR-T therapy, but existing systems have shortcomings including leakiness and attenuated activity. Here, we present SNIP CARs, a protease-based platform for regulating CAR activity using an FDA-approved small molecule. Design iterations yielded CAR-T cells that manifest full functional capacity with drug and no leaky activity in the absence of drug. In numerous models, SNIP CAR-T cells were more potent than constitutive CAR-T cells and showed diminished T cell exhaustion and greater stemness. In a ROR1-based CAR lethality model, drug cessation following toxicity onset reversed toxicity, thereby credentialing the platform as a safety switch. In the same model, reduced drug dosing opened a therapeutic window that resulted in tumor eradication in the absence of toxicity. SNIP CARs enable remote tuning of CAR activity, which provides solutions to safety and efficacy barriers that are currently limiting progress in using CAR-T cells to treat solid tumors.
Collapse
Affiliation(s)
- Louai Labanieh
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Robbie G Majzner
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chris J Fisher
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - José G Vilches-Moure
- Department of Comparative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kaithlen Zen B Pacheco
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meena Malipatlolla
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jessica H Hui
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johanna Theruvath
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nishant Mehta
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Sean A Yamada-Hunter
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Evan W Weber
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sabine Heitzeneder
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin R Parker
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Neurobiology, Stanford University, Stanford, CA 94305, USA; Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Cremoni M, Massa F, Sicard A. Overcoming barriers to widespread use of CAR-Treg therapy in organ transplant recipients. HLA 2022; 99:565-572. [PMID: 35233971 DOI: 10.1111/tan.14591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022]
Abstract
Preventing allograft rejection has been the main challenge of transplantation medicine since the discovery of immune responses against foreign HLA molecules in the mid-20th century. Prevention of rejection currently relies on immunosuppressive drugs, which lack antigen specificity and therefore increase the risk for infections and cancers. Adoptive cell therapy with donor-reactive regulatory T cells (Tregs) has progressively emerged as a promising approach to reduce the need for pan-immunosuppressive drugs and minimize morbidity and mortality in solid-organ transplant recipients. Chimeric antigen receptor (CAR) technology has recently been used successfully to generate Tregs specific for donor HLA molecules and overcome the limitations of Tregs enrichment protocols based on repetitive stimulations with alloantigens. While this novel approach opens new possibilities to make Tregs therapy more feasible, it also creates additional challenges. It is essential to determine which source of therapeutic Tregs, CAR constructs, target alloantigens, safety strategies, patients and immunosuppressive regimens are optimal for the success of CAR Treg therapy. Here, we discuss unmet needs and strategies to bring donor-specific CAR Treg therapy to the clinic and make it as accessible as possible.
Collapse
Affiliation(s)
- Marion Cremoni
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Clinical Research Unit, University Côte d'Azur (UR2CA), Nice, France
| | - Filippo Massa
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Laboratory of Molecular Physio Medicine (LP2M), University Côte d'Azur, Nice, France
| | - Antoine Sicard
- Department of Nephrology, Dialysis, Transplantation, Nice University Hospital, Nice, France.,Laboratory of Molecular Physio Medicine (LP2M), University Côte d'Azur, Nice, France
| |
Collapse
|
16
|
Koedam J, Wermke M, Ehninger A, Cartellieri M, Ehninger G. Chimeric antigen receptor T-cell therapy in acute myeloid leukemia. Curr Opin Hematol 2022; 29:74-83. [PMID: 35013048 PMCID: PMC8815830 DOI: 10.1097/moh.0000000000000703] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Treatment outcome of relapsed or refractory AML patients remains dismal and new treatment options are needed. Adoptive cell therapy using CAR-T cells is a potentially interesting approach in this. RECENT FINDINGS Several potentially interesting AML targets are being investigated with CAR-T therapy with over 60 clinical trials listed on clinicaltrials.gov. The first clinical data are only just emerging with mixed results, once more proving that further research is needed. SUMMARY Adoptive cell therapy using chimeric antigen receptor T cells is being investigated in AML through many clinical trials. So far, no AML-specific antigen has been identified, requiring additional strategies to mitigate on-target off-tumor toxicity and to increase efficacy. Focus point is to acquire control over the CAR T cells once administered. Strategies to do so include biodegradable CARs, inducible CARs, suicide-switch containing CARs and two-component modular CARs. Limited and mixed results are available, confirming the risk of lasting toxicity for nonswitchable CARs. Initial results of modular CARs suggest toxicity can be mitigated whilst maintaining CAR activity by the use of modular CAR concepts that allows for 'ON' and 'OFF' switching.
Collapse
Affiliation(s)
| | - Martin Wermke
- Division of Hematology, Oncology and Stem Cell Transplantation, Medical Clinic I, Department of Medicine I, University Hospital Carl Gustav Carus
- National Center for Tumor Diseases
| | | | | | | |
Collapse
|
17
|
Borrok MJ, Li Y, Harvilla PB, Vellalore Maruthachalam B, Tamot N, Prokopowitz C, Chen J, Venkataramani S, Grewal IS, Ganesan R, Singh S. Conduit CAR: Redirecting CAR T-Cell Specificity with A Universal and Adaptable Bispecific Antibody Platform. CANCER RESEARCH COMMUNICATIONS 2022; 2:146-157. [PMID: 36874404 PMCID: PMC9980914 DOI: 10.1158/2767-9764.crc-21-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/08/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
The success of chimeric antigen receptor (CAR) T-cell therapy against hematologic malignancies has altered the treatment paradigm for patients with these diseases. Nevertheless, the occurrence of relapse due to antigen escape or heterogeneous antigen expression on tumors remains a challenge for first-generation CAR T-cell therapies as only a single tumor antigen can be targeted. To address this limitation and to add a further level of tunability and control to CAR T-cell therapies, adapter or universal CAR T-cell approaches use a soluble mediator to bridge CAR T cells with tumor cells. Adapter CARs allow simultaneous or sequential targeting of multiple tumor antigens, control of immune synapse geometry, dose control, and the potential for improved safety. Herein, we described a novel CAR T-cell adapter platform that relies on a bispecific antibody (BsAb) targeting both a tumor antigen and the GGGGS (G4S) linker commonly used in single-chain Fv (ScFv) domains expressed on CAR T-cell surfaces. We demonstrated that the BsAb can bridge CAR T cells to tumor cells and potentiate CAR T-cell activation, proliferation, and tumor cell cytolysis. The cytolytic activity of CAR T-cells was redirected to different tumor antigens by changing the BsAb in a dose-dependent manner. This study highlights the potential of G4S-displaying CAR T cells to be redirected to engage alternative tumor-associated antigens (TAA). Significance New approaches are needed to address relapsed/refractory disease and manage potential toxicities associated with CAR T-cell therapy. We describe an adapter CAR approach to redirect CAR T cells to engage novel TAA-expressing cells via a BsAb targeting a linker present on many clinical CAR T-cell therapeutics. We anticipate the use of such adapters could increase CAR T-cell efficacy and reduce potential CAR-associated toxicities.
Collapse
Affiliation(s)
- M Jack Borrok
- Janssen BioTherapeutics, Spring House, Pennsylvania.,M. Jack Borrok and Yonghai Li contributed equally to this article
| | - Yonghai Li
- Janssen BioTherapeutics, Spring House, Pennsylvania.,M. Jack Borrok and Yonghai Li contributed equally to this article
| | | | | | - Ninkka Tamot
- Janssen BioTherapeutics, Spring House, Pennsylvania
| | | | - Jun Chen
- Janssen BioTherapeutics, Spring House, Pennsylvania
| | | | | | | | | |
Collapse
|
18
|
Mirzaee Godarzee M, Mahmud Hussen B, Razmara E, Hakak‐Zargar B, Mohajerani F, Dabiri H, Fatih Rasul M, Ghazimoradi MH, Babashah S, Sadeghizadeh M. Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Ann N Y Acad Sci 2022; 1510:18-35. [DOI: 10.1111/nyas.14724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022]
Affiliation(s)
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy Hawler Medical University Erbil Iraq
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute Monash University, Clayton, Victoria, Australia, 3800
| | | | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Hamed Dabiri
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Sciences Tishk International University Erbil Iraq
| | | | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
19
|
Liu L, Liu Y, Xia Y, Wang G, Zhang X, Zhang H, Xu Y, Yuan Y, Liu S, Wang Y. Synergistic killing effects of PD-L1-CAR T cells and colorectal cancer stem cell-dendritic cell vaccine-sensitized T cells in ALDH1-positive colorectal cancer stem cells. J Cancer 2021; 12:6629-6639. [PMID: 34659553 PMCID: PMC8517999 DOI: 10.7150/jca.62123] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer stem cells (CSCs) are characterized by self-renewal and unlimited proliferation, providing a basis for tumor occurrence, metastasis, and recurrence. Because CSCs are highly resistant to conventional chemotherapy and radiotherapy, various immunotherapies, particularly chimeric antigen receptor T cell (CAR-T) therapy and dendritic cell (DC)-based vaccine therapy, are currently being developed. Accordingly, in this study, we evaluated programmed cell death ligand-1 (PD-L1) expression in colorectal CSCs (CCSCs) and non-CCSCs and designed a combination immunotherapy synchronously utilizing PD-L1-CAR-T cells together with CCSC-DC vaccine-sensitized T cells for the treatment of colorectal cancer. PD-L1-CAR-T cells specifically recognized the PD-L1 molecule on CCSCs by binding to the extracellular domain of programmed cell death-1. The CCSC-DC vaccine was prepared using CCSC lysates. We found that aldehyde dehydrogenase 1 (ALDH1)-positive CCSCs were abundant in samples from patient tumor tissues and cancer cell lines. Moreover, PD-L1 was highly expressed in ALDH1-positive CCSCs compared with that in non-CCSCs. Monotherapy with PD-L1-CAR-T cells or CCSC-DC vaccine only elicited moderate tumor remission both in vitro and in vivo. However, combination therapy markedly killed cancer cells and relieved the tumor burden in mice. Our findings may provide a novel strategy for the clinical treatment of colorectal malignancy.
Collapse
Affiliation(s)
- Liu Liu
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Yuanyuan Liu
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Yang Xia
- Taizhou People's Hospital/The Fifth Affiliated Hospital of Nantong University, Taizhou 225300, P.R. China
| | - Guanlong Wang
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Xiushan Zhang
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Huan Zhang
- Linquan County People's Hospital, Linquan 236400, P.R. China
| | - Yang Xu
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Yuan Yuan
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Shangquan Liu
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| | - Yi Wang
- The First People's Hospital of Hefei/The Third Affiliated Hospital of Anhui Medical University, Hefei 230061, P.R. China
| |
Collapse
|
20
|
Schwerdtfeger M, Benmebarek MR, Endres S, Subklewe M, Desiderio V, Kobold S. Chimeric Antigen Receptor-Modified T Cells and T Cell-Engaging Bispecific Antibodies: Different Tools for the Same Job. Curr Hematol Malig Rep 2021; 16:218-233. [PMID: 33939108 PMCID: PMC8154758 DOI: 10.1007/s11899-021-00628-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Both chimeric antigen receptor (CAR) T cells and T cell-engaging antibodies (BiAb) have been approved for the treatment of hematological malignancies. However, despite targeting the same antigen, they represent very different classes of therapeutics, each with its distinct advantages and drawbacks. In this review, we compare BiAb and CAR T cells with regard to their mechanism of action, manufacturing, and clinical application. In addition, we present novel strategies to overcome limitations of either approach and to combine the best of both worlds. RECENT FINDINGS By now there are multiple approaches combining the advantages of BiAb and CAR T cells. A major area of research is the application of both formats for solid tumor entities. This includes improving the infiltration of T cells into the tumor, counteracting immunosuppression in the tumor microenvironment, targeting antigen heterogeneity, and limiting off-tumor on-target effects. BiAb come with the major advantage of being an off-the-shelf product and are more controllable because of their half-life. They have also been reported to induce less frequent and less severe adverse events. CAR T cells in turn demonstrate superior response rates, have the potential for long-term persistence, and can be additionally genetically modified to overcome some of their limitations, e.g., to make them more controllable.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antigens, Neoplasm/immunology
- Genetic Engineering
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/etiology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Marion Subklewe
- Department of Medicine III, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
21
|
Adapter Chimeric Antigen Receptor (AdCAR)-Engineered NK-92 Cells for the Multiplex Targeting of Bone Metastases. Cancers (Basel) 2021; 13:cancers13051124. [PMID: 33807875 PMCID: PMC7961358 DOI: 10.3390/cancers13051124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/15/2021] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Metastatic disease remains one of the biggest challenges for tumor therapy. The aim of our study was the preclinical evaluation of adapter chimeric antigen receptor (AdCAR)-engineered NK-92 cell efficacy as a possible treatment strategy for various types of bone metastatic cancers. We confirmed that AdCAR NK-92 cells successfully induces tumor cell lysis in bone metastasis cell lines derived from mammary, renal cell and colorectal carcinoma as well as melanoma in a specific and controllable manner, thus, establishing a potent cellular product with universal applicability and quick clinical translation potential for the treatment of solid tumors, including metastases. Abstract Background: Since metastatic spreading of solid tumor cells often leads to a fatal outcome for most cancer patients, new approaches for patient-individualized, targeted immunotherapy are urgently needed. Methods: Here, we established cell lines from four bone metastases of different tumor entities. We assessed AdCAR NK-92-mediated cytotoxicity in vitro in standard cytotoxicity assays as well as 3D spheroid models Results: AdCAR-engineered NK-92 cells successfully demonstrated distinct and specific cytotoxic potential targeting different tumor antigens expressed on cell lines established from bone metastases of mammary, renal cell and colorectal carcinoma as well as melanomas. In that process AdCAR NK-92 cells produced a multitude of NK effector molecules as well as pro inflammatory cytokines. Furthermore, AdCAR NK-92 showed increased cytotoxicity in 3D spheroid models which can recapitulate in vivo architecture, thereby bridging the gap between in vitro and in vivo models. Conclusions: AdCAR NK-92 cells may provide an interesting and promising “off-the-shelf” cellular product for the targeted therapy of cancers metastasizing to the bone, while utilization of clinically approved, therapeutic antibodies, as exchangeable adapter molecules can facilitate quick clinical translation.
Collapse
|
22
|
Martínez Bedoya D, Dutoit V, Migliorini D. Allogeneic CAR T Cells: An Alternative to Overcome Challenges of CAR T Cell Therapy in Glioblastoma. Front Immunol 2021; 12:640082. [PMID: 33746981 PMCID: PMC7966522 DOI: 10.3389/fimmu.2021.640082] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as one of the major breakthroughs in cancer immunotherapy in the last decade. Outstanding results in hematological malignancies and encouraging pre-clinical anti-tumor activity against a wide range of solid tumors have made CAR T cells one of the most promising fields for cancer therapies. CAR T cell therapy is currently being investigated in solid tumors including glioblastoma (GBM), a tumor for which survival has only modestly improved over the past decades. CAR T cells targeting EGFRvIII, Her2, or IL-13Rα2 have been tested in GBM, but the first clinical trials have shown modest results, potentially due to GBM heterogeneity and to the presence of an immunosuppressive microenvironment. Until now, the use of autologous T cells to manufacture CAR products has been the norm, but this approach has several disadvantages regarding production time, cost, manufacturing delay and dependence on functional fitness of patient T cells, often reduced by the disease or previous therapies. Universal “off-the-shelf,” or allogeneic, CAR T cells is an alternative that can potentially overcome these issues, and allow for multiple modifications and CAR combinations to target multiple tumor antigens and avoid tumor escape. Advances in genome editing tools, especially via CRISPR/Cas9, might allow overcoming the two main limitations of allogeneic CAR T cells product, i.e., graft-vs.-host disease and host allorejection. Here, we will discuss how allogeneic CAR T cells could allow for multivalent approaches and alteration of the tumor microenvironment, potentially allowing the development of next generation therapies for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Darel Martínez Bedoya
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valérie Dutoit
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Denis Migliorini
- Center for Translational Research in Onco-Hematology, University of Geneva, Geneva, Switzerland.,Swiss Cancer Center Léman, Lausanne, Switzerland.,Brain Tumor and Immune Cell Engineering Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
| |
Collapse
|
23
|
Benmebarek MR, Cadilha BL, Herrmann M, Lesch S, Schmitt S, Stoiber S, Darwich A, Augsberger C, Brauchle B, Rohrbacher L, Oner A, Seifert M, Schwerdtfeger M, Gottschlich A, Rataj F, Fenn NC, Klein C, Subklewe M, Endres S, Hopfner KP, Kobold S. A modular and controllable T cell therapy platform for acute myeloid leukemia. Leukemia 2021; 35:2243-2257. [PMID: 33414484 PMCID: PMC7789085 DOI: 10.1038/s41375-020-01109-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Targeted T cell therapy is highly effective in disease settings where tumor antigens are uniformly expressed on malignant cells and where off-tumor on-target-associated toxicity is manageable. Although acute myeloid leukemia (AML) has in principle been shown to be a T cell-sensitive disease by the graft-versus-leukemia activity of allogeneic stem cell transplantation, T cell therapy has so far failed in this setting. This is largely due to the lack of target structures both sufficiently selective and uniformly expressed on AML, causing unacceptable myeloid cell toxicity. To address this, we developed a modular and controllable MHC-unrestricted adoptive T cell therapy platform tailored to AML. This platform combines synthetic agonistic receptor (SAR) -transduced T cells with AML-targeting tandem single chain variable fragment (scFv) constructs. Construct exchange allows SAR T cells to be redirected toward alternative targets, a process enabled by the short half-life and controllability of these antibody fragments. Combining SAR-transduced T cells with the scFv constructs resulted in selective killing of CD33+ and CD123+ AML cell lines, as well as of patient-derived AML blasts. Durable responses and persistence of SAR-transduced T cells could also be demonstrated in AML xenograft models. Together these results warrant further translation of this novel platform for AML treatment.
Collapse
Affiliation(s)
- Mohamed-Reda Benmebarek
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Bruno L. Cadilha
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Monika Herrmann
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefanie Lesch
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Saskia Schmitt
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Stoiber
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Abbass Darwich
- grid.417728.f0000 0004 1756 8807Mucosal Immunology and Microbiota Lab, Humanitas Clinical and Research Center, Milan, Italy
| | - Christian Augsberger
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Bettina Brauchle
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Lisa Rohrbacher
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Arman Oner
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Matthias Seifert
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Melanie Schwerdtfeger
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Adrian Gottschlich
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Felicitas Rataj
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Nadja C. Fenn
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany
| | - Christian Klein
- grid.417570.00000 0004 0374 1269Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Marion Subklewe
- grid.5252.00000 0004 1936 973XDepartment of Medicine III, Klinikum der Universität München, LMU, Munich, Germany ,grid.5252.00000 0004 1936 973XLaboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany
| | - Stefan Endres
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | | | - Sebastian Kobold
- grid.5252.00000 0004 1936 973XCenter of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany ,German Center for Translational Cancer Research (DKTK), Partner Site Munich, Munich, Germany ,grid.4567.00000 0004 0483 2525Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
24
|
Surowka M, Schaefer W, Klein C. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. MAbs 2021; 13:1967714. [PMID: 34491877 PMCID: PMC8425689 DOI: 10.1080/19420862.2021.1967714] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies have recently attracted intense interest. CrossMab technology was described in 2011 as novel approach enabling correct antibody light-chain association with their respective heavy chain in bispecific antibodies, together with methods enabling correct heavy-chain association using existing pairs of antibodies. Since the original description, CrossMab technology has evolved in the past decade into one of the most mature, versatile, and broadly applied technologies in the field, and nearly 20 bispecific antibodies based on CrossMab technology developed by Roche and others have entered clinical trials. The most advanced of these are the Ang-2/VEGF bispecific antibody faricimab, currently undergoing regulatory review, and the CD20/CD3 T cell bispecific antibody glofitamab, currently in pivotal Phase 3 trials. In this review, we introduce the principles of CrossMab technology, including its application for the generation of bi-/multispecific antibodies with different geometries and mechanisms of action, and provide an overview of CrossMab-based therapeutics in clinical trials.
Collapse
|
25
|
Grote S, Mittelstaet J, Baden C, Chan KCH, Seitz C, Schlegel P, Kaiser A, Handgretinger R, Schleicher S. Adapter chimeric antigen receptor (AdCAR)-engineered NK-92 cells: an off-the-shelf cellular therapeutic for universal tumor targeting. Oncoimmunology 2020; 9:1825177. [PMID: 33457105 PMCID: PMC7781805 DOI: 10.1080/2162402x.2020.1825177] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Despite the recent success of CAR T cells targeting CD19 and CD22 in hematological malignancies, the production of CAR T cells still requires an extensive manufacturing process. The well-established NK-92 cell line provides a promising alternative to produce CAR-modified effector cells in a GMP-compliant, cost-effective way. NK-92 can be redirected against a variety of surface antigens by our adapter CAR (AdCAR) system utilizing biotinylated antibodies (bAb) as adapter molecules. Selected bAb were capable of inducing significant AdCAR NK-92-mediated lysis of non-Hodgkin lymphoma (NHL) and mantle-cell lymphoma (MCL) cell lines as well as primary MCL and chronic lymphocytic leukemia (CLL) cells. AdCAR specificity was proven using a JeKo-1 CD19/CD20 knockout antigen-loss model. Moreover, through combinations of bAb, AdCAR NK-92 cells are capable of combatting tumor antigen evasion mechanisms. In conclusion, we successfully generated the AdCAR NK-92 cell line which can be manufactured as an “off-the-shelf, on-demand” product allowing universal and tunable tumor targeting.
Collapse
Affiliation(s)
- Stefan Grote
- Department of Hematology and Oncology, University Hospital Tuebingen, Children's Hospital, Tuebingen, Germany
| | | | - Caroline Baden
- Department of Hematology and Oncology, University Hospital Tuebingen, Children's Hospital, Tuebingen, Germany
| | - Kenneth Chun-Ho Chan
- Department of Hematology and Oncology, University Hospital Tuebingen, Children's Hospital, Tuebingen, Germany
| | - Christian Seitz
- Department of Hematology and Oncology, University Hospital Tuebingen, Children's Hospital, Tuebingen, Germany
| | - Patrick Schlegel
- Department of Hematology and Oncology, University Hospital Tuebingen, Children's Hospital, Tuebingen, Germany
| | | | - Rupert Handgretinger
- Department of Hematology and Oncology, University Hospital Tuebingen, Children's Hospital, Tuebingen, Germany
| | - Sabine Schleicher
- Department of Hematology and Oncology, University Hospital Tuebingen, Children's Hospital, Tuebingen, Germany
| |
Collapse
|
26
|
A Head Start: CAR-T Cell Therapy for Primary Malignant Brain Tumors. Curr Treat Options Oncol 2020; 21:73. [PMID: 32725495 DOI: 10.1007/s11864-020-00772-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OPINION STATEMENT Oncology is the midst of a therapeutic renaissance. The realization of immunotherapy as an efficacious and expanding treatment option has empowered physicians and patients alike. However, despite these remarkable advances, we have only just broached the potential immunotherapy has to offer and have yet to successfully expand these novel modalities to the field of neuro-oncology. In recent years, exciting results in preclinical studies of immune adjuvants, oncolytic viruses, or cell therapy have been met with only fleeting signs of response when taken to early phase trials. Although many have speculated why these innovative approaches result in impaired outcomes, we are left empty-handed in a field plagued by a drought of new therapies. Herein, we will review the recent advances across cellular therapy for primary malignant brain tumors, an approach that lends itself to overcoming the inherent resistance mechanisms which have impeded the success of prior treatment attempts.
Collapse
|
27
|
Mohseni YR, Tung SL, Dudreuilh C, Lechler RI, Fruhwirth GO, Lombardi G. The Future of Regulatory T Cell Therapy: Promises and Challenges of Implementing CAR Technology. Front Immunol 2020; 11:1608. [PMID: 32793236 PMCID: PMC7393941 DOI: 10.3389/fimmu.2020.01608] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell therapy with polyclonal regulatory T cells (Tregs) has been translated into the clinic and is currently being tested in transplant recipients and patients suffering from autoimmune diseases. Moreover, building on animal models, it has been widely reported that antigen-specific Tregs are functionally superior to polyclonal Tregs. Among various options to confer target specificity to Tregs, genetic engineering is a particularly timely one as has been demonstrated in the treatment of hematological malignancies where it is in routine clinical use. Genetic engineering can be exploited to express chimeric antigen receptors (CAR) in Tregs, and this has been successfully demonstrated to be robust in preclinical studies across various animal disease models. However, there are several caveats and a number of strategies should be considered to further improve on targeting, efficacy and to understand the in vivo distribution and fate of CAR-Tregs. Here, we review the differing approaches to confer antigen specificity to Tregs with emphasis on CAR-Tregs. This includes an overview and discussion of the various approaches to improve CAR-Treg specificity and therapeutic efficacy as well as addressing potential safety concerns. We also discuss different imaging approaches to understand the in vivo biodistribution of administered Tregs. Preclinical research as well as suitability of methodologies for clinical translation are discussed.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Bioengineering
- Humans
- Immunomodulation
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Cell Antigen Receptor Specificity
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Treatment Outcome
Collapse
Affiliation(s)
- Yasmin R. Mohseni
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Sim L. Tung
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Caroline Dudreuilh
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Robert I. Lechler
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| | - Gilbert O. Fruhwirth
- Imaging Therapies and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, MRC Centre for Transplantation, School of Immunology and Microbial Science, King's College London (KCL), Guy's Hospital, London, United Kingdom
| |
Collapse
|
28
|
Darowski D, Jost C, Stubenrauch K, Wessels U, Benz J, Ehler A, Freimoser-Grundschober A, Brünker P, Mössner E, Umaña P, Kobold S, Klein C. P329G-CAR-J: a novel Jurkat-NFAT-based CAR-T reporter system recognizing the P329G Fc mutation. Protein Eng Des Sel 2020; 32:207-218. [PMID: 31504896 DOI: 10.1093/protein/gzz027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/02/2019] [Accepted: 07/07/2019] [Indexed: 11/13/2022] Open
Abstract
Monoclonal antibody-based therapeutics are an integral part of treatment of different human diseases, and the selection of suitable antibody candidates during the discovery phase is essential. Here, we describe a novel, cellular screening approach for the identification and characterization of therapeutic antibodies suitable for conversion into T cell bispecific antibodies using chimeric antigen receptor (CAR) transduced Jurkat-NFAT-luciferase reporter cells (CAR-J). For that purpose, we equipped a Jurkat-NFAT reporter cell line with a universal CAR, based on a monoclonal antibody recognizing the P329G mutation in the Fc-part of effector-silenced human IgG1-antibodies. In addition to scFv-based second generation CARs, Fab-based CARs employing the P329G-binder were generated. Using these anti-P329G-CAR-J cells together with the respective P329G-mutated IgG1-antibodies, we established a system, which facilitates the rapid testing of therapeutic antibody candidates in a flexible, high throughput setting during early stage discovery. We show that both, scFv- and Fab-based anti-P329G-CAR-J cells elicit a robust and dose-dependent luciferase signal if the respective antibody acts as an adaptor between tumor target and P329G-CAR-J cells. Importantly, we could demonstrate that functional characteristics of the antibody candidates, derived from the anti-P329G-CAR-J screening assay, are predictive for the functionality of these antibodies in the T cell bispecific antibody format.
Collapse
Affiliation(s)
- Diana Darowski
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Christian Jost
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Kay Stubenrauch
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Nonnenwald 2 DE-82377 Penzberg, Germany
| | - Uwe Wessels
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Nonnenwald 2 DE-82377 Penzberg, Germany
| | - Jörg Benz
- Roche Innovation Center Basel, Roche Pharma Research & Early Development, Grenzacherstrasse 124 CH-4070 Basel, Switzerland
| | - Andreas Ehler
- Roche Innovation Center Basel, Roche Pharma Research & Early Development, Grenzacherstrasse 124 CH-4070 Basel, Switzerland
| | - Anne Freimoser-Grundschober
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Peter Brünker
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| | - Sebastian Kobold
- Center for Integrated Protein Science Munich (CIPSM) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, Lindwurmstraße 2a, 80337 Munich, Germany
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Wagistrasse 10 CH-8952 Schlieren, Switzerland
| |
Collapse
|
29
|
Qi J, Tsuji K, Hymel D, Burke TR, Hudecek M, Rader C, Peng H. Chemically Programmable and Switchable CAR‐T Therapy. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Kohei Tsuji
- Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health Building 376 Boyles Street Frederick MD 21702 USA
- Department of Medicinal Chemistry Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University 2-3-10 Kandasurugadai, Chiyoda-ku Tokyo 101-0062 Japan
| | - David Hymel
- Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health Building 376 Boyles Street Frederick MD 21702 USA
| | - Terrence R. Burke
- Chemical Biology Laboratory Center for Cancer Research National Cancer Institute National Institutes of Health Building 376 Boyles Street Frederick MD 21702 USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II Universitätsklinikum Würzburg Oberdürrbacherstrasse 6 97080 Würzburg Germany
| | - Christoph Rader
- Department of Immunology and Microbiology The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Haiyong Peng
- Department of Immunology and Microbiology The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| |
Collapse
|
30
|
Qi J, Tsuji K, Hymel D, Burke TR, Hudecek M, Rader C, Peng H. Chemically Programmable and Switchable CAR-T Therapy. Angew Chem Int Ed Engl 2020; 59:12178-12185. [PMID: 32329959 DOI: 10.1002/anie.202005432] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 01/10/2023]
Abstract
Although macromolecules on cell surfaces are predominantly targeted and drugged with antibodies, they harbor pockets that are only accessible to small molecules and constitutes a rich subset of binding sites with immense potential diagnostic and therapeutic utility. Compared to antibodies, however, small molecules are disadvantaged by a less confined biodistribution, shorter circulatory half-life, and inability to communicate with the immune system. Presented herein is a method that endows small molecules with the ability to recruit and activate chimeric antigen receptor T cells (CAR-Ts). It is based on a CAR-T platform that uses a chemically programmed antibody fragment (cp-Fab) as on/off switch. In proof-of-concept studies, this cp-Fab/CAR-T system targeting folate binding proteins on the cell surface mediated potent and specific eradication of folate-receptor-expressing cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Kohei Tsuji
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 376 Boyles Street, Frederick, MD, 21702, USA.,Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - David Hymel
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 376 Boyles Street, Frederick, MD, 21702, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 376 Boyles Street, Frederick, MD, 21702, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacherstrasse 6, 97080, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| |
Collapse
|
31
|
Loureiro LR, Feldmann A, Bergmann R, Koristka S, Berndt N, Máthé D, Hegedüs N, Szigeti K, Videira PA, Bachmann M, Arndt C. Extended half-life target module for sustainable UniCAR T-cell treatment of STn-expressing cancers. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:77. [PMID: 32370811 PMCID: PMC7201957 DOI: 10.1186/s13046-020-01572-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Background Adapter chimeric antigen receptor (CAR) approaches have emerged has promising strategies to increase clinical safety of CAR T-cell therapy. In the UniCAR system, the safety switch is controlled via a target module (TM) which is characterized by a small-size and short half-life. The rapid clearance of these TMs from the blood allows a quick steering and self-limiting safety switch of UniCAR T-cells by TM dosing. This is mainly important during onset of therapy when tumor burden and the risk for severe side effects are high. For long-term UniCAR therapy, the continuous infusion of TMs may not be an optimal setting for the patients. Thus, in later stages of treatment, single infusions of TMs with an increased half-life might play an important role in long-term surveillance and eradication of residual tumor cells. Given this, we aimed to develop and characterize a novel TM with extended half-life targeting the tumor-associated carbohydrate sialyl-Tn (STn). Methods The extended half-life TM is composed of the STn-specific single-chain variable fragment (scFv) and the UniCAR epitope, fused to the hinge region and Fc domain of a human immunoglobulin 4 (IgG4) antibody. Specific binding and functionality of the αSTn-IgG4 TM as well as pharmacokinetic features were assessed using in vitro and in vivo assays and compared to the already established small-sized αSTn TM. Results The novel αSTn-IgG4 TM efficiently activates and redirects UniCAR T-cells to STn-expressing tumors in a target-specific and TM-dependent manner, thereby promoting the secretion of proinflammatory cytokines and tumor cell lysis in vitro and in experimental mice. Moreover, PET-imaging results demonstrate the specific enrichment of the αSTn-IgG4 TM at the tumor site, while presenting a prolonged serum half-life compared to the short-lived αSTn TM. Conclusion In a clinical setting, the combination of TMs with different formats and pharmacokinetics may represent a promising strategy for retargeting of UniCAR T-cells in a flexible, individualized and safe manner at particular stages of therapy. Furthermore, as these molecules can be used for in vivo imaging, they pose as attractive candidates for theranostic approaches.
Collapse
Affiliation(s)
- Liliana R Loureiro
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Feldmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Ralf Bergmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Stefanie Koristka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Nicole Berndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Nikolett Hegedüs
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Michael Bachmann
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany. .,National Center for Tumor Diseases (NCT), Dresden, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany. .,German Cancer Consortium (DKTK), partner site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Tumor Immunology, University CancerCenter (UCC), University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.
| | - Claudia Arndt
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Bautzner Landstrasse 400, 01328, Dresden, Germany
| |
Collapse
|
32
|
Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 2020; 17:451-461. [PMID: 32313210 DOI: 10.1038/s41423-020-0417-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bispecific antibodies (bsAbs) refer to a large family of molecules that recognize two different epitopes or antigens. Although a series of challenges, especially immunogenicity and chain mispairing issues, once hindered the development of bsAbs, they have been gradually overcome with the help of rapidly developing technologies in the past 5 decades. In the meantime, an increasing number of bsAb platforms have been designed to satisfy different clinical demands. Currently, numerous preclinical and clinical trials are underway, portraying a promising future for bsAb-based cancer treatment. Nevertheless, bsAb drugs still face enormous challenges in their application as cancer therapeutics, including tumor heterogeneity and mutational burden, intractable tumor microenvironment (TME), insufficient costimulatory signals to activate T cells, the necessity for continuous injection, fatal systemic side effects, and off-target toxicities to adjacent normal cells. Therefore, we provide several strategies as solutions to these issues, which comprise generating multispecific bsAbs, discovering neoantigens, combining bsAbs with other anticancer therapies, exploiting natural killer (NK)-cell-based bsAbs and producing bsAbs in situ. In this review, we mainly discuss previous and current challenges in bsAb development and underscore corresponding strategies, with a brief introduction of several typical bsAb formats.
Collapse
|
33
|
Jost C, Darowski D, Challier J, Pulko V, Hanisch LJ, Xu W, Mössner E, Bujotzek A, Klostermann S, Umana P, Kontermann RE, Klein C. CAR-J cells for antibody discovery and lead optimization of TCR-like immunoglobulins. MAbs 2020; 12:1840709. [PMID: 33136521 PMCID: PMC7646475 DOI: 10.1080/19420862.2020.1840709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/15/2020] [Accepted: 10/19/2020] [Indexed: 01/07/2023] Open
Abstract
T-cell bispecific antibodies (TCBs) are a novel class of engineered immunoglobulins that unite monovalent binding to the T-cell receptor (TCR) CD3e chain and bivalent binding to tumor-associated antigens in order to recruit and activate T-cells for tumor cell killing. In vivo, T-cell activation is usually initiated via the interaction of the TCR with the peptide-HLA complex formed by the human leukocyte antigen (HLA) and peptides derived from intracellular proteins. TCR-like antibodies (TCRLs) that recognize pHLA-epitopes extend the target space of TCBs to peptides derived from intracellular proteins, such as those overexpressed during oncogenesis or created via mutations found in cancer. One challenge during lead identification of TCRL-TCBs is to identify TCRLs that specifically, and ideally exclusively, recognize the desired pHLA, but not unrelated pHLAs. In order to identify TCRLs suitable for TCRL-TCBs, large numbers of TCRLs have to be tested in the TCB format. Here, we propose a novel approach using chimeric antigen receptors (CARs) to facilitate the identification of highly selective TCRLs. In this new so-called TCRL-CAR-J approach, TCRL-candidates are transduced as CARs into Jurkat reporter-cells, and subsequently assessed for their specificity profile. This work demonstrates that the CAR-J reporter-cell assay can be applied to predict the profile of TCRL-TCBs without the need to produce each candidate in the final TCB format. It is therefore useful in streamlining the identification of TCRL-TCBs.
Collapse
Affiliation(s)
- Christian Jost
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
- Athebio AG, Zurich, Switzerland
| | - Diana Darowski
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - John Challier
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Vesna Pulko
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Lydia J Hanisch
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Wei Xu
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Ekkehard Mössner
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | - Alexander Bujotzek
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Penzberg, Germany
| | - Stefan Klostermann
- Roche Innovation Center Munich, Roche Pharma Research & Early Development, Penzberg, Germany
| | - Pablo Umana
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| | | | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Schlieren, Switzerland
| |
Collapse
|
34
|
Denham EM, Barton MI, Black SM, Bridge MJ, de Wet B, Paterson RL, van der Merwe PA, Goyette J. A generic cell surface ligand system for studying cell-cell recognition. PLoS Biol 2019; 17:e3000549. [PMID: 31815943 PMCID: PMC6922461 DOI: 10.1371/journal.pbio.3000549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/19/2019] [Accepted: 11/12/2019] [Indexed: 01/11/2023] Open
Abstract
Dose-response experiments are a mainstay of receptor biology studies and can reveal valuable insights into receptor function. Such studies of receptors that bind cell surface ligands are currently limited by the difficulty in manipulating the surface density of ligands at a cell–cell interface. Here, we describe a generic cell surface ligand system that allows precise manipulation of cell surface ligand densities over several orders of magnitude. These densities are robustly quantifiable, a major advance over previous studies. We validate the system for a range of immunoreceptors, including the T-cell receptor (TCR), and show that this generic ligand stimulates via the TCR at a similar surface density as its native ligand. We also extend our work to the activation of chimeric antigen receptors. This novel system allows the effect of varying the surface density, valency, dimensions, and affinity of the ligand to be investigated. It can be readily broadened to other receptor–cell surface ligand interactions and will facilitate investigation into the activation of, and signal integration between, cell surface receptors. This study describes a generic cell-surface ligand system that allows precise manipulation of ligand densities, valency, dimensions, and affinity. The system is validated for a range of immunoreceptors, including the T-cell receptor, and can be readily broadened to other cell-surface receptor-ligand interactions.
Collapse
Affiliation(s)
- Eleanor M. Denham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Michael I. Barton
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Susannah M. Black
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Marcus J. Bridge
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ben de Wet
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Rachel L. Paterson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - P. Anton van der Merwe
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
- * E-mail: (JG); (PAvdM)
| | - Jesse Goyette
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
- * E-mail: (JG); (PAvdM)
| |
Collapse
|
35
|
Karches CH, Benmebarek MR, Schmidbauer ML, Kurzay M, Klaus R, Geiger M, Rataj F, Cadilha BL, Lesch S, Heise C, Murr R, Vom Berg J, Jastroch M, Lamp D, Ding J, Duewell P, Niederfellner G, Sustmann C, Endres S, Klein C, Kobold S. Bispecific Antibodies Enable Synthetic Agonistic Receptor-Transduced T Cells for Tumor Immunotherapy. Clin Cancer Res 2019; 25:5890-5900. [PMID: 31285373 DOI: 10.1158/1078-0432.ccr-18-3927] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/25/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.
Collapse
Affiliation(s)
- Clara H Karches
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Moritz L Schmidbauer
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Mathias Kurzay
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Richard Klaus
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | - Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Ramona Murr
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Martin Jastroch
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Jian Ding
- TCR Therapeutics, Cambridge, Massachusetts
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | | | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL).
| |
Collapse
|
36
|
Strohl WR, Naso M. Bispecific T-Cell Redirection versus Chimeric Antigen Receptor (CAR)-T Cells as Approaches to Kill Cancer Cells. Antibodies (Basel) 2019; 8:E41. [PMID: 31544847 PMCID: PMC6784091 DOI: 10.3390/antib8030041] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 12/16/2022] Open
Abstract
The concepts for T-cell redirecting bispecific antibodies (TRBAs) and chimeric antigen receptor (CAR)-T cells are both at least 30 years old but both platforms are just now coming into age. Two TRBAs and two CAR-T cell products have been approved by major regulatory agencies within the last ten years for the treatment of hematological cancers and an additional 53 TRBAs and 246 CAR cell constructs are in clinical trials today. Two major groups of TRBAs include small, short-half-life bispecific antibodies that include bispecific T-cell engagers (BiTE®s) which require continuous dosing and larger, mostly IgG-like bispecific antibodies with extended pharmacokinetics that can be dosed infrequently. Most CAR-T cells today are autologous, although significant strides are being made to develop off-the-shelf, allogeneic CAR-based products. CAR-Ts form a cytolytic synapse with target cells that is very different from the classical immune synapse both physically and mechanistically, whereas the TRBA-induced synapse is similar to the classic immune synapse. Both TRBAs and CAR-T cells are highly efficacious in clinical trials but both also present safety concerns, particularly with cytokine release syndrome and neurotoxicity. New formats and dosing paradigms for TRBAs and CAR-T cells are being developed in efforts to maximize efficacy and minimize toxicity, as well as to optimize use with both solid and hematologic tumors, both of which present significant challenges such as target heterogeneity and the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- William R Strohl
- BiStro Biotech Consulting, LLC, 1086 Tullo Farm Rd., Bridgewater, NJ 08807, USA.
| | - Michael Naso
- Century Therapeutics, 3675 Market St., Philadelphia, PA 19104, USA
| |
Collapse
|
37
|
Stoiber S, Cadilha BL, Benmebarek MR, Lesch S, Endres S, Kobold S. Limitations in the Design of Chimeric Antigen Receptors for Cancer Therapy. Cells 2019; 8:cells8050472. [PMID: 31108883 PMCID: PMC6562702 DOI: 10.3390/cells8050472] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 12/17/2022] Open
Abstract
Cancer therapy has entered a new era, transitioning from unspecific chemotherapeutic agents to increasingly specific immune-based therapeutic strategies. Among these, chimeric antigen receptor (CAR) T cells have shown unparalleled therapeutic potential in treating refractory hematological malignancies. In contrast, solid tumors pose a much greater challenge to CAR T cell therapy, which has yet to be overcome. As this novel therapeutic modality matures, increasing effort is being invested to determine the optimal structure and properties of CARs to facilitate the transition from empirical testing to the rational design of CAR T cells. In this review, we highlight how individual CAR domains contribute to the success and failure of this promising treatment modality and provide an insight into the most notable advances in the field of CAR T cell engineering.
Collapse
Affiliation(s)
- Stefan Stoiber
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
- German Center for Translational Cancer Research (DKTK), 80337 Munich, Germany.
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Member of the German Center for Lung Research (DZL), 80337 Munich, Germany.
- German Center for Translational Cancer Research (DKTK), 80337 Munich, Germany.
| |
Collapse
|