1
|
Karbyshev MS, Kalashnikova IV, Dubrovskaya VV, Baskakova KO, Kuzmichev PK, Sandig V. Trends and challenges in bispecific antibody production. J Chromatogr A 2025; 1744:465722. [PMID: 39884073 DOI: 10.1016/j.chroma.2025.465722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/05/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Bispecific antibodies (bsAbs) represent a rapidly growing field of therapeutic agents. More bsAbs are being approved worldwide and are in various stages of clinical trials. However, the discovery and production of novel bsAbs presents significant challenges due to their complex structure. Thus, precise control of assembly and stability is required, given the many formats developed. This review examines recent trends in bsAb production, focusing on advancements in engineering platforms, production strategies, and challenges in large-scale manufacturing. Key developments include improvements in modular antibody design, novel expression systems, and optimization of bioprocessing techniques to enhance stability, yield, and efficacy. Additionally, the article explores the future potential of bsAbs as next-generation therapeutics, underscoring the growing impact of these innovations on expanding treatment options for patients with unmet medical needs.
Collapse
Affiliation(s)
- Mikhail S Karbyshev
- Department of Biotechnology, Moscow Polytechnic University (Moscow Polytech), Moscow, Russia; Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russia.
| | | | | | - Kristina O Baskakova
- Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | | |
Collapse
|
2
|
Li Y. General strategies for IgG-like bispecific antibody purification. Biotechnol Prog 2025; 41:e3515. [PMID: 39410750 DOI: 10.1002/btpr.3515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/06/2024] [Accepted: 10/01/2024] [Indexed: 04/17/2025]
Abstract
Bispecific antibodies (bsAbs) can simultaneously bind two different antigens or epitopes. Their dual-targeting capability enables novel mechanisms of action, gaining therapeutic advantages over conventional monospecific mAbs. In recent years, the number of bsAbs grows rapidly and bsAbs under development are available in diverse formats. In particular, Fc-containing IgG-like bsAbs, which represent the major group, can be constructed in asymmetric or symmetric format. For asymmetric ones, whose assembly requires multiple distinct chains, although numerous strategies have been developed to promote desired chain pairing, product-related variants such as free chains, half molecules and mispaired species are usually present at various levels. For symmetric ones, increased level of aggregates and truncating variants is often associated with their production. In general, bsAbs pose greater challenges to the downstream team than regular mAbs. In the past few years, our team successfully developed the downstream process for over 70 bsAbs in greater than 30 different formats and accumulated substantial experience. This review introduces general strategies that we have used while purifying these challenging molecules.
Collapse
Affiliation(s)
- Yifeng Li
- Downstream Process Development (DSPD), WuXi Biologics, Shanghai, China
| |
Collapse
|
3
|
Yi Y, Li Y, Wang S, Liang Y, Mei J, Ying G. Targeting the Antibody Fab Region Using Light-Induced Indole-3-Butyric Acid Functionalized Magnetic Microspheres. J Sep Sci 2025; 48:e70086. [PMID: 39899454 DOI: 10.1002/jssc.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 01/10/2025] [Indexed: 02/05/2025]
Abstract
A novel light-controlled adsorption system for direct targeting of antibody Fab fragments was developed by utilizing indole-3-butyric acid functionalized magnetic microspheres. Indole-3-butyric acid, serving as a specific small molecule ligand, was successfully conjugated to amine-functionalized magnetic microspheres via a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide activation strategy. Under illumination at a particular wavelength, the indole-3-butyric acid ligand generated reactive radicals that interacted with the nucleotide-binding sites of antibody Fab fragments, enabling effective affinity adsorption. Static adsorption experiments demonstrated that the system's adsorption behavior obeys the Langmuir model (KF = 0.122, R2 = 0.996), indicating a homogeneous adsorption process. Kinetic studies further revealed that the adsorption process follows a second-order kinetic model (k2 = 0.0257, R2 = 0.989). When compared with conventional antibody adsorption systems, this new system exhibited specific targeting of Fab fragments, enhanced selectivity, and adjustable properties. In particular, at pH 7.0, effective elution was achieved by increasing the salt concentration, with the eluted product retaining antigen-binding activity. The purification recovery rate exceeded 98%, and the system maintained effective adsorption and elution of Fab fragments across various pH conditions. Besides, even after 10 reuse cycles, the system retained more than 96% of its efficiency, thus presenting excellent regenerability and reusability. In summary, the developed light-controlled antibody Fab region adsorption system offers a highly efficient, stable, and cost-effective approach. It is also expected to become one of the most effective methods for antibody Fab purification in the future.
Collapse
Affiliation(s)
- Yu Yi
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yao Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Sa Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Yuting Liang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianfeng Mei
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Guoqing Ying
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Li Q, Zhao H, Liang X, He Q, Wang Z, Qin G, Li G, Xu D. The downstream purification of bispecific antibodies. Anal Biochem 2025; 696:115692. [PMID: 39427855 DOI: 10.1016/j.ab.2024.115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Bispecific antibodies, a class of therapeutic antibodies, can simultaneously bind to two distinct targets. Compared with monospecific antibodies, bispecific antibodies offer advantages, including superior efficacy and reduced side effects. However, because of their structural complexity, the purification of bispecific antibodies is highly challenging. The purification process must strike a delicate balance between purity and productivity, eliminating a broad spectrum of contaminants, including product-related and process-related impurities, while also maximizing the yield wherever feasible. This review systematically describes the strategies for bispecific antibody capture, the elimination of product-related impurities, and the mitigation of the formation of process-related impurities, thereby, providing guidance for the development of downstream purification processes for bispecific antibodies.
Collapse
Affiliation(s)
- Qian Li
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Research Institute, Institute of Biology, Nanjing, 210046, China.
| | - Hongyang Zhao
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Research Institute, Institute of Biology, Nanjing, 210046, China
| | - Xiaoying Liang
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Research Institute, Institute of Biology, Nanjing, 210046, China
| | - Qingquan He
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Research Institute, Institute of Biology, Nanjing, 210046, China
| | - Zicheng Wang
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Research Institute, Institute of Biology, Nanjing, 210046, China
| | - Guohong Qin
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Research Institute, Institute of Biology, Nanjing, 210046, China
| | - GuoZhu Li
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Research Institute, Institute of Biology, Nanjing, 210046, China
| | - Dan Xu
- Nanjing Chia-Tai Tianqing Pharmaceutical Co.Ltd, Fanghua Research Institute, Institute of Biology, Nanjing, 210046, China
| |
Collapse
|
5
|
Peltret M, Vetsch P, Farvaque E, Mette R, Tsachaki M, Duarte L, Duret A, Vaxelaire E, Frank J, Moritz B, Aillerie C, Giovannini R, Bertschinger M. Development of a 10 g/L process for a difficult-to-express multispecific antibody format using a holistic process development approach. J Biotechnol 2024; 389:30-42. [PMID: 38685416 DOI: 10.1016/j.jbiotec.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Ichnos has developed a multi-specific antibody platform based on the BEAT® (Bispecific engagement by antibodies based on the T-cell receptor) interface. The increased complexity of the bi- and multi-specific formats generated with this platform makes these molecules difficult-to-express proteins compared to standard monoclonal antibodies (mAbs). This report describes how expression limitations of a bi-specific bi-paratopic BEAT antibody were improved in a holistic approach. An initial investigation allowed identification of a misbalance in the subunits composing the BEAT antibody as the potential root cause. This misbalance was then addressed by a signal peptide optimization, and the overall expression level was increased by the combination of two vector design elements on a single gene vector. Further improvements were made in the selection of cell populations and an upstream (USP) platform process was applied in combination with a cell culture temperature shift. This allowed titer levels of up to 6 g/L to be reached with these difficult-to-express proteins. Furthermore, a high-density seeding process was developed that allowed titers of around 11 g/L for the BEAT antibody, increasing the initial titer by a factor of 10. The approach was successfully applied to a tri-specific antibody with titer levels reaching 10 g/L. In summary, a platform process for difficult-to-express proteins was developed using molecular biology tools, cell line development, upstream process optimization and process intensification.
Collapse
Affiliation(s)
- Mégane Peltret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Patrick Vetsch
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | - Romain Mette
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Maria Tsachaki
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Lionel Duarte
- Drug Substance Development, Ichnos Sciences, Switzerland
| | - Anaïs Duret
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | - Jana Frank
- Drug Substance Development, Ichnos Sciences, Switzerland
| | | | | | | | | |
Collapse
|
6
|
Wang FAS, Fan Y, Chung WK, Dutta A, Fiedler E, Haupts U, Peyser J, Kuriyel R. Evaluation of mild pH elution protein A resins for antibodies and Fc-fusion proteins. J Chromatogr A 2024; 1713:464523. [PMID: 38041974 DOI: 10.1016/j.chroma.2023.464523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/06/2023] [Accepted: 11/18/2023] [Indexed: 12/04/2023]
Abstract
Protein A affinity chromatography is widely used as a capture step for monoclonal antibodies (mAb) and molecules that possess an Fc-domain, such as fusion proteins and bispecific antibodies. However, the use of low pH (3.0-4.0) to elute the molecule and achieve acceptable yield (>85 %) can lead to product degradation (e.g. fragmentation, aggregation) for molecules sensitive to low pH. In this paper, we describe a comprehensive evaluation of two protein A resins with ligands designed to elute at a milder pH as a result of modified sequences in their Fc and VH3 binding regions. One of the evaluated resins has been made commercially available by Purolite and named Praesto Jetted A50 HipH. Results demonstrated that Jetted A50 HipH could elute the Fc-fusion protein and most mAbs evaluated with an elution pH at or above 4.6. Elution and wash optimization determined run conditions for high recovery (>90 % monomer yield), reduction of high molecular weight (HMW) species (>50 %), and significant host cell protein (HCP) clearance at the mildest elution pH possible. For a pH-stable mAb and a pH-sensitive fusion protein, cell culture material was purified with optimized conditions and demonstrated the mild elution pH resins' ability to purify product with acceptable yield, comparable or better impurity clearance, and significantly milder native eluate pH compared to traditional resins. The benefits of the mild elution pH resins were clearly exemplified for the pH-sensitive protein, where a milder elution buffer and native eluate pH resulted in only 2 % HMW in the eluate that remained stable over 48 h. In contrast, a traditional protein A resin requiring low pH elution led to eluate HMW levels of 8 %, which increased to 16 % over the same hold time. Additionally, these resins have high dynamic binding capacity and allow the use of traditional HCP washes. Therefore, Jetted A50 HipH is an ideal candidate for a platform protein A resin and provides flexibility for pH-sensitive proteins and stable mAbs, while preserving product quality, recovery, and seamless integration into a downstream process.
Collapse
Affiliation(s)
| | - Yamin Fan
- Process Biochemistry, Biogen, Cambridge, MA 02142, USA
| | | | - Amit Dutta
- Research and Development, Repligen Corporation, Waltham, MA 02453, USA
| | | | | | - Jamie Peyser
- Research and Development, Repligen Corporation, Waltham, MA 02453, USA
| | - Ralf Kuriyel
- Research and Development, Repligen Corporation, Waltham, MA 02453, USA
| |
Collapse
|
7
|
Peltret M, Schmid A, Duarte L, Mette R, Giovannini R, Bertschinger M. Expression of Multispecific Antibodies. Methods Mol Biol 2024; 2810:161-180. [PMID: 38926279 DOI: 10.1007/978-1-0716-3878-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Bi- and multispecific antibody formats allow the development of new therapeutic strategies to address previously unmet medical needs. However, due to the increased complexity (e.g., the interface design and the presence of multiple binders), such molecules are generally more challenging to express and purify compared to standard monoclonal antibodies (mAbs). We describe here an optimized methodology to express and purify basic bispecific antibodies using the BEAT® interface. This interface allows to generate antibodies with very high levels of heterodimer product (reported titers exceed 10 g/L) and comes with a built-in purification strategy allowing removal of residual levels of undesired product-related impurities (e.g., homodimers and half molecules).
Collapse
Affiliation(s)
| | | | | | - Romain Mette
- Ichnos Sciences SA, La Chaux-de-Fonds, Switzerland
| | | | | |
Collapse
|
8
|
Heinzelmann D, Lindner B, Renner B, Fischer S, Schulz P, Schmidt M. Droplet digital PCR: A comprehensive tool for genetic analysis and prediction of bispecific antibody assembly during cell line development. N Biotechnol 2023; 78:42-51. [PMID: 37797917 DOI: 10.1016/j.nbt.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/15/2023] [Accepted: 10/01/2023] [Indexed: 10/07/2023]
Abstract
Molecular biological methods have emerged as inevitable tools to accompany the process of cell line development for the generation of stable and highly productive manufacturing cell lines in the biopharmaceutical industry. PCR-based methods are especially useful for screening and characterization of cell lines due to their low cost, scalability, precision and propensity for multidimensional read-outs. In this study, the diverse applications of droplet digital PCR (ddPCR) as a molecular biological tool for cell line development are demonstrated. Specifically, it is shown that ddPCR can be used to enable precise, sensitive and reproducible absolute quantification of genomically integrated transgene copies during cell line development and cell bank characterization. Additionally, an amplitude multiplexing approach is applied to simultaneously run multiple assays on different genetic targets in a single reaction and advance clonal screening by measuring gene expression profiles to predict the assembly and homogeneity of difficult-to-express (DTE) proteins. The implementation of ddPCR-based assays during cell line development allows for early screening at a transcriptional level, particularly for complex, multidomain proteins, where balanced polypeptide chain ratios are of primary importance. Moreover, it is demonstrated that ddPCR-based genomic characterization improves the robustness, efficiency and comparability of absolute transgene copy number quantification, an essential genetic parameter that must be demonstrated to regulatory authorities during clinical trial and market authorization application submissions to support genetic stability and consistency of the selected cell substrate.
Collapse
Affiliation(s)
- Daniel Heinzelmann
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany.
| | - Benjamin Lindner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Benjamin Renner
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Simon Fischer
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Patrick Schulz
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| | - Moritz Schmidt
- Bioprocess Development Biologicals, Cell Line Development, Boehringer Ingelheim GmbH & Co. KG, Birkendorfer Strasse 65, 88397 Biberach, Germany
| |
Collapse
|
9
|
Rezvani K, WuDunn D, Hunter AK, Aspelund MT. Leveraging light chain binding avidity for control of mispaired byproducts during production of asymmetric bispecific antibodies. J Chromatogr A 2022; 1683:463533. [DOI: 10.1016/j.chroma.2022.463533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 10/31/2022]
|
10
|
Chen SW, Hoi KM, Mahfut FB, Yang Y, Zhang W. Effective flow-through polishing strategies for knob-into-hole bispecific antibodies. BIORESOUR BIOPROCESS 2022; 9:98. [PMID: 38647877 PMCID: PMC10992779 DOI: 10.1186/s40643-022-00590-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Bispecific antibodies (bsAbs), though possessing great therapeutic potential, are extremely challenging to obtain at high purity within a limited number of scalable downstream processing steps. Complementary to Protein A chromatography, polishing strategies play a critical role at removing the remaining high molecular weight (HMW) and low molecular weight (LMW) species, as well as host cell proteins (HCP) in order to achieve a final product of high purity. Here, we demonstrate using two knob-into-hole (KiH) bsAb constructs that two flow-through polishing steps utilising Capto Butyl ImpRes and Capto adhere resins, performed after an optimal Protein A affinity chromatography step can further reduce the HCP by 17- to 35-fold as well as HMW and LMW species with respect to monomer by ~ 4-6% and ~ 1%, respectively, to meet therapeutical requirement at 30-60 mg/mL-resin (R) load. This complete flow-through polishing strategy, guided by Design of Experiments (DoE), eliminates undesirable aggregation problems associated with the higher aggregation propensity of scFv containing bsAbs that may occur in the bind and elute mode, offering an improved ease of overall process operation without additional elution buffer preparation and consumption, thus aligning well with process intensification efforts. Overall, we demonstrate that through the employment of (1) Protein A chromatography step and (2) flow-through polishing steps, a final product containing < 1% HMW species, < 1% LMW species and < 100 ppm HCP can be obtained with an overall process recovery of 56-87%.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong Meng Hoi
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farouq Bin Mahfut
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
11
|
Chen SW, Hoi KM, Mahfut FB, Yang Y, Zhang W. Excellent removal of knob-into-hole bispecific antibody byproducts and impurities in a single-capture chromatography. BIORESOUR BIOPROCESS 2022; 9:72. [PMID: 38647639 PMCID: PMC10992212 DOI: 10.1186/s40643-022-00562-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 01/12/2023] Open
Abstract
Bispecific antibodies (bsAbs) are therapeutically promising due to their ability to bind to two different antigens. However, the bsAb byproducts and impurities, including mispaired homodimers, half-antibodies, light chain mispairings, antibody fragments and high levels of high molecular weight (HMW) species, all pose unique challenges to their downstream processing. Here, using two knob-into-hole (KiH) constructs of bsAbs as model molecules, we demonstrate the excellent removal of bsAb byproducts and impurities in a single Protein A chromatography under optimized conditions, including hole-hole homodimer mispaired products which are physicochemically very similar to the target bsAbs and still present even with the use of the KiH format, though at reduced levels. The removal occurs through the incorporation of an intermediate low-pH wash step and optimal elution conditions, achieving ~ 60% monomeric purity increase in a single Protein A step, without the introduction of sequence-specific bsAb modifications to specifically induce differential Protein A binding. Our results also suggest that the higher aggregation propensity of bsAbs may cause aggregation during the column process, hence an optimization of the appropriate loading amount, which may be lower than that of monoclonal antibodies (mAbs), is required. With the use of loading at 50% of 10% breakthrough (QB10) at 6-min residence time, we show that an overall high monomer purity of 92.1-93.2% can be achieved with good recovery of 78.4-90.6% within one capture step, which is a significant improvement from a monomer purity of ~ 30% in the cell culture supernatant (CCS). The results presented here would be an insightful guidance to all researchers working on the purification process development to produce bispecific antibodies, especially for knob-into-hole bispecific antibodies.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong Meng Hoi
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farouq Bin Mahfut
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
12
|
Li Y. IgG-like bispecific antibody platforms with built-in purification-facilitating elements. Protein Expr Purif 2021; 188:105955. [PMID: 34416361 DOI: 10.1016/j.pep.2021.105955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 01/07/2023]
Abstract
Assembly of IgG-like asymmetric bispecific antibodies (bsAbs) requires heavy chain heterodimerization and cognate heavy-light chain pairings. Multiple strategies have been developed to solve these chain association issues. While these strategies greatly promote correct chain pairing, they normally cannot prevent low amount of chain mispaired byproducts from being generated. Besides, byproducts can also be generated as a result of discordant chain expression. The existence of various byproducts poses considerable challenges to downstream processing during the production of recombinant IgG-like bsAbs. In many cases, yield is greatly compromised for purity improvement. This mini review introduces eight IgG-like bsAb platforms, which share a common feature: they all contain built-in purification-facilitating elements in addition to chain pairing control designs. These platforms, by simultaneously providing solutions to the two issues associated with bsAb production (i.e., correct chain pairing and efficient purification), improve both efficiency and robustness of bsAb production.
Collapse
MESH Headings
- Antibodies, Bispecific/chemistry
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/isolation & purification
- Chromatography, Gel/methods
- Chromatography, Ion Exchange/methods
- Humans
- Immunoglobulin G/chemistry
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/isolation & purification
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/genetics
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/chemistry
- Immunoglobulin Light Chains/genetics
- Immunoglobulin Light Chains/immunology
- Isoelectric Point
- Protein Binding
- Protein Engineering/methods
- Protein Multimerization
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Staphylococcal Protein A/chemistry
- Staphylococcal Protein A/metabolism
Collapse
Affiliation(s)
- Yifeng Li
- Technology and Process Development (TPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China.
| |
Collapse
|
13
|
Elshiaty M, Schindler H, Christopoulos P. Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer. Int J Mol Sci 2021; 22:5632. [PMID: 34073188 PMCID: PMC8198225 DOI: 10.3390/ijms22115632] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Building upon the resounding therapeutic success of monoclonal antibodies, and supported by accelerating progress in engineering methods, the field of multispecific therapeutic antibodies is growing rapidly. Over 140 different molecules are currently in clinical testing, with excellent results in recent phase 1-3 clinical trials for several of them. Multivalent bispecific IgG-modified formats predominate today, with a clear tendency for more target antigens and further increased valency in newer constructs. The strategies to augment anticancer efficacy are currently equally divided between disruption of multiple surface antigens, and additional redirection of cytotoxic T or NK lymphocytes against the tumor. Both effects complement other modern modalities, such as tyrosine kinase inhibitors and adoptive cell therapies, with which multispecifics are increasingly applied in combination or merged, for example, in the form of antibody producing CAR-T cells and oncolytics. While mainly focused on B-cell malignancies early on, the contemporary multispecific antibody sector accommodates twice as many trials against solid compared to hematologic cancers. An exciting emerging prospect is the targeting of intracellular neoantigens using T-cell receptor (TCR) fusion proteins or TCR-mimic antibody fragments. Considering the fact that introduction of PD-(L)1 inhibitors only a few years ago has already facilitated 5-year survival rates of 30-50% for per se highly lethal neoplasms, such as metastatic melanoma and non-small-cell lung carcinoma, the upcoming enforcement of current treatments with "next-generation" immunotherapeutics, offers a justified hope for the cure of some advanced cancers in the near future.
Collapse
Affiliation(s)
- Mariam Elshiaty
- Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.E.); (H.S.)
- Translational Lung Cancer Center Heidelberg, Member of the German Center for Lung Research (DZL), 69126 Heidelberg, Germany
| | - Hannah Schindler
- Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.E.); (H.S.)
- Translational Lung Cancer Center Heidelberg, Member of the German Center for Lung Research (DZL), 69126 Heidelberg, Germany
| | - Petros Christopoulos
- Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.E.); (H.S.)
- Translational Lung Cancer Center Heidelberg, Member of the German Center for Lung Research (DZL), 69126 Heidelberg, Germany
| |
Collapse
|
14
|
Chen SW, Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies. Antib Ther 2021; 4:73-88. [PMID: 34056544 PMCID: PMC8155696 DOI: 10.1093/abt/tbab007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (bsAbs) represent a highly promising class of biotherapeutic modality. The downstream processing of this class of antibodies is therefore of crucial importance in ensuring that these products can be obtained with high purity and yield. Due to the various fundamental structural similarities between bsAbs and monoclonal antibodies (mAbs), many of the current bsAb downstream purification methodologies are based on the established purification processes of mAbs, where affinity, charge, size, hydrophobicity and mixed-mode-based purification are frequently employed. Nevertheless, the downstream processing of bsAbs presents a unique set of challenges due to the presence of bsAb-specific byproducts, such as mispaired products, undesired fragments and higher levels of aggregates, that are otherwise absent or present in lower levels in mAb cell culture supernatants, thus often requiring the design of additional purification strategies in order to obtain products of high purity. Here, we outline the current major purification methods of bsAbs, highlighting the corresponding solutions that have been proposed to circumvent the unique challenges presented by this class of antibodies, including differential affinity chromatography, sequential affinity chromatography and the use of salt additives and pH gradients or multistep elutions in various modes of purification. Finally, a perspective towards future process development is offered.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| |
Collapse
|
15
|
Zhong X, D’Antona AM. Recent Advances in the Molecular Design and Applications of Multispecific Biotherapeutics. Antibodies (Basel) 2021; 10:13. [PMID: 33808165 PMCID: PMC8103270 DOI: 10.3390/antib10020013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/09/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein-based biotherapeutics drugs have transformed clinical pipelines of the biopharmaceutical industry since the launch of recombinant insulin nearly four decades ago. These biologic drugs are structurally more complex than small molecules, and yet share a similar principle for rational drug discovery and development: That is to start with a pre-defined target and follow with the functional modulation with a therapeutic agent. Despite these tremendous successes, this "one target one drug" paradigm has been challenged by complex disease mechanisms that involve multiple pathways and demand new therapeutic routes. A rapidly evolving wave of multispecific biotherapeutics is coming into focus. These new therapeutic drugs are able to engage two or more protein targets via distinct binding interfaces with or without the chemical conjugation to large or small molecules. They possess the potential to not only address disease intricacy but also exploit new therapeutic mechanisms and assess undruggable targets for conventional monospecific biologics. This review focuses on the recent advances in molecular design and applications of major classes of multispecific biotherapeutics drugs, which include immune cells engagers, antibody-drug conjugates, multispecific tetherbodies, biologic matchmakers, and small-scaffold multispecific modalities. Challenges posed by the multispecific biotherapeutics drugs and their future outlooks are also discussed.
Collapse
Affiliation(s)
- Xiaotian Zhong
- Department of BioMedicine Design, Medicinal Sciences, Pfizer Worldwide R&D, 610 Main Street, Cambridge, MA 02139, USA;
| | | |
Collapse
|
16
|
Stutz C, Blein S. A single mutation increases heavy-chain heterodimer assembly of bispecific antibodies by inducing structural disorder in one homodimer species. J Biol Chem 2020; 295:9392-9408. [PMID: 32404368 PMCID: PMC7363136 DOI: 10.1074/jbc.ra119.012335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
We previously reported efficient heavy-chain assembly of heterodimeric bispecific antibodies by exchanging the interdomain protein interface of the human IgG1 CH3 dimer with the protein interface of the constant α and β domains of the human T-cell receptor, a technology known as bispecific engagement by antibodies based on the T-cell receptor (BEAT). Efficient heterodimerization in mammalian cell transient transfections was observed, but levels were influenced by the nature of the binding arms, particularly in the Fab-scFv-Fc format. In this study, we report a single amino acid change that significantly and consistently improved the heterodimerization rate of this format (≥95%) by inducing partial disorder in one homodimer species without affecting the heterodimer. Correct folding and assembly of the heterodimer were confirmed by the high-resolution (1.88-1.98 Å) crystal structure presented here. Thermal stability and 1-anilinonaphthalene-8-sulfonic acid-binding experiments, comparing original BEAT, mutated BEAT, and "knobs-into-holes" interfaces, suggested a cooperative assembly process of heavy chains in heterodimers. The observed gain in stability of the interfaces could be classified in the following rank order: mutated BEAT > original BEAT > knobs-into-holes. We therefore propose that the superior cooperativity found in BEAT interfaces is the key driver of their greater performance. Furthermore, we show how the mutated BEAT interface can be exploited for the routine preparation of drug candidates, with minimal risk of homodimer contamination using a single Protein A chromatography step.
Collapse
Affiliation(s)
- Cian Stutz
- Department of Antibody Engineering, Ichnos Sciences S.A., Biopôle Lausanne-Epalinges, Epalinges, Switzerland
| | - Stanislas Blein
- Department of Antibody Engineering, Ichnos Sciences S.A., Biopôle Lausanne-Epalinges, Epalinges, Switzerland
| |
Collapse
|