1
|
Britto Martins de Oliveira J, Corrêa Junior D, Parente CET, Frases S. Fungi in Mangrove: Ecological Importance, Climate Change Impacts, and the Role in Environmental Remediation. Microorganisms 2025; 13:878. [PMID: 40284714 PMCID: PMC12029314 DOI: 10.3390/microorganisms13040878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 03/26/2025] [Accepted: 04/05/2025] [Indexed: 04/29/2025] Open
Abstract
Mangroves are coastal ecosystems of great ecological importance, located in transition areas between marine and terrestrial environments, predominantly found in tropical and subtropical regions. In Brazil, these biomes are present along the entire coastline, playing essential environmental roles such as sediment stabilization, coastal erosion control, and the filtration of nutrients and pollutants. The unique structure of the roots of some mangrove tree species facilitates sediment deposition and organic matter retention, creating favorable conditions for the development of rich and specialized biodiversity, including fungi, bacteria, and other life forms. Furthermore, mangroves serve as important nurseries for many species of fish, crustaceans, and birds, being fundamental to maintaining trophic networks and the local economy, which relies on fishing resources. However, these ecosystems have been significantly impacted by anthropogenic pressures and global climate change. In recent years, the increase in average global temperatures, rising sea levels, changes in precipitation patterns, and ocean acidification have contributed to the degradation of mangroves. Additionally, human activities such as domestic sewage discharge, pollution from organic and inorganic compounds, and alterations in hydrological regimes have accelerated this degradation process. These factors directly affect the biodiversity present in mangrove sediments, including the fungal community, which plays a crucial role in the decomposition of organic matter and nutrient cycling. Fungi, which include various taxonomic groups such as Ascomycota, Basidiomycota, and Zygomycota, are sensitive to changes in environmental conditions, making the study of their diversity and distribution relevant for understanding the impacts of climate change and pollution. In particular, fungal bioremediation has gained significant attention as an effective strategy for mitigating pollution in these sensitive ecosystems. Fungi possess unique abilities to degrade or detoxify environmental pollutants, including heavy metals and organic contaminants, through processes such as biosorption, bioaccumulation, and enzymatic degradation. This bioremediation potential can help restore the ecological balance of mangrove ecosystems and protect their biodiversity from the adverse effects of pollution. Recent studies suggest that changes in temperature, salinity, and the chemical composition of sediments can drastically modify microbial and fungal communities in these environments, influencing the resilience of the ecosystem. The objective of this narrative synthesis is to point out the diversity of fungi present in mangrove sediments, emphasizing how the impacts of climate change and anthropogenic pollution influence the composition and functionality of these communities. By exploring these interactions, including the role of fungal bioremediation in ecosystem restoration, it is expected that this study would provide a solid scientific basis for the conservation of mangroves and the development of strategies to mitigate the environmental impacts on these valuable ecosystems.
Collapse
Affiliation(s)
- Juliana Britto Martins de Oliveira
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.M.d.O.); (D.C.J.)
| | - Dario Corrêa Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.M.d.O.); (D.C.J.)
| | - Cláudio Ernesto Taveira Parente
- Laboratório de Estudos Ambientais Olaf Malm, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.B.M.d.O.); (D.C.J.)
- Rede Micologia RJ, FAPERJ, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
2
|
Zhang Y, Anthony MA, Yuan Q, Wang Y, Zhao P, Chen E, Peng S. Capacity to form common mycorrhizal networks reduces the positive impact of clonal integration between plants. PHYSIOLOGIA PLANTARUM 2025; 177:e70149. [PMID: 40084491 DOI: 10.1111/ppl.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Both clonal plant capabilities for physiological integration and common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) can influence the distribution of nutrients and growth among interconnected individuals. Using a microcosm model system, we aimed to disentangle how CMNs interact with clonal integration to influence plant growth and development. We grew Sphagneticola trilobata clones with isolated root systems in individual, adjacent containers while preventing, disrupting, or allowing clonal integration aboveground via spacers and belowground CMNs to form. We assessed multiple metrics of plant development (e.g., growth, specific leaf area, soluble sugar content), 15N transfer from donor (mother) to receiver (daughter) plants, and variation in AMF communities. We show that spacer formation between ramets and the capacity to form CMNs promoted and inhibited the growth of smaller daughter plants, respectively. In contrast to the independent effects of CMNs and spacers, CMNs, in combination with spacers, significantly weakened the promotion of daughter plants by clonal integration. AMF species richness was also negatively correlated with overall plant growth. Our results demonstrate that two common modes of plant interconnection interact in non-additive ways to affect clonal plant integration and growth. These findings, based on Sphagneticola trilobata, question the underlying assumptions of the positive effects of both AMF CMNs and species richness in comparison to direct plant interconnections.
Collapse
Affiliation(s)
- Yuanhao Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Mark A Anthony
- Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Qianfeng Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yi Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Zhao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Enjian Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shaolin Peng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
3
|
Duo L, Su H, Li J, Wang Q, Zhao S. Impact of graphene oxide disturbance on the structure and function of arbuscular mycorrhizal networks. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117412. [PMID: 39603222 DOI: 10.1016/j.ecoenv.2024.117412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/01/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024]
Abstract
With the widespread application of graphene oxide (GO), its potential toxicity has received increasing attention. The extraradical mycelium of arbuscular mycorrhizal fungi (AMF) can extend from the roots of one plant to those of another, forming complex common mycorrhizal networks (CMNs) for the transfer of nutrients and infochemicals. However, the impact of GO on the structure and transfer function of CMNs remains unknown. In this study, controlled compartments with designated donors and receptors were established to form CMNs after inoculation of Festuca arundinacea plants with Rhizophagus irregularis. GO was found to inhibit host plant growth and decrease AMF colonization, nitrogen and phosphorus uptake, and signal transmission capability in the recipient plants. Specifically, exposure to 5 % GO resulted in decreases of 27.5 % and 35.0 % in shoot and root weights, respectively, and a 38.1 % reduction in AMF colonization. The shoot nitrogen and phosphorus contents were reduced by 41.0 % and 32.3 %, respectively, and the root nitrogen and phosphorus contents were reduced by 12.4 % and 38.6 %, respectively, in response to 5 % GO. Additionally, the upregulation of key genes, such as aquaporin (Rir-AQP2), nitrogen transporter (GiNT), urease (GiURE), and phosphorus transporter (GintPT) in Rhizophagus irregularis was observed in the roots of the recipient plants under the GO treatments, with maximum increases of 192.7 %, 182.6 %, 162.1 %, and 125.8 %, respectively. The differential expressed genes (DEGs) were notably enriched in processes such as the spliceosome and endocytosis, the pentose phosphate pathway, glycolysis and secondary metabolism, and amino acid metabolism. These findings strongly indicate that GO has a significant effect on the structure and functionality of CMNs.
Collapse
Affiliation(s)
- Lian Duo
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Hang Su
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Jiayi Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Qi Wang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China
| | - Shulan Zhao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
4
|
Delaeter M, Magnin-Robert M, Randoux B, Lounès-Hadj Sahraoui A. Arbuscular Mycorrhizal Fungi as Biostimulant and Biocontrol Agents: A Review. Microorganisms 2024; 12:1281. [PMID: 39065050 PMCID: PMC11278648 DOI: 10.3390/microorganisms12071281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are soil microorganisms living in symbiosis with most terrestrial plants. They are known to improve plant tolerance to numerous abiotic and biotic stresses through the systemic induction of resistance mechanisms. With the aim of developing more sustainable agriculture, reducing the use of chemical inputs is becoming a major concern. After providing an overview on AMF history, phylogeny, development cycle and symbiosis benefits, the current review aims to explore the potential of AMF as biostimulants and/or biocontrol agents. Nowadays, AMF inoculums are already increasingly used as biostimulants, improving mineral nutrient plant acquisition. However, their role as a promising tool in the biocontrol market, as an alternative to chemical phytosanitary products, is underexplored and underdiscussed. Thus, in the current review, we will address the mechanisms of mycorrhized plant resistance to biotic stresses induced by AMF, and highlight the various factors in favor of inoculum application, but also the challenges that remain to be overcome.
Collapse
Affiliation(s)
| | | | | | - Anissa Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, 50 Rue Ferdinand Buisson, 62228 Calais, France
| |
Collapse
|
5
|
Ullah A, Gao D, Wu F. Common mycorrhizal network: the predominant socialist and capitalist responses of possible plant-plant and plant-microbe interactions for sustainable agriculture. Front Microbiol 2024; 15:1183024. [PMID: 38628862 PMCID: PMC11020090 DOI: 10.3389/fmicb.2024.1183024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024] Open
Abstract
Plants engage in a variety of interactions, including sharing nutrients through common mycorrhizal networks (CMNs), which are facilitated by arbuscular mycorrhizal fungi (AMF). These networks can promote the establishment, growth, and distribution of limited nutrients that are important for plant growth, which in turn benefits the entire network of plants. Interactions between plants and microbes in the rhizosphere are complex and can either be socialist or capitalist in nature, and the knowledge of these interactions is equally important for the progress of sustainable agricultural practice. In the socialist network, resources are distributed more evenly, providing benefits for all connected plants, such as symbiosis. For example, direct or indirect transfer of nutrients to plants, direct stimulation of growth through phytohormones, antagonism toward pathogenic microorganisms, and mitigation of stresses. For the capitalist network, AMF would be privately controlled for the profit of certain groups of plants, hence increasing competition between connected plants. Such plant interactions invading by microbes act as saprophytic and cause necrotrophy in the colonizing plants. In the first case, an excess of the nutritional resources may be donated to the receiver plants by direct transfer. In the second case, an unequal distribution of resources occurs, which certainly favor individual groups and increases competition between interactions. This largely depends on which of these responses is predominant ("socialist" or "capitalist") at the moment plants are connected. Therefore, some plant species might benefit from CMNs more than others, depending on the fungal species and plant species involved in the association. Nevertheless, benefits and disadvantages from the interactions between the connected plants are hard to distinguish in nature once most of the plants are colonized simultaneously by multiple fungal species, each with its own cost-benefits. Classifying plant-microbe interactions based on their habitat specificity, such as their presence on leaf surfaces (phyllospheric), within plant tissues (endophytic), on root surfaces (rhizospheric), or as surface-dwelling organisms (epiphytic), helps to highlight the dense and intricate connections between plants and microbes that occur both above and below ground. In these complex relationships, microbes often engage in mutualistic interactions where both parties derive mutual benefits, exemplifying the socialistic or capitalistic nature of these interactions. This review discusses the ubiquity, functioning, and management interventions of different types of plant-plant and plant-microbe interactions in CMNs, and how they promote plant growth and address environmental challenges for sustainable agriculture.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | - Danmei Gao
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
6
|
Behnke-Borowczyk J, Korzeniewicz R, Łukowski A, Baranowska M, Jagiełło R, Bułaj B, Hauke-Kowalska M, Szmyt J, Behnke JM, Robakowski P, Kowalkowski W. Variability of Functional Groups of Rhizosphere Fungi of Norway Spruce ( Picea abies (L.) H.Karst.) in the Boreal Range: The Wigry National Park, Poland. Int J Mol Sci 2023; 24:12628. [PMID: 37628809 PMCID: PMC10454689 DOI: 10.3390/ijms241612628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Rhizosphere microbial communities can influence plant growth and development. Natural regeneration processes take place in the tree stands of protected areas, which makes it possible to observe the natural changes taking place in the rhizosphere along with the development of the plants. This study aimed to determine the diversity (taxonomic and functional) of the rhizosphere fungal communities of Norway spruce growing in one of four developmental stages. Our research was based on the ITS region using Illumina system sequencing. Saprotrophs dominated in the studied rhizospheres, but their percentage share decreased with the age of the development group (for 51.91 from 43.13%). However, in the case of mycorrhizal fungi, an opposite trend was observed (16.96-26.75%). The most numerous genera were: saprotrophic Aspergillus (2.54-3.83%), Penicillium (6.47-12.86%), Pyrenochaeta (1.39-11.78%), pathogenic Curvularia (0.53-4.39%), and mycorrhizal Cortinarius (1.80-5.46%), Pseudotomentella (2.94-5.64%) and Tomentella (4.54-15.94%). The species composition of rhizosphere fungal communities was favorable for the regeneration of natural spruce and the development of multi-generational Norway spruce stands. The ratio of the abundance of saprotrophic and mycorrhizal fungi to the abundance of pathogens was high and promising for the durability of the large proportion of spruce in the Wigry National Park and for forest ecosystems in general.
Collapse
Affiliation(s)
- Jolanta Behnke-Borowczyk
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Robert Korzeniewicz
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Adrian Łukowski
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Marlena Baranowska
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Radosław Jagiełło
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Bartosz Bułaj
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Maria Hauke-Kowalska
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Janusz Szmyt
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Jerzy M. Behnke
- School of Life Sciences, University Park Nottingham, Nottingham NG7 2RD, UK;
| | - Piotr Robakowski
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| | - Wojciech Kowalkowski
- Faculty of Forestry and Wood Technology, Poznan University of Life Sciences, Wojska Polskiego 71C, 60-625 Poznań, Poland; (R.K.); (A.Ł.); (M.B.); (R.J.); (B.B.); (M.H.-K.); (J.S.); (P.R.); (W.K.)
| |
Collapse
|
7
|
Rodriguez-Morelos VH, Calonne-Salmon M, Declerck S. Anastomosis within and between networks of Rhizophagus irregularis is differentially influenced by fungicides. MYCORRHIZA 2023; 33:15-21. [PMID: 36680651 PMCID: PMC9938072 DOI: 10.1007/s00572-023-01103-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi play key roles in soil fertility of agroecosystems. They develop dense extraradical mycelial (ERM) networks via mechanisms such as hyphal anastomosis. These connections between hyphae can be affected by agricultural practices such as the use of fungicides, but how these compounds affect anastomosis formation within and more importantly between networks of the same AM fungal strain remains poorly unexplored. Here, the impact of azoxystrobin, pencycuron, flutolanil, and fenpropimorph at 0.02 and 2 mg L-1 were tested in vitro on the anastomosis formation within and between networks of Rhizophagus irregularis MUCL 41833. Azoxystrobin and fenpropimorph had a particularly detrimental impact, at the highest concentration (2 mg L-1), on the number of anastomoses within and between networks, and for fenpropimorph in particular at both concentrations (0.02 and 2 mg L-1) on the number of anastomoses per length of hyphae. Curiously fenpropimorph at 0.02 mg L-1 significantly stimulated spore production, while with azoxystrobin, the reverse was observed at 2 mg L-1. The two other fungicides, pencycuron and flutolanil, had no detrimental effects on spore production or anastomosis formation within and between networks. These results suggest that fungicides with different modes of action and concentrations differentially affect anastomosis possibly by altering the hyphal tips of AM fungi and may thus affect the capacity of AM fungi to develop large hyphal networks exploring and exploiting the soil at the service of plants.
Collapse
Affiliation(s)
- Victor Hugo Rodriguez-Morelos
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium
| | - Maryline Calonne-Salmon
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium
| | - Stéphane Declerck
- Université Catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, Box L7.05.06, 1348 Louvain-La-Neuve, Belgium.
| |
Collapse
|
8
|
Faghihinia M, Jansa J. Mycorrhiza governs plant-plant interactions through preferential allocation of shared nutritional resources: A triple ( 13C, 15N and 33P) labeling study. FRONTIERS IN PLANT SCIENCE 2022; 13:1047270. [PMID: 36589136 PMCID: PMC9799978 DOI: 10.3389/fpls.2022.1047270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/17/2022] [Indexed: 05/13/2023]
Abstract
Plant-plant interactions and coexistence can be directly mediated by symbiotic arbuscular mycorrhizal (AM) fungi through asymmetric resource exchange between the plant and fungal partners. However, little is known about the effects of AM fungal presence on resource allocation in mixed plant stands. Here, we examined how phosphorus (P), nitrogen (N) and carbon (C) resources were distributed between coexisting con- and heterospecific plant individuals in the presence or absence of AM fungus, using radio- and stable isotopes. Congeneric plant species, Panicum bisulcatum and P. maximum, inoculated or not with Rhizophagus irregularis, were grown in two different culture systems, mono- and mixed-species stands. Pots were subjected to different shading regimes to manipulate C sink-source strengths. In monocultures, P. maximum gained more mycorrhizal phosphorus uptake benefits than P.bisulcatum. However, in the mixed culture, the AM fungus appeared to preferentially transfer nutrients (33P and 15N) to P.bisulcatum compared to P. maximum. Further, we observed higher 13C allocation to mycorrhiza by P.bisulcatum in mixed- compared to the mono-systems, which likely contributed to improved competitiveness in the mixed cultures of P.bisulcatum vs. P. maximum regardless of the shading regime. Our results suggest that the presence of mycorrhiza influenced competitiveness of the two Panicum species in mixed stands in favor of those with high quality partner, P. bisulcatum, which provided more C to the mycorrhizal networks. However, in mono-species systems where the AM fungus had no partner choice, even the lower quality partner (i.e., P.maximum) could also have benefitted from the symbiosis. Future research should separate the various contributors (roots vs. common mycorrhizal network) and mechanisms of resource exchange in such a multifaceted interaction.
Collapse
Affiliation(s)
- Maede Faghihinia
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Praha, Czechia
| |
Collapse
|
9
|
He C, Lin Y, Zhang Y, Tong L, Ding Y, Yao M, Liu Q, Zeng R, Chen D, Song Y. Aboveground herbivory does not affect mycorrhiza-dependent nitrogen acquisition from soil but inhibits mycorrhizal network-mediated nitrogen interplant transfer in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1080416. [PMID: 36589048 PMCID: PMC9795027 DOI: 10.3389/fpls.2022.1080416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are considered biofertilizers for sustainable agriculture due to their ability to facilitate plant uptake of important mineral elements, such as nitrogen (N). However, plant mycorrhiza-dependent N uptake and interplant transfer may be highly context-dependent, and whether it is affected by aboveground herbivory remains largely unknown. Here, we used 15N labeling and tracking to examine the effect of aboveground insect herbivory by Spodoptera frugiperda on mycorrhiza-dependent N uptake in maize (Zea mays L.). To minimize consumption differences and 15N loss due to insect chewing, insect herbivory was simulated by mechanical wounding and oral secretion of S. frugiperda larvae. Inoculation with Rhizophagus irregularis (Rir) significantly improved maize growth, and N/P uptake. The 15N labeling experiment showed that maize plants absorbed N from soils via the extraradical mycelium of mycorrhizal fungi and from neighboring plants transferred by common mycorrhizal networks (CMNs). Simulated aboveground leaf herbivory did not affect mycorrhiza-mediated N acquisition from soil. However, CMN-mediated N transfer from neighboring plants was blocked by leaf simulated herbivory. Our findings suggest that aboveground herbivory inhibits CMN-mediated N transfer between plants but does not affect N acquisition from soil solutions via extraradical mycorrhizal mycelium.
Collapse
Affiliation(s)
- Chenling He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yibin Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifang Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Tong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanxing Ding
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Min Yao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Chemical Ecology and Crop Resistance, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongmei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Chemical Ecology and Crop Resistance, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Song
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Chemical Ecology and Crop Resistance, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
10
|
|
11
|
Bell CA, Magkourilou E, Urwin PE, Field KJ. Disruption of carbon for nutrient exchange between potato and arbuscular mycorrhizal fungi enhanced cyst nematode fitness and host pest tolerance. THE NEW PHYTOLOGIST 2022; 234:269-279. [PMID: 35020195 PMCID: PMC9304131 DOI: 10.1111/nph.17958] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Plants simultaneously interact with a range of biotrophic symbionts, ranging from mutualists such as arbuscular mycorrhizal fungi (AMF), to parasites such as the potato cyst nematode (PCN). The exchange of mycorrhizal-acquired nutrients for plant-fixed carbon (C) is well studied; however, the impact of competing symbionts remains underexplored. In this study, we examined mycorrhizal nutrient and host resource allocation in potato with and without AMF and PCN using radioisotope tracing, whilst determining the consequences of such allocation. The presence of PCN disrupted C for nutrient exchange between plants and AMF, with plant C overwhelmingly obtained by the nematodes. Despite this, AMF maintained transfer of nutrients on PCN-infected potato, ultimately losing out in their C for nutrient exchange with the host. Whilst PCN exploited the greater nutrient reserves to drive population growth on AMF-potato, the fungus imparted tolerance to allow the host to bear the parasitic burden. Our findings provide important insights into the belowground dynamics of plant-AMF symbioses, where simultaneous nutritional and nonnutritional benefits conferred by AMF to hosts and their parasites are seldom considered in plant community dynamics. Our findings suggest this may be a critical oversight, particularly in the consideration of C and nutrient flows in plant and soil communities.
Collapse
Affiliation(s)
- Christopher A. Bell
- Faculty of Biological SciencesSchool of BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Emily Magkourilou
- Faculty of Biological SciencesSchool of BiologyUniversity of LeedsLeedsLS2 9JTUK
- Plants, Photosynthesis and SoilSchool of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - P. E. Urwin
- Faculty of Biological SciencesSchool of BiologyUniversity of LeedsLeedsLS2 9JTUK
| | - Katie J. Field
- Plants, Photosynthesis and SoilSchool of BiosciencesUniversity of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
12
|
Dallstream C, Weemstra M, Soper FM. A framework for fine‐root trait syndromes: syndrome coexistence may support phosphorus partitioning in tropical forests. OIKOS 2022. [DOI: 10.1111/oik.08908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Monique Weemstra
- Ecology and Evolutionary Biology, Univ. of Michigan Ann Arbor MI USA
| | | |
Collapse
|
13
|
Fortin Faubert M, Labrecque M, Hijri M. Ectomycorrhizal Fungi Dominated the Root and Rhizosphere Microbial Communities of Two Willow Cultivars Grown for Six-Years in a Mixed-Contaminated Environment. J Fungi (Basel) 2022; 8:jof8020145. [PMID: 35205899 PMCID: PMC8880157 DOI: 10.3390/jof8020145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
There is a growing interest in plant microbiome’s engineering to optimize desired functions such as improved phytoremediation. This study is aimed at examining the microbial communities inhabiting the roots and rhizospheres of two Salix miyabeana cultivars that had been grown in a short-rotation intensive culture (SRIC) system for six years in a soil contaminated with the discharge from a petrochemical factory. DNA was extracted from roots and rhizospheric soils, and fungal ITS and bacterial and archaeal 16S rDNA regions were amplified and sequenced using Illumina MiSeq technology. Cultivars ‘SX61’ and ‘SX64’ were found to harbor a similar diversity of fungal, bacterial, and archaeal amplicon sequence variants (ASVs). As expected, a greater microbial diversity was found in the rhizosphere biotope than in the roots of both cultivars, except for cultivar ‘SX64’, where a similar fungal diversity was observed in both biotopes. However, we found that microbial community structures were cultivar- and biotope-specific. Although the implication of some identified taxa for plant adaptability and biomass production capacity remains to be explored, this study provides valuable and useful information regarding microbes that could potentially favor the implantation and phytoremediation efficiency of Salix miyabeana in mixed contamination sites in similar climatic environments.
Collapse
Affiliation(s)
- Maxime Fortin Faubert
- Institut de Recherche en Biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada; (M.F.F.); (M.L.)
| | - Michel Labrecque
- Institut de Recherche en Biologie végétale, Département de Sciences Biologiques, Université de Montréal and Jardin Botanique de Montréal, 4101 Sherbrooke East, Montreal, QC H1X 2B2, Canada; (M.F.F.); (M.L.)
| | - Mohamed Hijri
- African Genome Center, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
- Correspondence:
| |
Collapse
|
14
|
Liao HL, Bonito G, Hameed K, Wu SH, Chen KH, Labbé J, Schadt CW, Tuskan GA, Martin F, Kuo A, Barry K, Grigoriev IV, Vilgalys R. Heterospecific Neighbor Plants Impact Root Microbiome Diversity and Molecular Function of Root Fungi. Front Microbiol 2021; 12:680267. [PMID: 34803937 PMCID: PMC8601753 DOI: 10.3389/fmicb.2021.680267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
Within the forest community, competition and facilitation between adjacent-growing conspecific and heterospecific plants are mediated by interactions involving common mycorrhizal networks. The ability of plants to alter their neighbor's microbiome is well documented, but the molecular biology of plant-fungal interactions during competition and facilitation has not been previously examined. We used a common soil-plant bioassay experiment to study molecular plant-microbial interactions among rhizosphere communities associated with Pinus taeda (native host) and Populus trichocarpa (non-native host). Gene expression of interacting fungal and bacterial rhizosphere communities was compared among three plant-pairs: Populus growing with Populus, Populus with Pinus, and Pinus with Pinus. Our results demonstrate that heterospecific plant partners affect the assembly of root microbiomes, including the changes in the structure of host specific community. Comparative metatranscriptomics reveals that several species of ectomycorrhizal fungi (EMF) and saprotrophic fungi exhibit different patterns of functional and regulatory gene expression with these two plant hosts. Heterospecific plants affect the transcriptional expression pattern of EMF host-specialists (e.g., Pinus-associated Suillus spp.) on both plant species, mainly including the genes involved in the transportation of amino acids, carbohydrates, and inorganic ions. Alteration of root microbiome by neighboring plants may help regulate basic plant physiological processes via modulation of molecular functions in the root microbiome.
Collapse
Affiliation(s)
- Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Department of Biology, Duke University, Durham, NC, United States
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Khalid Hameed
- Department of Biology, Duke University, Durham, NC, United States
| | - Steven H. Wu
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ko-Hsuan Chen
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jesse Labbé
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Invaio Sciences, Cambridge, MA, United States
| | | | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Francis Martin
- University of Lorraine, INRAE, UMR Interactions Arbres/Microorganismes, Champenoux, France
| | - Alan Kuo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Rytas Vilgalys
- Department of Biology, Duke University, Durham, NC, United States
| |
Collapse
|
15
|
Figueiredo AF, Boy J, Guggenberger G. Common Mycorrhizae Network: A Review of the Theories and Mechanisms Behind Underground Interactions. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:735299. [PMID: 37744156 PMCID: PMC10512311 DOI: 10.3389/ffunb.2021.735299] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/23/2021] [Indexed: 09/26/2023]
Abstract
Most terrestrial plants establish symbiotic associations with mycorrhizal fungi for accessing essential plant nutrients. Mycorrhizal fungi have been frequently reported to interconnect plants via a common mycelial network (CMN), in which nutrients and signaling compounds can be exchanged between the connected plants. Several studies have been performed to demonstrate the potential effects of the CMN mediating resource transfer and its importance for plant fitness. Due to several contrasting results, different theories have been developed to predict benefits or disadvantages for host plants involved in the network and how it might affect plant communities. However, the importance of the mycelium connections for resources translocation compared to other indirect pathways, such as leakage of fungi hyphae and subsequent uptake by neighboring plant roots, is hard to distinguish and quantify. If resources can be translocated via mycelial connections in significant amounts that could affect plant fitness, it would represent an important tactic for plants co-existence and it could shape community composition and dynamics. Here, we report and critically discuss the most recent findings on studies aiming to evaluate and quantify resources translocation between plants sharing a CMN and predict the pattern that drives the movement of such resources into the CMN. We aim to point gaps and define open questions to guide upcoming studies in the area for a prospect better understanding of possible plant-to-plant interactions via CMN and its effect in shaping plants communities. We also propose new experiment set-ups and technologies that could be used to improve previous experiments. For example, the use of mutant lines plants with manipulation of genes involved in the symbiotic associations, coupled with labeling techniques to track resources translocation between connected plants, could provide a more accurate idea about resource allocation and plant physiological responses that are truly accountable to CMN.
Collapse
|
16
|
Santoyo G, Gamalero E, Glick BR. Mycorrhizal-Bacterial Amelioration of Plant Abiotic and Biotic Stress. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.672881] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Soil microbiota plays an important role in the sustainable production of the different types of agrosystems. Among the members of the plant microbiota, mycorrhizal fungi (MF) and plant growth-promoting bacteria (PGPB) interact in rhizospheric environments leading to additive and/or synergistic effects on plant growth and heath. In this manuscript, the main mechanisms used by MF and PGPB to facilitate plant growth are reviewed, including the improvement of nutrient uptake, and the reduction of ethylene levels or biocontrol of potential pathogens, under both normal and stressful conditions due to abiotic or biotic factors. Finally, it is necessary to expand both research and field use of bioinoculants based on these components and take advantage of their beneficial interactions with plants to alleviate plant stress and improve plant growth and production to satisfy the demand for food for an ever-increasing human population.
Collapse
|
17
|
Cardini A, Pellegrino E, Declerck S, Calonne-Salmon M, Mazzolai B, Ercoli L. Direct transfer of zinc between plants is channelled by common mycorrhizal network of arbuscular mycorrhizal fungi and evidenced by changes in expression of zinc transporter genes in fungus and plant. Environ Microbiol 2021; 23:5883-5900. [PMID: 33913577 PMCID: PMC8597171 DOI: 10.1111/1462-2920.15542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/20/2021] [Accepted: 04/24/2021] [Indexed: 11/28/2022]
Abstract
The role that common mycorrhizal networks (CMNs) play in plant-to-plant transfer of zinc (Zn) has not yet been investigated, despite the proved functions of arbuscular mycorrhizal fungi (AMF) in crop Zn acquisition. Here, two autotrophic Medicago truncatula plants were linked by a CMN formed by Rhizophagus irregularis. Plants were grown in vitro in physically separated compartments (Donor-C and Receiver-C) and their connection ensured only by CMN. A symbiosis-defective mutant of M. truncatula was used as control in Receiver-C. Plants in both compartments were grown on Zn-free medium, and only the leaves of the donor plants were Zn fertilized. A direct transfer of Zn was demonstrated from donor leaves to receiver shoots mediated by CMN. Direct transfer of Zn was supported by changes in the expression of fungal genes, RiZRT1 and RiZnT1, and plant gene MtZIP2 in roots and MtNAS1 in roots and shoots of the receiver plants. Moreover, Zn transfer was supported by the change in expression of MtZIP14 gene in AM fungal colonized roots. This work is the first evidence of a direct Zn transfer from a donor to a receiver plant via CMN, and of a triggering of transcriptional regulation of fungal-plant genes involved in Zn transport-related processes.
Collapse
Affiliation(s)
- Alessio Cardini
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Elisa Pellegrino
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Croix du Sud 2, Box L7.05.06, Louvain-la-Neuve, 1348, Belgium
| | - Maryline Calonne-Salmon
- Université catholique de Louvain, Earth and Life Institute, Applied Microbiology, Mycology, Croix du Sud 2, Box L7.05.06, Louvain-la-Neuve, 1348, Belgium
| | - Barbara Mazzolai
- Center for Micro-BioRobotics, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Laura Ercoli
- Institute of Life Sciences, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| |
Collapse
|
18
|
Chen X, Li Q, Wang L, Meng Y, Jiao S, Yin J, Xu H, Zhang F. Nitrogen Uptake, Not Transfer of Carbon and Nitrogen by CMN, Explains the Effect of AMF on the Competitive Interactions Between Flaveria bidentis and Native Species. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.625519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rhizophagus intraradices, one of the common arbuscular mycorrhizal fungi (AMF) grown in the roots of Flaveria bidentis, facilitates the invasion of this exotic plant species into China. However, it is still unknown whether nutrient transfer through the common mycorrhizal networks (CMN) between this exotic species and the native species enhances the competitive growth of F. bidentis over the native species. To elucidate this question and the related mechanism, an isotopic labeling technique was used to test the transfer of carbon (C) and nitrogen (N) by CMN. Native species like Setaria viridis and Eclipta prostrata were selected to compete with F. bidentis in a polyvinyl chloride (PVC) box. Two competitive groups (F. bidentis-S. viridis and F. bidentis- E. prostrata), three treatments (monoculture of F. bidentis, the mixture of F. bidentis and the native plant, and the monoculture of the native plant), and two levels of AMF (presence or absence) were assigned. Results showed that the corrected index of relative competition intensity (CRCI) of F. bidentis in the presence of AMF < 0 suggests that the competition facilitated the growth of F. bidentis with either S. viridis or E. prostrata. The reason was that the inoculation of R. intra radices significantly increased the C and N contents of F. bidentis in the mixtures. However, the effects of R. intra radices on the two native species were different: negative effect on the growth of S. viridis and positive effect on the growth of E. prostrata. The change of N content in S. viridis or E. prostrata was consistent with the variation of the biomass, suggesting that the N uptake explains the effects of R. intraradices on the competitive interactions between F. bidentis and the two native species. Moreover, the transfer of C and N via AMF hyphal links did occur between F. bidentis and the native species. However, the transfer of C and N by the CMN was not positively related to the competitive growth of F. bidentis.
Collapse
|
19
|
Van't Padje A, Oyarte Galvez L, Klein M, Hink MA, Postma M, Shimizu T, Kiers ET. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. THE ISME JOURNAL 2021; 15:435-449. [PMID: 32989245 PMCID: PMC8027207 DOI: 10.1038/s41396-020-00786-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/04/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022]
Abstract
Arbuscular mycorrhizal fungi function as conduits for underground nutrient transport. While the fungal partner is dependent on the plant host for its carbon (C) needs, the amount of nutrients that the fungus allocates to hosts can vary with context. Because fungal allocation patterns to hosts can change over time, they have historically been difficult to quantify accurately. We developed a technique to tag rock phosphorus (P) apatite with fluorescent quantum-dot (QD) nanoparticles of three different colors, allowing us to study nutrient transfer in an in vitro fungal network formed between two host roots of different ages and different P demands over a 3-week period. Using confocal microscopy and raster image correlation spectroscopy, we could distinguish between P transfer from the hyphae to the roots and P retention in the hyphae. By tracking QD-apatite from its point of origin, we found that the P demands of the younger root influenced both: (1) how the fungus distributed nutrients among different root hosts and (2) the storage patterns in the fungus itself. Our work highlights that fungal trade strategies are highly dynamic over time to local conditions, and stresses the need for precise measurements of symbiotic nutrient transfer across both space and time.
Collapse
Affiliation(s)
- Anouk Van't Padje
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Loreto Oyarte Galvez
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - Malin Klein
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Mark A Hink
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Faculty of Science, University of Amsterdam, Science park 904, 1090 GE, Amsterdam, The Netherlands
| | - Thomas Shimizu
- AMOLF Institute, Science Park 104, 1098 XG, Amsterdam, The Netherlands
| | - E Toby Kiers
- Department of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Soil nutrients differentially influence root colonisation patterns of AMF and DSE in Australian plant species. Symbiosis 2021. [DOI: 10.1007/s13199-021-00748-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Proteome adaptations under contrasting soil phosphate regimes of Rhizophagus irregularis engaged in a common mycorrhizal network. Fungal Genet Biol 2021; 147:103517. [PMID: 33434644 DOI: 10.1016/j.fgb.2021.103517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 11/20/2022]
Abstract
For many plants, their symbiosis with arbuscular mycorrhizal fungi plays a key role in the acquisition of mineral nutrients such as inorganic phosphate (Pi), in exchange for assimilated carbon. To study gene regulation and function in the symbiotic partners, we and others have used compartmented microcosms in which the extra-radical mycelium (ERM), responsible for mineral nutrient supply for the plants, was separated by fine nylon nets from the associated host roots and could be harvested and analysed in isolation. Here, we used such a model system to perform a quantitative comparative protein profiling of the ERM of Rhizophagus irregularis BEG75, forming a common mycorrhizal network (CMN) between poplar and sorghum roots under a long-term high- or low-Pi fertilization regime. Proteins were extracted from the ERM and analysed by liquid chromatography-tandem mass spectrometry. This workflow identified a total of 1301 proteins, among which 162 displayed a differential amount during Pi limitation, as monitored by spectral counting. Higher abundances were recorded for proteins involved in the mobilization of external Pi, such as secreted acid phosphatase, 3',5'-bisphosphate nucleotidase, and calcium-dependent phosphotriesterase. This was also the case for intracellular phospholipase and lysophospholipases that are involved in the initial degradation of phospholipids from membrane lipids to mobilize internal Pi. In Pi-deficient conditions. The CMN proteome was especially enriched in proteins assigned to beta-oxidation, glyoxylate shunt and gluconeogenesis, indicating that storage lipids rather than carbohydrates are fuelled in ERM as the carbon source to support hyphal growth and energy requirements. The contrasting pattern of expression of AM-specific fatty acid biosynthetic genes between the two plants suggests that in low Pi conditions, fatty acid provision to the fungal network is mediated by sorghum roots but not by poplar. Loss of enzymes involved in arginine synthesis coupled to the mobilization of proteins involved in the breakdown of nitrogen sources such as intercellular purines and amino acids, support the view that ammonium acquisition by host plants through the mycorrhizal pathway may be reduced under low-Pi conditions. This proteomic study highlights the functioning of a CMN in Pi limiting conditions, and provides new perspectives to study plant nutrient acquisition as mediated by arbuscular mycorrhizal fungi.
Collapse
|
22
|
Rotter P, Loreau M, de Mazancourt C. Why do forests respond differently to nitrogen deposition? A modelling approach. Ecol Modell 2020. [DOI: 10.1016/j.ecolmodel.2020.109034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
23
|
Alaux PL, Naveau F, Declerck S, Cranenbrouck S. Common Mycorrhizal Network Induced JA/ET Genes Expression in Healthy Potato Plants Connected to Potato Plants Infected by Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2020; 11:602. [PMID: 32523589 PMCID: PMC7261899 DOI: 10.3389/fpls.2020.00602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/20/2020] [Indexed: 05/20/2023]
Abstract
Most plants are connected belowground via common mycorrhizal networks (CMNs). In their presence, the transmission of warning signals from diseased to uninfected plants has been reported. However, current studies have all been conducted in pots making it difficult to discriminate direct from indirect contribution of hyphae to the transmission of the signals. Here, we conducted an in vitro study with potato plantlets connected by a CMN of the arbuscular mycorrhizal fungus Rhizophagus irregularis. The plantlets were grown in physically separated compartments and their connection ensured only by the CMN. The donor potato plantlets were infected by Phytophthora infestans and defense genes analyzed 24, 48 and 120 h post-infection (hpi) in the uninfected receiver potato plantlets. Twenty-four hpi by the pathogen, PAL, PR-1b, ERF3, and LOX genes were significantly upregulated, whereas no significant transcript variation was noticed 48 and 120 hpi. The exact nature of the warning signals remains unknown but was not associated to microorganisms other than the AMF or to diffusion mechanisms through the growth medium or induced by volatile compounds. The defense response appeared to be transitory and associated with the jasmonic acid or ethylene pathway. These findings demonstrate the direct involvement of hyphae in the transmission of warning signals from diseased to uninfected potato plantlets and their indubitable role in providing a route for activating defense responses in uninfected plants.
Collapse
Affiliation(s)
- Pierre-Louis Alaux
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Françoise Naveau
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Earth and Life Institute, Applied Microbiology, Mycology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Sylvie Cranenbrouck
- Earth and Life Institute, Applied Microbiology, Mycology, Mycothèque de l’Université catholique de Louvain, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
24
|
Muneer MA, Wang P, Zhang J, Li Y, Munir MZ, Ji B. Formation of Common Mycorrhizal Networks Significantly Affect Plant Biomass and Soil Properties of the Neighboring Plants under Various Nitrogen Levels. Microorganisms 2020; 8:E230. [PMID: 32046366 PMCID: PMC7074789 DOI: 10.3390/microorganisms8020230] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
Common mycorrhizal networks (CMNs) allow the transfer of nutrients between plants, influencing the growth of the neighboring plants and soil properties. Cleistogene squarrosa (C. squarrosa) is one of the most common grass species in the steppe ecosystem of Inner Mongolia, where nitrogen (N) is often a key limiting nutrient for plant growth, but little is known about whether CMNs exist between neighboring individuals of C. squarrosa or play any roles in the N acquisition of the C. squarrosa population. In this study, two C. squarrosa individuals, one as a donor plant and the other as a recipient plant, were planted in separate compartments in a partitioned root-box. Adjacent compartments were separated by 37 µm nylon mesh, in which mycorrhizal hyphae can go through but not roots. The donor plant was inoculated with arbuscular mycorrhizal (AM) fungi, and their hyphae potentially passed through nylon mesh to colonize the roots of the recipient plant, resulting in the establishment of CMNs. The formation of CMNs was verified by microscopic examination and 15N tracer techniques. Moreover, different levels of N fertilization (N0 = 0, N1 = 7.06, N2 = 14.15, N3 = 21.19 mg/kg) were applied to evaluate the CMNs' functioning under different soil nutrient conditions. Our results showed that when C. squarrosa-C. squarrosa was the association, the extraradical mycelium transferred the 15N in the range of 45-55% at different N levels. Moreover, AM fungal colonization of the recipient plant by the extraradical hyphae from the donor plant significantly increased the plant biomass and the chlorophyll content in the recipient plant. The extraradical hyphae released the highest content of glomalin-related soil protein into the rhizosphere upon N2 treatment, and a significant positive correlation was found between hyphal length and glomalin-related soil proteins (GRSPs). GRSPs and soil organic carbon (SOC) were significantly correlated with mean weight diameter (MWD) and helped in the aggregation of soil particles, resulting in improved soil structure. In short, the formation of CMNs in this root-box experiment supposes the existence of CMNs in the typical steppe plants, and CMNs-mediated N transfer and root colonization increased the plant growth and soil properties of the recipient plant.
Collapse
Affiliation(s)
- Muhammad Atif Muneer
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (M.A.M.); (P.W.); (Y.L.)
| | - Ping Wang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (M.A.M.); (P.W.); (Y.L.)
| | - Jing Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (M.A.M.); (P.W.); (Y.L.)
| | - Yaoming Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (M.A.M.); (P.W.); (Y.L.)
| | - Muhammad Zeeshan Munir
- School of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Baoming Ji
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China; (M.A.M.); (P.W.); (Y.L.)
| |
Collapse
|
25
|
Deja-Sikora E, Kowalczyk A, Trejgell A, Szmidt-Jaworska A, Baum C, Mercy L, Hrynkiewicz K. Arbuscular Mycorrhiza Changes the Impact of Potato Virus Y on Growth and Stress Tolerance of Solanum tuberosum L. in vitro. Front Microbiol 2020; 10:2971. [PMID: 32010078 PMCID: PMC6974554 DOI: 10.3389/fmicb.2019.02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/09/2019] [Indexed: 11/13/2022] Open
Abstract
Under the field conditions crop plants interact with diverse microorganisms. These include beneficial (symbiotic) and phytopathogenic microorganisms, which jointly affect growth and productivity of the plants. In last decades, production of potato (Solanum tuberosum L.) suffers from increased incidence of potato virus Y (PVY), which is one of most important potato pests. Arbuscular mycorrhizal fungi (AMF) are common symbionts of potato, however the impact of mycorrhizal symbiosis on the progression of PVY-induced disease is scarcely known. Therefore, in the present study we investigated the effect of joint PVY infection and mycorrhizal colonization by Rhizophagus irregularis on growth traits of the host potato plant (cv. Pirol). The tested PVY isolate belonged to N-Wilga strain group, which is considered to be predominant in Europe and many other parts of the world. The viral particles were concentrated in the leaves, but decreased the root growth. Furthermore, the infection with PVY evoked prolonged oxidative stress reflected by increased level of endogenous H2O2. AMF alleviated oxidative stress in PVY-infected host plants by a substantial decrease in the level of shoot- and root-derived H2O2, but still caused asymptomatic growth depression. It was assumed that mycorrhizal symbiosis of potato might mask infection by PVY in field observations.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Anita Kowalczyk
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Alina Trejgell
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Adriana Szmidt-Jaworska
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Christel Baum
- Chair of Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | | | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
26
|
Clark TJ, Friel CA, Grman E, Friesen ML, Shachar-Hill Y. Unfair trade underground revealed by integrating data with Nash bargaining models. THE NEW PHYTOLOGIST 2019; 222:1325-1337. [PMID: 30671951 DOI: 10.1111/nph.15703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Mutually beneficial resource exchange is fundamental to global biogeochemical cycles and plant and animal nutrition. However, there is inherent potential conflict in mutualisms, as each organism benefits more when the exchange ratio ('price') minimizes its own costs and maximizes its benefits. Understanding the bargaining power that each partner has in these interactions is key to our ability to predict the exchange ratio and therefore the functionality of the cell, organism, community and ecosystem. We tested whether partners have symmetrical ('fair') or asymmetrical ('unfair') bargaining power in a legume-rhizobia nitrogen-fixing symbiosis using measurements of carbon and nitrogen dynamics in a mathematical modeling framework derived from economic theory. A model of symmetric bargaining power was not consistent with our data. Instead, our data indicate that the growth benefit to the plant (Medicago truncatula) has greater weight in determining trade dynamics than the benefit to the bacteria. Quantitative estimates of the relative power of the plant revealed that the plant's influence rises as soil nitrogen availability decreases and trade benefits to both partners increase. Our finding that M. truncatula legumes have more bargaining power than their rhizobial partner at lower nitrogen availabilities highlights the importance of context-dependence for the evolution of mutualism with increasing nutrient deposition.
Collapse
Affiliation(s)
- Teresa J Clark
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| | - Colleen A Friel
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| | - Emily Grman
- Department of Biology, Eastern Michigan University, 441 Mark Jefferson Science Complex, Ypsilanti, MI, 48197, USA
| | - Maren L Friesen
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
- Department of Plant Pathology, Washington State University, Johnson Hall Rm 345, Pullman, WA, 99164, USA
- Department of Crop and Soil Sciences, Washington State University, Johnson Hall Rm 115, Pullman, WA, 99164, USA
| | - Yair Shachar-Hill
- Department of Plant Biology, Michigan State University, 612 Wilson Rd., East Lansing, MI, 48824, USA
| |
Collapse
|
27
|
Deja-Sikora E, Mercy L, Baum C, Hrynkiewicz K. The Contribution of Endomycorrhiza to the Performance of Potato Virus Y-Infected Solanaceous Plants: Disease Alleviation or Exacerbation? Front Microbiol 2019; 10:516. [PMID: 30984121 PMCID: PMC6449694 DOI: 10.3389/fmicb.2019.00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/28/2019] [Indexed: 11/13/2022] Open
Abstract
Solanaceae, comprising meaningful crops (as potato, tomato, pepper, eggplant, and tobacco), can benefit from a symbiosis with arbuscular mycorrhizal fungi (AMF), which improve plant fitness and support plant defense against pathogens. Currently, those crops are likely the most impacted by Potato virus Y (PVY). Unfortunately, the effects of AM symbiosis on the severity of disease induced by PVY in solanaceous crops remain uncertain, partly because the interplay between AMF and PVY is poorly characterized. To shed some light on this issue, available studies on interactions in tripartite association between the host plant, its fungal colonizer, and viral pathogen were analyzed and discussed. Although the best-documented PVY transmission pathway is aphid-dependent, PVY infections are also observed in the absence of insect vector. We hypothesize the existence of an additional pathway for virus transmission involving AMF, in which the common mycorrhizal network (CMN) may act as a potential bridge. Therefore, we reviewed (1) the significance of AM colonization for the course of disease, (2) the potential of AMF networks to act as vectors for PVY, and (3) the consequences for crop breeding and production of AM biofertilizers.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| | | | - Christel Baum
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Rostock, Germany
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
28
|
Řezáčová V, Zemková L, Beskid O, Püschel D, Konvalinková T, Hujslová M, Slavíková R, Jansa J. Little Cross-Feeding of the Mycorrhizal Networks Shared Between C 3- Panicum bisulcatum and C 4- Panicum maximum Under Different Temperature Regimes. FRONTIERS IN PLANT SCIENCE 2018; 9:449. [PMID: 29681914 PMCID: PMC5897505 DOI: 10.3389/fpls.2018.00449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/22/2018] [Indexed: 05/26/2023]
Abstract
Common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C) from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping) experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp.) with different photosynthetic metabolism types (C3 or C4). The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible) zone added with 15N-labeled plant (clover) residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night) or ambient temperature (25/21°C day/night) applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera) to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5) in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp.) in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as compared to ambient temperature. Although the development of CMN (particularly of the dominant Rhizophagus and Funneliformis spp.) was somewhat reduced under high temperature, plant P uptake benefits due to AMF inoculation remained well visible under both temperature regimes, though without imminent impact on plant biomass production that actually decreased due to inoculation with AMF.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jan Jansa
- Laboratory of Fungal Biology, Ecology, Institute of Microbiology, Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
29
|
|