1
|
An J, Chen Y, Zhou S, Gao Y, Yang C, Zhang J, Ou X, Wang Y, Jiang W, Zhou T, Yuan QS. Identification and characterization of Morganella morganii strain YC12-C3 and Enterococcus faecalis strain YC12-C10 and elucidation of its deoxynivalenol-degrading potential. Mycotoxin Res 2025; 41:113-126. [PMID: 39446283 DOI: 10.1007/s12550-024-00568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024]
Abstract
Deoxynivalenol ( DON) is one of the most harmful mycotoxins in food or feed or Traditional Chinese Medicine. An efficient and applicable method for the detoxification of DON is urgently developed. 1152 strains were isolated from the intestinal contents of crucian. Morganella morganii YC12-C3 and Enterococcus faecalis YC12-C10 were screened with the highest degradation rate of DON via HPLC methods. The optimal degradation condition of YC12-C3 and YC12-C10 is co-cultured 24 h and 36 h at 28 ℃ in LB medium with pH 7 and 1.0% inoculation dosage, respectively. LC-MS/MS and 1H NMR results show that YC12-C10 and YC12-C3 can transform DON to 3-deoxy-6-demethanol-DON, a new metabolite biotransformed from DON, by deoxidization at C3 hydroxy and de-methanal reaction at methanol moiety of C6. In addition, the DON-degradation in agricultural material assay showed that YC12-C10 and YC12-C3 can degrade 150 μg·kg-1 DON in Coix lacryma-jobi, with a degradation rate of 68.89% and 59.94%, respectively. This result shows that YC12-C10 and YC12-C3 have a sound efficiency in removing DON ability in Coix lacryma-jobi, providing a new strain resource and application technique for biological detoxification of DON in food or feed or TCM industry.
Collapse
Affiliation(s)
- Jiuchun An
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yefei Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Shihua Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanping Gao
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Changgui Yang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jinqiang Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaohong Ou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yanhong Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Weike Jiang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Qing-Song Yuan
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
- National Resource Center for Chinese Meteria Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Beijing, 100700, China.
| |
Collapse
|
2
|
Nguyen T, Chen X, Ma L, Feng Y. Mycotoxin Biodegradation by Bacillus Bacteria-A Review. Toxins (Basel) 2024; 16:478. [PMID: 39591233 PMCID: PMC11598562 DOI: 10.3390/toxins16110478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Mycotoxins are toxic secondary metabolites produced by various types of fungi that are known to contaminate various food products; their presence in the food chain poses significant risks to human and animal health and leads to enormous economic losses in the food and feed industry worldwide. Ensuring food safety and quality by detoxifying mycotoxin is therefore of paramount importance. Several procedures to control fungal toxins have been extensively investigated, such as preventive measures, physical and chemical methods, and biological strategies. In recent years, microbial degradation of mycotoxins has attracted much attention due to its reliability, efficiency, and cost-effectiveness. Notably, bacterial species from the Bacillus genus have emerged as promising candidates for mycotoxin decontamination owing to their diverse metabolic capabilities and resilience in harsh environmental conditions. This review manuscript aims to provide a summary of recent studies on the biodegradation of fungal toxins by Bacillus bacteria, thereby illustrating their potential applications in the development of mycotoxin-degrading products.
Collapse
Affiliation(s)
- Thanh Nguyen
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
| | - Xiaojing Chen
- Bioproton Pty Ltd., Acacia Ridge, Brisbane, QLD 4110, Australia;
| | - Linlin Ma
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| | - Yunjiang Feng
- Institute for Biomedicine and Glycomics, Griffith University, Nathan, Brisbane, QLD 4111, Australia; (T.N.); (L.M.)
- School of Environment and Science, Griffith University, Nathan, Brisbane, QLD 4111, Australia
| |
Collapse
|
3
|
He W, Zhang T, Zheng M, Tabl KM, Huang T, Liao Y, Wu A, Zhang J. Utilization of a Novel Soil-Isolated Strain Devosia insulae FS10-7 for Deoxynivalenol Degradation and Biocontrol of Fusarium Crown Rot in Wheat. PHYTOPATHOLOGY 2024; 114:1057-1067. [PMID: 38451497 DOI: 10.1094/phyto-10-23-0412-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Deoxynivalenol (DON) is the most widespread mycotoxin contaminant hazardous to human and animal health globally. It acts as a crucial virulence factor to stimulate the spread of pathogenic Fusarium within wheat plants. Control of DON and Fusarium disease contributes enormously to food safety, which relies on chemical fungicides. Here, we report the biodegradation of DON using a novel soil bacterium, Devosia insulae FS10-7, and its biocontrol effect against Fusarium crown rot. We demonstrated that strain FS10-7 degraded DON to 3-epi-DON by forming a 3-keto-DON intermediate. Such degradation activity can be maintained at a wide range of pH (4 to 10) and temperature (16 to 42°C) values under aerobic conditions. Notably, strain FS10-7 exhibited practical inhibitory effects on Fusarium crown rot disease caused by F. graminearum and F. pseudograminearum in the in vitro Petri dish test under laboratory conditions and the pot experiment under greenhouse conditions. The mechanisms underlying the biocontrol ability of strain FS10-7 were preliminarily investigated to be associated with its high DON-degrading activity rather than direct antagonism. These results establish the foundation to develop further bioagents capable of biodegrading mycotoxins in cereals and derived products and, accordingly, biocontrol plant diseases caused by DON-producing pathogens.
Collapse
Affiliation(s)
- Weijie He
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Tiantian Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Mengru Zheng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Karim M Tabl
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531, Alexandria, Egypt
| | - Tao Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | - Jingbo Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| |
Collapse
|
4
|
Shi Y, Xu W, Ni D, Zhang W, Guang C, Mu W. Identification and application of a novel deoxynivalenol-degrading enzyme from Youhaiella tibetensis. Food Chem 2024; 435:137609. [PMID: 37783127 DOI: 10.1016/j.foodchem.2023.137609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Deoxynivalenol (DON) poses a significant threat to human health due to its widespread distribution and biological toxicity. Here, we identified a novel DON-degrading enzyme from Youhaiella tibetensis (YoDDH). YoDDH exhibited the highest activity against DON at pH 4.5 and 40 ℃, in the presence of Ca2+ and the pyrroloquinoline quinone (PQQ). Additionally, YoDDH displayed remarkable thermostability at 40 ℃, with a half-life of 24 h and a Tm value of 48.5 ℃. Notably, phenazine methosulfate (PMS) and 2,6-dichlorophenolindophenol (DCPIP) can also serve as electron acceptors for YoDDH. After incubation in the optimal conditions for 3 h, YoDDH degraded 73 % of DON (100 μM) finally. The kcat and kcat /Km of YoDDH towards DON was determined as 1.65 s-1 and 1526 M-1·s-1 in the presence of PMS. The 3-keto-DON was verified as the degradation product. This identified YoDDH presents a promising candidate for DON decontamination in the food and feed industry.
Collapse
Affiliation(s)
- Yan Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cuie Guang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Sun H, He Z, Xiong D, Long M. Mechanisms by which microbial enzymes degrade four mycotoxins and application in animal production: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:256-274. [PMID: 38033608 PMCID: PMC10685049 DOI: 10.1016/j.aninu.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 12/02/2023]
Abstract
Mycotoxins are toxic compounds that pose a serious threat to animal health and food safety. Therefore, there is an urgent need for safe and efficient methods of detoxifying mycotoxins. As biotechnology has continued to develop, methods involving biological enzymes have shown great promise. Biological enzymatic methods, which can fundamentally destroy the structures of mycotoxins and produce degradation products whose toxicity is greatly reduced, are generally more specific, efficient, and environmentally friendly. Mycotoxin-degrading enzymes can thus facilitate the safe and effective detoxification of mycotoxins which gives them a huge advantage over other methods. This article summarizes the newly discovered degrading enzymes that can degrade four common mycotoxins (aflatoxins, zearalenone, deoxynivalenol, and ochratoxin A) in the past five years, and reveals the degradation mechanism of degrading enzymes on four mycotoxins, as well as their positive effects on animal production. This review will provide a theoretical basis for the safe treatment of mycotoxins by using biological enzyme technology.
Collapse
Affiliation(s)
- Huiying Sun
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziqi He
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dongwei Xiong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, China
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
6
|
Tu Y, Liu S, Cai P, Shan T. Global distribution, toxicity to humans and animals, biodegradation, and nutritional mitigation of deoxynivalenol: A review. Compr Rev Food Sci Food Saf 2023; 22:3951-3983. [PMID: 37421323 DOI: 10.1111/1541-4337.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 06/05/2023] [Indexed: 07/10/2023]
Abstract
Deoxynivalenol (DON) is one of the main types of B trichothecenes, and it causes health-related issues in humans and animals and imposes considerable challenges to food and feed safety globally each year. This review investigates the global hazards of DON, describes the occurrence of DON in food and feed in different countries, and systematically uncovers the mechanisms of the various toxic effects of DON. For DON pollution, many treatments have been reported on the degradation of DON, and each of the treatments has different degradation efficacies and degrades DON by a distinct mechanism. These treatments include physical, chemical, and biological methods and mitigation strategies. Biodegradation methods include microorganisms, enzymes, and biological antifungal agents, which are of great research significance in food processing because of their high efficiency, low environmental hazards, and drug resistance. And we also reviewed the mechanisms of biodegradation methods of DON, the adsorption and antagonism effects of microorganisms, and the different chemical transformation mechanisms of enzymes. Moreover, nutritional mitigation including common nutrients (amino acids, fatty acids, vitamins, and microelements) and plant extracts was discussed in this review, and the mitigation mechanism of DON toxicity was elaborated from the biochemical point of view. These findings help explore various approaches to achieve the best efficiency and applicability, overcome DON pollution worldwide, ensure the sustainability and safety of food processing, and explore potential therapeutic options with the ability to reduce the deleterious effects of DON in humans and animals.
Collapse
Affiliation(s)
- Yuang Tu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Shiqi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Peiran Cai
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, Zhejiang, PR China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
7
|
Statsyuk NV, Popletaeva SB, Shcherbakova LA. Post-Harvest Prevention of Fusariotoxin Contamination of Agricultural Products by Irreversible Microbial Biotransformation: Current Status and Prospects. BIOTECH 2023; 12:32. [PMID: 37218749 PMCID: PMC10204369 DOI: 10.3390/biotech12020032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Biological degradation of mycotoxins is a promising environmentally-friendly alternative to chemical and physical detoxification methods. To date, a lot of microorganisms able to degrade them have been described; however, the number of studies determining degradation mechanisms and irreversibility of transformation, identifying resulting metabolites, and evaluating in vivo efficiency and safety of such biodegradation is significantly lower. At the same time, these data are crucial for the evaluation of the potential of the practical application of such microorganisms as mycotoxin-decontaminating agents or sources of mycotoxin-degrading enzymes. To date, there are no published reviews, which would be focused only on mycotoxin-degrading microorganisms with the proved irreversible transformation of these compounds into less toxic compounds. In this review, the existing information about microorganisms able to efficiently transform the three most common fusariotoxins (zearalenone, deoxinyvalenol, and fumonisin B1) is presented with allowance for the data on the corresponding irreversible transformation pathways, produced metabolites, and/or toxicity reduction. The recent data on the enzymes responsible for the irreversible transformation of these fusariotoxins are also presented, and the promising future trends in the studies in this area are discussed.
Collapse
Affiliation(s)
- Natalia V. Statsyuk
- All-Russian Research Institute of Phytopathology, 143050 Bolshie Vyazemy, Russia (L.A.S.)
| | | | | |
Collapse
|
8
|
Li Y, Gao H, Wang R, Xu Q. Deoxynivalenol in food and feed: Recent advances in decontamination strategies. Front Microbiol 2023; 14:1141378. [PMID: 36998392 PMCID: PMC10043330 DOI: 10.3389/fmicb.2023.1141378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023] Open
Abstract
Deoxynivalenol (DON) is a mycotoxin that contaminates animal feed and crops around the world. DON not only causes significant economic losses, but can also lead diarrhea, vomiting, and gastroenteritis in humans and farm animals. Thus, there is an urgent need to find efficient approaches for DON decontamination in feed and food. However, physical and chemical treatment of DON may affect the nutrients, safety, and palatability of food. By contrast, biological detoxification methods based on microbial strains or enzymes have the advantages of high specificity, efficiency, and no secondary pollution. In this review, we comprehensively summarize the recently developed strategies for DON detoxification and classify their mechanisms. In addition, we identify remaining challenges in DON biodegradation and suggest research directions to address them. In the future, an in-depth understanding of the specific mechanisms through which DON is detoxified will provide an efficient, safe, and economical means for the removal of toxins from food and feed.
Collapse
|
9
|
Wilson VC, McCormick SP, Kerr BJ. Feeding thermally processed spray-dried egg whites, singly or in combination with 15-acetyldeoxynivalenol or peroxidized soybean oil on growth performance, digestibility, intestinal morphology, and oxidative status in nursery pigs. J Anim Sci 2023; 101:skac429. [PMID: 36610406 PMCID: PMC9904174 DOI: 10.1093/jas/skac429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Two experiments (EXP) determined the susceptibility of spray-dried egg white (SDEW) to oxidation (heating at 100 °C for 72 h; thermally processed, TP) and whether feeding TP-SDEW, 15-acetyldeoxynivalenol (15-ADON), or peroxidized soybean oil (PSO), singularly or in combination, would affect pig performance, intestinal morphology, digestibility, and markers of oxidative stress in nursery pigs. In EXP 1, 32 pigs (7.14 kg body weight, BW) were placed individually into pens and fed diets containing either 12% SDEW, 6% TP-SDEW plus 6% SDEW, or 12% TP-SDEW. Performance was measured at the end of the 24-d feeding period with biological samples harvested following euthanasia. In EXP 2, 64 pigs (10.6 kg BW) were placed individually into pens and fed diets containing 7.5% soybean oil or PSO, 10% SDEW or TP-SDEW, and diets without or with 3 mg 15-ADON/kg diet in a 2 × 2 × 2 factorial arrangement. Performance was measured at the end of the 28-d feeding period with biological samples harvested following euthanasia. In EXP 1, dietary treatment did not affect pig performance, apparent ileal digestibility of amino acids (AAs), apparent total tract digestibility (ATTD) of gross energy (GE) or nitrogen (N), ileal crypt depth, or villi height:crypt depth ratio (P > 0.05). The effects of feeding TP-SDEW on protein damage in the plasma and liver (P < 0.05) were variable. In EXP 2, there were no three-way interactions and only one two-way interactions among dietary treatments on parameters evaluated. There was no effect of feeding TP-SDEW on ATTD of GE or N, intestinal morphology, or on oxidative markers in the plasma, liver, or ileum (P > 0.05). There was no effect of feeding diets containing added 15-ADON on ATTD of GE, ileal AA digestibility, intestinal morphology, oxidative markers in the plasma, liver, or ileum, or pig performance (P > 0.05). Feeding pigs diets containing PSO resulted in reduced ATTD of GE and N, plasma vitamin E concentration, and pig performance (P < 0.01) but did not affect intestinal morphology or oxidative markers in the liver or ileum (P > 0.05). In conclusion, it was difficult to induce protein oxidation in SDEW and when achieved there were limited effects on performance, digestibility, intestinal morphology, and oxidative status. Furthermore, singly adding 15-A-DON to a diet had no effect on the animal. At last, adding PSO reduces animal performance, but has limited effect on digestibility, intestinal morphology, and oxidative status in nursery pigs.
Collapse
Affiliation(s)
- Victoria C Wilson
- Department of Animal Sciences, Iowa State University, Ames, Iowa 50011, USA
| | - Susan P McCormick
- USDA-ARS National Center for Agriculture Utilization Research, Peoria, IL 61604, USA
| | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment, Ames, Iowa 50011, USA
| |
Collapse
|
10
|
He L, Zhao X, Li J, Yang C. Post-weaning diarrhea and use of feedstuffs in pigs. Anim Front 2022; 12:41-52. [PMID: 36530506 PMCID: PMC9749819 DOI: 10.1093/af/vfac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Liuqin He
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Xiaoya Zhao
- College of Animal Science, South China Agricultural University, Tianhe District, Guangzhou 510642, China
| | - Jianzhong Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | | |
Collapse
|
11
|
Li B, Duan J, Ren J, Francis F, Li G. Isolation and Characterization of Two New Deoxynivalenol-Degrading Strains, Bacillus sp. HN117 and Bacillus sp. N22. Toxins (Basel) 2022; 14:toxins14110781. [PMID: 36356030 PMCID: PMC9693629 DOI: 10.3390/toxins14110781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/02/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Deoxynivalenol (DON), produced by Fusarium species, is one of the most common trichothecenes detected in cereals pre- and post-harvest, which poses a great threat to the health of livestock and human beings due to its strong toxicity. In this study, we isolated and characterized two DON-degrading bacterial strains, Bacillus sp. HN117 and Bacillus sp. N22. Both strains could degrade DON efficiently in a wide range of temperatures (from 25 °C to 42 °C) and concentrations (from 10 mg/L to 500 mg/L). After optimization of the degradation conditions, 29.0% DON was eliminated by HN117 in 72 h when it was incubated with 1000 mg/L DON; meanwhile, the DON degradation rate of N22 was boosted notably from 7.41% to 21.21% within 120 h at 500 mg/L DON. Degradation products analysis indicated HN117 was able to transform DON into a new isomer M-DOM, the possible structure of which was deduced based on LC-MS and NMR analysis, and N22 could convert DON into potential low-toxic derivatives norDON E and 9-hydroxymethyl DON lactone. These two strains have the potential to be developed as new biodegrading agents to control DON contamination in food and feed industries.
Collapse
Affiliation(s)
- Beibei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests—Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
| | - Jiaqi Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests—Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests—Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Frédéric Francis
- Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, B-5030 Gembloux, Belgium
- Correspondence: (F.F.); (G.L.)
| | - Guangyue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests—Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agri-Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (F.F.); (G.L.)
| |
Collapse
|
12
|
Modification of Deoxynivalenol by a Fungal Laccase Paired with Redox Mediator TEMPO. Toxins (Basel) 2022; 14:toxins14080548. [PMID: 36006210 PMCID: PMC9413383 DOI: 10.3390/toxins14080548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mycotoxins such as deoxynivalenol introduce a health risk to the food supply and are costly to manage or avoid. Technologies for reducing or eliminating the toxicity of deoxynivalenol could be useful in a variety of processes, such as in preserving the value as animal feed of byproducts of ethanol production. We characterized transformation products of deoxynivalenol that were formed by the combination of a fungal laccase paired with the chemical mediator 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO), using chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Alcohol groups at the C3 and C15 positions of deoxynivalenol were oxidized to ketones, and the chemical mediator became covalently linked to the C4 position. Conditions experienced during gas chromatography led to the dissociation of TEMPO, forming 3,15-diketodeoxynivalenol. Understanding the range of possible modifications to deoxynivalenol and other trichothecenes is a necessary step toward effective remediation of contaminated grain.
Collapse
|
13
|
Deoxynivalenol Degradation by Various Microbial Communities and Its Impacts on Different Bacterial Flora. Toxins (Basel) 2022; 14:toxins14080537. [PMID: 36006199 PMCID: PMC9413130 DOI: 10.3390/toxins14080537] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/04/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Deoxynivalenol, a mycotoxin that may present in almost all cereal products, can cause huge economic losses in the agriculture industry and seriously endanger food safety and human health. Microbial detoxifications using microbial consortia may provide a safe and effective strategy for DON mitigation. In order to study the interactions involving DON degradation and change in microbial flora, four samples from different natural niches, including a chicken stable (expJ), a sheep stable (expY), a wheat field (expT) and a horse stable (expM) were collected and reacted with purified DON. After being co-incubated at 30 °C with 130 rpm shaking for 96 h, DON was reduced by 74.5%, 43.0%, 46.7%, and 86.0% by expJ, expY, expT, and expM, respectively. After DON (0.8 mL of 100 μg/mL) was co-cultivated with 0.2 mL of the supernatant of each sample (i.e., suspensions of microbial communities) at 30 °C for 96 h, DON was reduced by 98.9%, 99.8%, 79.5%, and 78.9% in expJ, expY, expT, and expM, respectively, and was completely degraded after 8 days by all samples except of expM. DON was confirmed being transformed into de-epoxy DON (DOM-1) by the microbial community of expM. The bacterial flora of the samples was compared through 16S rDNA flux sequencing pre- and post the addition of DON. The results indicated that the diversities of bacterial flora were affected by DON. After DON treatment, the most abundant bacteria belong to Galbibacter (16.1%) and Pedobacter (8.2%) in expJ; Flavobacterium (5.9%) and Pedobacter (5.5%) in expY; f_Microscillaceae (13.5%), B1-7BS (13.4%), and RB41 (10.5%) in expT; and Acinetobacter (24.1%), Massilia (8.8%), and Arthrobacter (7.6%) in expM. This first study on the interactions between DON and natural microbial flora provides useful information and a methodology for further development of microbial consortia for mycotoxin detoxifications.
Collapse
|
14
|
Inhibitory Effect Mediated by Deoxynivalenol on Rumen Fermentation under High-Forage Substrate. FERMENTATION 2022. [DOI: 10.3390/fermentation8080369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Deoxynivalenol (DON) is a type B trichothecene mycotoxin produced by Fusarium fungi. To investigate its ruminal degradability and its effect on rumen fermentation, a 2 × 5 factorial experiment was conducted in vitro with two feed substrates with different forage levels (high forage (HF), forage-to-concentrate = 4:1; low forage (LF), forage-to-concentrate = 1:4) and five DON additions per substrate (0, 5, 10, 15, and 20 mg/kg of dry matter). After 48 h incubation, the DON degradability in the HF group was higher than in the LF group (p < 0.01), and it decreased along with the increase in DON concentrations (p < 0.01), which varied from 57.18% to 29.01% at 48 h. In addition, the gas production rate, total VFA production and microbial crude protein decreased linearly against the increase in DON additions (p < 0.05). Meanwhile, the proportion of CH4 in the fermentation gas end-products increased linearly, especially in the HF group (p < 0.01). In brief, rumen microorganisms presented 29–57% of the DON degradation ability and were particularly significant under a high-forage substrate. Along with the increasing DON addition, the toxin degradability decreased, showing a dose-dependent response. However, DON inhibited rumen fermentation and increased methane production when it exceeded 5 mg/kg of dry matter.
Collapse
|
15
|
Wilson VC, Ramirez SM, Murugesan GR, Hofstetter U, Kerr BJ. Effects of feeding variable levels of mycotoxins with or without a mitigation strategy on growth performance, gut permeability, and oxidative biomarkers in nursery pigs. Transl Anim Sci 2022; 6:txac126. [DOI: 10.1093/tas/txac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
The objectives were to determine how high levels (> 2.5 mg/kg diet) of deoxynivalenol (DON), in conjunction with other naturally occurring mycotoxins (MTX) would impact growth, intestinal integrity, and oxidative status, with or without a mitigation strategy, in nursery pigs. One-hundred and five pigs (5.5 ± 0.52 kg) were randomly allotted to 35 pens and fed dietary treatments for 45 d. Treatments were factorially arranged with the inclusion of MTX being low (L-MTX; < 1 mg/kg diet) or high (H-MTX; > 2.5 mg/kg diet) in combination with no mitigation strategy or the inclusion of a mitigation strategy (Biofix® Plus, BPL; 1.5 mg/kg diet). There was no interaction between MTX level and BPL inclusion on average daily gain (ADG) or gain to feed ratio (GF), (P > 0.10). Compared to pigs fed diets containing L-MTX, feeding pigs diets containing H-MTX decreased ADG and GF (P < 0.05). The addition of BPL had no effect on ADG (P > 0.10), but improved GF (P = 0.09). There was an interaction between MTX and BPL on average daily feed intake (ADFI), where the addition of BPL had no effect on ADFI of pigs fed L-MTX diets but improved ADFI of pigs fed H-MTX diets (P = 0.09). An interaction was detected between MTX and BPL on protein oxidation as measured by plasma protein carbonyls (PC, P = 0.01), where the inclusion of BPL decreased plasma PC in pigs fed H-MTX diets to a greater extent than pigs fed the L-MTX diets. There was no interaction between MTX and BPL, or an effect of MTX or BPL on DNA damage as measured by 8-hydroxy-2ʹdexoxyguanosine (P > 0.10). There was no interaction between MTX and BPL, or a BPL effect on lipid damage as measured by thiobarbituic acid reactive substances (TBARS, P > 0.10), but pigs fed diets containing H-MTX exhibited lower concentrations of plasma TBARS (P = 0.07) compared to pigs fed L-MTX diets. There was no interaction between MTX and BPL, or an effect of MTX or BPL on plasma lactulose and mannitol ratio as a measure of intestinal permeability (P > 0.10). In conclusion, feeding H-MTX decreased ADG and GF, decreased plasma TBARS, but did not affect plasma 8-hydroxy-2ʹdexoxyguanosine or plasma LM ratio. The inclusion of a mitigation strategy improved ADFI when pigs were fed H-MTX diets and improved GF regardless of MTX level. Addition of a mitigation strategy also reduced plasma protein damage but did not affect indicators of DNA or lipid damage or affect gastrointestinal integrity.
Collapse
Affiliation(s)
- Victoria C Wilson
- Department of Animal Science, Iowa State University , Ames, IA 50011 , USA
| | | | | | | | - Brian J Kerr
- USDA-ARS National Laboratory for Agriculture and the Environment , Ames, IA 50011 , USA
| |
Collapse
|
16
|
3-keto-DON, but Not 3- epi-DON, Retains the in Planta Toxicological Potential after the Enzymatic Biotransformation of Deoxynivalenol. Int J Mol Sci 2022; 23:ijms23137230. [PMID: 35806249 PMCID: PMC9266554 DOI: 10.3390/ijms23137230] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023] Open
Abstract
Deoxynivalenol (DON) is a secondary fungal metabolite that is associated with many adverse toxicological effects in agriculture as well as human/animal nutrition. Bioremediation efforts in recent years have led to the discovery of numerous bacterial isolates that can transform DON to less toxic derivatives. Both 3-keto-DON and 3-epi-DON were recently shown to exhibit reduced toxicity, compared to DON, when tested using different cell lines and mammalian models. In the current study, the toxicological assessment of 3-keto-DON and 3-epi-DON using in planta models surprisingly revealed that 3-keto-DON, but not 3-epi-DON, retained its toxicity to a large extent in both duckweeds (Lemna minor L.) and common wheat (Triticum aestivum L.) model systems. RNA-Seq analysis revealed that the exposure of L. minor to 3-keto-DON and DON resulted in substantial transcriptomic changes and similar gene expression profiles, whereas 3-epi-DON did not. These novel findings are pivotal for understanding the environmental burden of the above metabolites as well as informing the development of future transgenic plant applications. Collectively, they emphasize the fundamental need to assess both plant and animal models when evaluating metabolites/host interactions.
Collapse
|
17
|
Tian Y, Zhang D, Cai P, Lin H, Ying H, Hu QN, Wu A. Elimination of Fusarium mycotoxin deoxynivalenol (DON) via microbial and enzymatic strategies: Current status and future perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Gacem MA, Abd-Elsalam KA. Nanomaterials for the Reduction of Mycotoxins in Cereals. CEREAL DISEASES: NANOBIOTECHNOLOGICAL APPROACHES FOR DIAGNOSIS AND MANAGEMENT 2022:371-406. [DOI: 10.1007/978-981-19-3120-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
19
|
Gao H, Niu J, Yang H, Lu Z, Zhou L, Meng F, Lu F, Chen M. Epimerization of Deoxynivalenol by the Devosia Strain A6-243 Assisted by Pyrroloquinoline Quinone. Toxins (Basel) 2021; 14:toxins14010016. [PMID: 35050993 PMCID: PMC8779532 DOI: 10.3390/toxins14010016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Deoxynivalenol (DON) is a secondary metabolite produced by several Fusarium species that is hazardous to humans and animals after entering food chains. In this study, by adding cofactors, the Devosia strain A6-243 is identified as the DON-transforming bacteria from a bacterial consortium with the ability to biotransform DON of Pseudomonas sp. B6-24 and Devosia strain A6-243, and its effect on the biotransformation process of DON is studied. The Devosia strain A6-243 completely biotransformed 100 μg/mL of DON with the assistance of the exogenous addition of PQQ (pyrroloquinoline quinone) within 48 h and produced non-toxic 3-epi-DON (3-epi-deoxynivalenol), while Pseudomonas sp. B6-24 was not able to biotransform DON, but it had the ability to generate PQQ. Moreover, the Devosia strain A6-243 not only degraded DON, but also exhibited the ability to degrade 3-keto-DON (3-keto-deoxynivalenol) with the same product 3-epi-DON, indicating that DON epimerization by the Devosia strain A6-243 is a two-step enzymatic reaction. The most suitable conditions for the biodegradation process of the Devosia strain A6-243 were a temperature of 16–37 °C and pH 7.0–10, with 15–30 μM PQQ. In addition, the Devosia strain A6-243 was found to completely remove DON (6.7 μg/g) from DON-contaminated wheat. The results presented a reference for screening microorganisms with the ability of biotransform DON and laid a foundation for the development of enzymes for the detoxification of mycotoxins in grain and its products.
Collapse
|
20
|
Hassan ZU, Al Thani R, Alsafran M, Migheli Q, Jaoua S. Selection of Bacillus spp. with decontamination potential on multiple Fusarium mycotoxins. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Zhang H, Zhang H, Qin X, Wang X, Wang Y, Bin Y, Xie X, Zheng F, Luo H. Biodegradation of Deoxynivalenol by Nocardioides sp. ZHH-013: 3- keto-Deoxynivalenol and 3- epi-Deoxynivalenol as Intermediate Products. Front Microbiol 2021; 12:658421. [PMID: 34349733 PMCID: PMC8326517 DOI: 10.3389/fmicb.2021.658421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/18/2021] [Indexed: 11/13/2022] Open
Abstract
Deoxynivalenol (DON) is one of the most devastating and notorious contaminants in food and animal feed worldwide. A novel DON-degrading strain, Nocardioides sp. ZHH-013, which exhibited complete mineralization of DON, was isolated from soil samples. The intermediate products of DON generated by this strain were identified by high-performance liquid chromatography and ultra-performance liquid chromatography tandem mass spectrometry analyses. It was shown that, on an experimental level, 3-keto-DON was a necessary intermediate product during the conversion from DON to 3-epi-DON. Furthermore, the ZHH-013 strain could also utilize 3-epi-DON. This DON degradation pathway is a safety concern for food and feed. The mechanism of DON and 3-epi-DON elimination will be further studied, so that new enzymes for DON degradation can be identified.
Collapse
Affiliation(s)
- Honghai Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China.,Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Heng Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Qin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolu Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yao Bin
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangming Xie
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Fei Zheng
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Huiying Luo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
22
|
Ruhnau D, Hess C, Doupovec B, Grenier B, Schatzmayr D, Hess M, Awad W. Deepoxy-deoxynivalenol (DOM-1), a derivate of deoxynivalenol (DON), exhibits less toxicity on intestinal barrier function, Campylobacter jejuni colonization and translocation in broiler chickens. Gut Pathog 2021; 13:44. [PMID: 34217373 PMCID: PMC8254355 DOI: 10.1186/s13099-021-00440-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Intestinal epithelial cells are challenged by mycotoxins and many bacterial pathogens. It was previously shown that the mycotoxin deoxynivalenol (DON) as well as Campylobacter (C.) jejuni have a negative impact on gut integrity. Recently, it was demonstrated that DON increased the load of C. jejuni in the gut and inner organs. Based on this finding, it was hypothesized the DON metabolite (deepoxy-deoxynivalenol, DOM-1) should be able to reduce the negative effects of DON on colonization and translocation of C. jejuni in broilers, since it lacks the epoxide ring, which is responsible for the toxicity of DON. Methods A total of 180 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were divided into six groups (n = 30 with 5 replicates/group): 1. Control, 2. DOM-1, 3. DON, 4. DOM-1 + C. jejuni, 5. DON + C. jejuni, 6. C. jejuni. At day 14, birds of groups 4, 5 and 6 were orally inoculated via feeding tube (gavage) with 1-ml of a PBS suspension containing 1 × 108 CFU of C. jejuni NCTC 12744. The performance parameters: body weight (BW), body weight gain (BWG), and feed intake of the birds were determined. At 7, 14, and 21 days post infection, samples from liver, spleen, duodenum, jejunum and cecum were aseptically collected and processed for bacteriological investigations. Finally, at each killing time point, segments of duodenum, jejunum and cecum were harvested and prepared for Ussing chamber studies to measure the paracellular mannitol fluxes. Results A significant decrease in body weight was observed for chickens receiving the DON diet with or without C. jejuni compared to the other groups. Furthermore, it was found that the co-exposure of birds to DON and C. jejuni resulted in a higher C. jejuni load not only in the gut but also in liver and spleen due to increased paracellular permeability of the duodenum, jejunum and cecum. On the contrary, DOM-1 supplementation in the feed improved the birds’ performance and led to a better feed conversion ratio throughout the trial. Furthermore, DOM-1 did not negatively affect gut permeability and decreased the C. jejuni counts in the intestine and internal organs. Conclusion Altogether, the presence of DOM-1 in the feed as a result of the enzymatic biotransformation of DON leads to a lower C. jejuni count in the intestine and better feed conversion ratio. Moreover, this study demonstrates that the detoxification product of DON, DOM-1, does not have negative effects on the gastrointestinal tract and reduces the Campylobacter burden in chickens and also the risk for human infection.
Collapse
Affiliation(s)
- Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | | | | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wageha Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
23
|
Zhang C, Yu X, Xu H, Cui G, Chen L. Action of Bacillus natto 16 on deoxynivalenol (DON) from wheat flour. J Appl Microbiol 2021; 131:2317-2324. [PMID: 33788381 DOI: 10.1111/jam.15094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/09/2021] [Accepted: 03/21/2021] [Indexed: 11/27/2022]
Abstract
AIMS The aim of this research is to study the removal characteristics and evaluate the detoxify action of deoxynivalenol by Bacillus natto 16 in wheat flour as food or feed. METHODS AND RESULTS The content of deoxynivalenol was determined using ELISA by testing the deoxynivalenol removal rate, and the influence of culture supernatant, intracellular substances, crude enzyme and cell wall on the deoxynivalenol in wheat flour was studied. The effect of bacterial components on the removal of deoxynivalenol was studied in the artificial gastrointestinal environment to simulate the digestion of food. Secondary metabolites were analysed by high-performance liquid chromatography in tandem with mass spectrometry (HPLC-MS). The cell wall can reduce the content of deoxynivalenol in the sample by adsorption, the influence of culture supernatant, intracellular substances and crude enzyme can convert deoxynivalenol into substances with a lower molecular weight. Bacterial components have no effect on deoxynivalenol in wheat flour in simulated gastric fluid (SGF) and have a certain removal effect on deoxynivalenol, which is closely related to intestinal digestion time and pH, in simulated intestinal fluid. CONCLUSIONS Experimental results indicate that the removal of deoxynivalenol by B. natto 16 includes adsorption and biodegradation, SGF would invalidate the deoxynivalenol removal activity of B. natto 16's components. SIGNIFICANCE AND IMPACT OF THE STUDY Our study showed that as an edible probiotic bacterium, B. natto 16 can effectively remove deoxynivalenol from wheat flour as food or feed, and can be used as a new deoxynivalenol -detoxifying microbe. The results of this research could provide the theory foundation for further development and application of B. natto 16.
Collapse
Affiliation(s)
- C Zhang
- The Biological Feedstuff Lab, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, P.R. China.,Food Composition and Human Health Lab, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - X Yu
- Food Composition and Human Health Lab, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - H Xu
- Food Composition and Human Health Lab, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - G Cui
- Food Composition and Human Health Lab, College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - L Chen
- The Biological Feedstuff Lab, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, P.R. China
| |
Collapse
|
24
|
Feizollahi E, Roopesh MS. Mechanisms of deoxynivalenol (DON) degradation during different treatments: a review. Crit Rev Food Sci Nutr 2021; 62:5903-5924. [PMID: 33729830 DOI: 10.1080/10408398.2021.1895056] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deoxynivalenol (DON) is one of the main trichothecenes, that causes health-related issues in humans and animals and imposes considerable financial loss to the food industry each year. Numerous treatments have been reported in the literature on the degradation of DON in food products. These treatments include thermal, chemical, biological/enzymatic, irradiation, light, ultrasound, ozone, and atmospheric cold plasma treatments. Each of these methods has different degradation efficacy and degrades DON by a distinct mechanism, which leads to various degradation byproducts with different toxicity. This manuscript focuses to review the degradation of DON by the aforementioned treatments, the chemical structure and toxicity of the byproducts, and the degradation pathway of DON. Based on the type of treatment, DON can be degraded to norDONs A-F, DON lactones, and ozonolysis products or transformed into de-epoxy deoxynivalenol, DON-3-glucoside, 3-acetyl-DON, 7-acetyl-DON, 15-acetyl-DON, 3-keto-DON, or 3-epi-DON. DON is a major problem for the grain industry and the studies focusing on DON degradation mechanisms could be helpful to select the best method and overcome the DON contamination in grains.
Collapse
Affiliation(s)
- Ehsan Feizollahi
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| | - M S Roopesh
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada
| |
Collapse
|
25
|
Wang W, Zhu Y, Abraham N, Li XZ, Kimber M, Zhou T. The Ribosome-Binding Mode of Trichothecene Mycotoxins Rationalizes Their Structure-Activity Relationships. Int J Mol Sci 2021; 22:1604. [PMID: 33562610 PMCID: PMC7914836 DOI: 10.3390/ijms22041604] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Trichothecenes are the most prevalent mycotoxins contaminating cereal grains. Some of them are also considered as the virulence factors of Fusarium head blight disease. However, the mechanism behind the structure-activity relationship for trichothecenes remains unexplained. Filling this information gap is a crucial step for developing strategies to manage this large family of mycotoxins in food and feed. Here, we perform an in-depth re-examination of the existing structures of Saccharomyces cerevisiae ribosome complexed with three different trichothecenes. Multiple binding interactions between trichothecenes and 25S rRNA, including hydrogen bonds, nonpolar pi stacking interactions and metal ion coordination interactions, are identified as important binding determinants. These interactions are mainly contributed by the key structural elements to the toxicity of trichothecenes, including the oxygen in the 12,13-epoxide ring and a double bond between C9 and C10. In addition, the C3-OH group also participates in binding. The comparison of three trichothecenes binding to the ribosome, along with their binding pocket architecture, suggests that the substitutions at different positions impact trichothecenes binding in two different patterns. Moreover, the binding of trichothecenes induced conformation changes of several nucleotide bases in 25S rRNA. This then provides a structural framework for understanding the structure-activity relationships apparent in trichothecenes. This study will facilitate the development of strategies aimed at detoxifying mycotoxins in food and feed and at improving the resistance of cereal crops to Fusarium fungal diseases.
Collapse
Affiliation(s)
- Weijun Wang
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
| | - Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
| | - Nadine Abraham
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Xiu-Zhen Li
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
| | - Matthew Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada; (W.W.); (Y.Z.); (N.A.); (X.-Z.L.)
| |
Collapse
|
26
|
The biological detoxification of deoxynivalenol: A review. Food Chem Toxicol 2020; 145:111649. [DOI: 10.1016/j.fct.2020.111649] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/12/2023]
|
27
|
Jia R, Cao L, Liu W, Shen Z. Detoxification of deoxynivalenol by Bacillus subtilis ASAG 216 and characterization the degradation process. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03607-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Afsah-Hejri L, Hajeb P, Ehsani RJ. Application of ozone for degradation of mycotoxins in food: A review. Compr Rev Food Sci Food Saf 2020; 19:1777-1808. [PMID: 33337096 DOI: 10.1111/1541-4337.12594] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022]
Abstract
Mycotoxins such as aflatoxins (AFs), ochratoxin A (OTA) fumonisins (FMN), deoxynivalenol (DON), zearalenone (ZEN), and patulin are stable at regular food process practices. Ozone (O3 ) is a strong oxidizer and generally considered as a safe antimicrobial agent in food industries. Ozone disrupts fungal cells through oxidizing sulfhydryl and amino acid groups of enzymes or attacks the polyunsaturated fatty acids of the cell wall. Fusarium is the most sensitive mycotoxigenic fungi to ozonation followed by Aspergillus and Penicillium. Studies have shown complete inactivation of Fusarium and Aspergillus by O3 gas. Spore germination and toxin production have also been reduced after ozone fumigation. Both naturally and artificially, mycotoxin-contaminated samples have shown significant mycotoxin reduction after ozonation. Although the mechanism of detoxification is not very clear for some mycotoxins, it is believed that ozone reacts with the functional groups in the mycotoxin molecules, changes their molecular structures, and forms products with lower molecular weight, less double bonds, and less toxicity. Although some minor physicochemical changes were observed in some ozone-treated foods, these changes may or may not affect the use of the ozonated product depending on the further application of it. The effectiveness of the ozonation process depends on the exposure time, ozone concentration, temperature, moisture content of the product, and relative humidity. Due to its strong oxidizing property and corrosiveness, there are strict limits for O3 gas exposure. O3 gas has limited penetration and decomposes quickly. However, ozone treatment can be used as a safe and green technology for food preservation and control of contaminants.
Collapse
Affiliation(s)
- Leili Afsah-Hejri
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| | - Parvaneh Hajeb
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Reza J Ehsani
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| |
Collapse
|
29
|
He WJ, Shi MM, Yang P, Huang T, Yuan QS, Yi SY, Wu AB, Li HP, Gao CB, Zhang JB, Liao YC. Novel Soil Bacterium Strain Desulfitobacterium sp. PGC-3-9 Detoxifies Trichothecene Mycotoxins in Wheat via De-Epoxidation under Aerobic and Anaerobic Conditions. Toxins (Basel) 2020; 12:toxins12060363. [PMID: 32492959 PMCID: PMC7354494 DOI: 10.3390/toxins12060363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/24/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Trichothecenes are the most common mycotoxins contaminating small grain cereals worldwide. The C12,13 epoxide group in the trichothecenes was identified as a toxic group posing harm to humans, farm animals, and plants. Aerobic biological de-epoxidation is considered the ideal method of controlling these types of mycotoxins. In this study, we isolated a novel trichothecene mycotoxin-de-epoxidating bacterium, Desulfitobacterium sp. PGC-3-9, from a consortium obtained from the soil of a wheat field known for the occurrence of frequent Fusarium head blight epidemics under aerobic conditions. Along with MMYPF media, a combination of two antibiotics (sulfadiazine and trimethoprim) substantially increased the relative abundance of Desulfitobacterium species from 1.55% (aerobic) to 29.11% (aerobic) and 28.63% (anaerobic). A single colony purified strain, PGC-3-9, was isolated and a 16S rRNA sequencing analysis determined that it was Desulfitobacterium. The PGC-3-9 strain completely de-epoxidated HT-2, deoxynivalenol (DON), nivalenol and 15-acetyl deoxynivalenol, and efficiently eliminated DON in wheat grains under aerobic and anaerobic conditions. The strain PGC-3-9 exhibited high DON de-epoxidation activity at a wide range of pH (6–10) and temperature (15–50 °C) values under both conditions. This strain may be used for the development of detoxification agents in the agriculture and feed industries and the isolation of de-epoxidation enzymes.
Collapse
Affiliation(s)
- Wei-Jie He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan 430064, China; (W.-J.H.); (C.-B.G.)
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
| | - Meng-Meng Shi
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Yang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Huang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qing-Song Yuan
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Yuan Yi
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ai-Bo Wu
- Key Laboratory of Food Safety Research Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China;
| | - He-Ping Li
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chun-Bao Gao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences/Hubei Engineering and Technology Research Center of Wheat/Wheat Disease Biology Research Station for Central China, Wuhan 430064, China; (W.-J.H.); (C.-B.G.)
| | - Jing-Bo Zhang
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (J.-B.Z.); (Y.-C.L.); Tel.: +86-27-87283008 (Y.-C.L.)
| | - Yu-Cai Liao
- Molecular Biotechnology Laboratory of Triticeae Crops, Huazhong Agricultural University, Wuhan 430070, China; (M.-M.S.); (P.Y.); (T.H.); (Q.-S.Y.); (S.-Y.Y.); (H.-P.L.)
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (J.-B.Z.); (Y.-C.L.); Tel.: +86-27-87283008 (Y.-C.L.)
| |
Collapse
|
30
|
Proctor RH, McCormick SP, Gutiérrez S. Genetic bases for variation in structure and biological activity of trichothecene toxins produced by diverse fungi. Appl Microbiol Biotechnol 2020; 104:5185-5199. [PMID: 32328680 DOI: 10.1007/s00253-020-10612-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 11/26/2022]
Abstract
Trichothecenes are sesquiterpene toxins produced by diverse but relatively few fungal species in at least three classes of Ascomycetes: Dothideomycetes, Eurotiomycetes, and Sordariomycetes. Approximately 200 structurally distinct trichothecene analogs have been described, but a given fungal species typically produces only a small subset of analogs. All trichothecenes share a core structure consisting of a four-ring nucleus known as 12,13-epoxytrichothec-9-ene. This structure can be substituted at various positions with hydroxyl, acyl, or keto groups to give rise to the diversity of trichothecene structures that has been described. Over the last 30 years, the genetic and biochemical pathways required for trichothecene biosynthesis in several species of the fungi Fusarium and Trichoderma have been elucidated. In addition, phylogenetic and functional analyses of trichothecene biosynthetic (TRI) genes from fungi in multiple genera have provided insights into how acquisition, loss, and changes in functions of TRI genes have given rise to the diversity of trichothecene structures. These analyses also suggest both divergence and convergence of TRI gene function during the evolutionary history of trichothecene biosynthesis. What has driven trichothecene structural diversification remains an unanswered question. However, insight into the role of trichothecenes in plant pathogenesis of Fusarium species and into plant glucosyltransferases that detoxify the toxins by glycosylating them point to a possible driver. Because the glucosyltransferases can have substrate specificity, changes in trichothecene structures produced by a fungus could allow it to evade detoxification by the plant enzymes. Thus, it is possible that advantages conferred by evading detoxification have contributed to trichothecene structural diversification. KEY POINTS : • TRI genes have evolved by diverse processes: loss, acquisition and changes in function. • Some TRI genes have acquired the same function by convergent evolution. • Some other TRI genes have evolved divergently to have different functions. • Some TRI genes were acquired or resulted from diversification in function of other genes. • Substrate specificity of plant glucosyltransferases could drive trichothecene diversity.
Collapse
Affiliation(s)
- R H Proctor
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, 61604-3902, USA.
| | - S P McCormick
- United States Department of Agriculture, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Peoria, IL, 61604-3902, USA
| | - S Gutiérrez
- Area of Microbiology, University of León, Campus de Ponferrada, 24400, Ponferrada, Spain.
| |
Collapse
|
31
|
Bracarense APFL, Pierron A, Pinton P, Gerez JR, Schatzmayr G, Moll WD, Zhou T, Oswald IP. Reduced toxicity of 3-epi-deoxynivalenol and de-epoxy-deoxynivalenol through deoxynivalenol bacterial biotransformation: In vivo analysis in piglets. Food Chem Toxicol 2020; 140:111241. [PMID: 32194137 DOI: 10.1016/j.fct.2020.111241] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
Abstract
Ingestion of deoxynivalenol (DON), one of the most common mycotoxin contaminants of cereals, leads to adverse effects for animal and human health. Bacterial biotransformation is a strategy to mitigate the toxicity of this mycotoxin. The present study aims to evaluate the toxicity of two bacterial biotranformation products of DON: 3-epi-deoxynivalenol (3-epi-DON) and de-epoxy-deoxynivalenol (DOM-1) through zootechnical, hematological, histological and immunological assays. Twenty-four 4-weeks-old piglets received a control diet or a diet contaminated with 3 mg kg-1 DON, DOM-1, or 3-epi-DON for 7 days. Sample tissues were collected for histomorphometrical analysis, expression of cytokines and cell protein junctions. The zootechnical and hematological parameters were not modulated by any treatment. Ingestion of DON induced histological alterations in the intestine, liver and lymphoid organs, as well as an overexpression of pro-inflammatory cytokines, E-cadherin and occludin. These changes were not observed in piglets receiving the DOM-1 and 3-epi-DON contaminated diets. Pigs fed 3-epi-DON contaminated diet showed an increase in IgM levels in comparison with other diets, while no change was observed in IgA and IgG levels among the diets. Our results indicate that DOM-1 and 3-epi-DON are not toxic for piglets; thus bacterial biotransformation seems to be a sustainable alternative to reduce mycotoxin toxicity.
Collapse
Affiliation(s)
- Ana Paula F L Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, 86057-970, Londrina, PR, Brazil.
| | - Alix Pierron
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Philippe Pinton
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Juliana R Gerez
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, 86057-970, Londrina, PR, Brazil
| | | | | | - Ting Zhou
- Guelph Food Research Center Agriculture &Agri-Food Canada, Guelph, Ontario, N1G 5C, Canada
| | - Isabelle P Oswald
- Toxalim, Research Center in Food Toxicology, Université de Toulouse, INRAe, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
32
|
Guo H, Ji J, Wang J, Sun X. Deoxynivalenol: Masked forms, fate during food processing, and potential biological remedies. Compr Rev Food Sci Food Saf 2020; 19:895-926. [DOI: 10.1111/1541-4337.12545] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 12/24/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hongyan Guo
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| | - Jia‐sheng Wang
- Department of Environmental ToxicologyUniversity of Georgia Athens Georgia
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science, National Engineering Research Center for Functional Foods, Synergetic Innovation Center of Food Safety and NutritionJiangnan University Wuxi China
| |
Collapse
|
33
|
Zhai Y, Zhong L, Gao H, Lu Z, Bie X, Zhao H, Zhang C, Lu F. Detoxification of Deoxynivalenol by a Mixed Culture of Soil Bacteria With 3 -epi-Deoxynivalenol as the Main Intermediate. Front Microbiol 2019; 10:2172. [PMID: 31616395 PMCID: PMC6764018 DOI: 10.3389/fmicb.2019.02172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
Deoxynivalenol (DON) is a widely distributed mycotoxin that frequently occurs in various agricultural raw materials and feeds. DON acts as a virulence factor that accelerates the spread of plant diseases; moreover, its accumulation in grains causes yield loss and serious health problems to humans and livestock. Biodegradation of DON into less- or non-toxic substances using naturally existing microorganisms is considered the best approach for DON detoxification. Although various single isolates and mixed cultures capable of detoxifying DON have been reported, details of the metabolic pathways and the degrading enzymes/coding genes involved are scarce. In this study, we aimed to isolate DON-degrading bacteria from soil samples and explore the mechanisms. Toward this end, 85 soil samples collected from different provinces in China were enriched under aerobic conditions with mineral media containing 50 μg/ml of DON as the sole carbon source. The bacterial consortium LZ-N1 exhibited highly efficient and steady DON-transforming activity. High-throughput sequencing was used to characterize the composition of the involved microflora, and analysis of 16S rRNA sequences indicated that LZ-N1 was composed of at least 11 bacterial genera, with Pseudomonas accounting for nearly half the relative abundance. Coincubation of a mixed culture of two novel strains from the LZ-N1 consortium, namely Pseudomonas sp. Y1 and Lysobacter sp. S1, showed sustained transformation of DON into the metabolite 3-epi-deoxynivalenol, with no degradation products detected after 72 h. The cell-free supernatant, lysate, and cell debris of the mixed culture possessed DON-degrading ability, with the supernatant reaching a DON degradation rate of 100% within 48 h with 50 μg/ml of DON. This is the first report of two-step enzymatic epimerization of DON by a mixed culture, which may provide a new insight into this pathway for future applications in detoxification of DON-contaminated cereals and feed.
Collapse
Affiliation(s)
- Yaoyao Zhai
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhong
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hui Gao
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaomei Bie
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Haizhen Zhao
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Chong Zhang
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fengxia Lu
- Laboratory of Enzyme Engineering, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
34
|
Li X, Guo Y, Zhao L, Fan Y, Ji C, Zhang J, Ma Q. Protective effects of Devosia sp. ANSB714 on growth performance, immunity function, antioxidant capacity and tissue residues in growing-finishing pigs fed with deoxynivalenol contaminated diets. Food Chem Toxicol 2018; 121:246-251. [DOI: 10.1016/j.fct.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/29/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
|
35
|
Pierron A, Bracarense APFL, Cossalter AM, Laffitte J, Schwartz-Zimmermann HE, Schatzmayr G, Pinton P, Moll WD, Oswald IP. Deepoxy-deoxynivalenol retains some immune-modulatory properties of the parent molecule deoxynivalenol in piglets. Arch Toxicol 2018; 92:3381-3389. [DOI: 10.1007/s00204-018-2293-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
|
36
|
Hassan Y, Zhou T. Addressing the mycotoxin deoxynivalenol contamination with soil-derived bacterial and enzymatic transformations targeting the C3 carbon. WORLD MYCOTOXIN J 2018. [DOI: 10.3920/wmj2017.2259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The search for feasible biological means of detoxifying mycotoxins has attained successful accomplishments in the past twenty years due to the involvement of many teams coming from diverse backgrounds and research expertise. The recently witnessed breakthroughs in the field of bacterial genomics (including next-generation sequencing), proteomics, and computational biology helped all in shaping the current understanding of how microorganisms/mycotoxins/environmental factors intertwined and interact together, hence paving the road for some substantial discoveries. This perspective review summarises the advances that were observed in the past two decades within the deoxynivalenol (DON) bio-detoxification field. It highlights the research efforts and progresses that were made in the arena of the aerobic oxidation and epimerization of this mycotoxin at the C3 carbon carried out by multiple Devosia species. Moreover, it sets practical examples and discusses how the recent standing-knowledge of bacterial detoxifications of this mycotoxin has evolved into a fascinating potential of empirical bacterial and enzymatic solutions aiming at addressing DON contamination. The obtained results argue for determining the involved enzyme’s co-factors and defining the chemistry behind the established catalytic activity at an early stage of investigation to maximise the chances of isolating the responsible enzymes.
Collapse
Affiliation(s)
- Y.I. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| | - T. Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, 93 Stone Road West, Guelph, Ontario N1G 5C9, Canada
| |
Collapse
|
37
|
Gao X, Mu P, Wen J, Sun Y, Chen Q, Deng Y. Detoxification of trichothecene mycotoxins by a novel bacterium, Eggerthella sp. DII-9. Food Chem Toxicol 2017; 112:310-319. [PMID: 29294345 DOI: 10.1016/j.fct.2017.12.066] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023]
Abstract
Trichothecene mycotoxins are a group of structurally related sesquiterpenoid metabolites produced by multiple Fusarium species that often contaminate cereals and threaten human and animal health. The basic structure of this mycotoxin group is a characteristic 12, 13-epoxide group, which is considered an essential functional group for toxicity. In this study, using trichothecene mycotoxin deoxynivalenol (DON) as a representative substrate, we identified a novel trichothecene deepoxidation bacterium, Eggerthella sp. DII-9 (DII-9), from chicken intestines. DII-9 can grow and transform DON over abroad range of temperatures (20-45 °C) and pH values (5-10), suggesting the possibility of developing promising future applications as feed additives. Substrate specificity analysis showed that DII-9 is capable of promoting the deepoxidation of DON, HT-2, T-2 triol and T-2 tetraol. To explore the molecular mechanisms of the de-epoxidation of trichothecenes, the complete genome of DII-9 was sequenced and characterized. Altogether, a novel detoxification bacterium for trichothecene mycotoxins was identified and characterized.
Collapse
Affiliation(s)
- Xiaojuan Gao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Qingmei Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; Key Laboratory of Zoonosis of Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, PR China.
| |
Collapse
|
38
|
Bernardeau M, Lehtinen MJ, Forssten SD, Nurminen P. Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:2570-2584. [PMID: 28740315 PMCID: PMC5502041 DOI: 10.1007/s13197-017-2688-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/18/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
Bacillus spp. are widely used in animal production for their probiotic properties. In many animal species, feed supplementation with specific Bacillus strains can provide numerous benefits including improvement in digestibility, the gut microbiota and immune modulation, and growth performance. Bacilli are fed to animals as spores that can sustain the harsh feed processing and long storage. However, the spores are metabolically quiescent and it is widely accepted that probiotics should be in a metabolically active state to perform certain probiotic functions like secretion of antimicrobial compounds and enzymes, synthesis of short chain fatty acids, and competition for essential nutrients. These functions should become active in the host gastrointestinal tract (GIT) soon after digestion of spores in order to contribute to microbiota and host metabolism. Considering that bacterial spores are metabolically dormant and many health benefits are provided by vegetative cells, it is of particular interest to discuss the life cycle of Bacillus in animal GIT. This review aims to capture the main characteristics of spores and vegetative cells and to discuss the latest knowledge in the life cycle of beneficial Bacillus in various intestinal environments. Furthermore, we review how the life cycle may influence probiotic functions of Bacillus and their benefits for human and animal health.
Collapse
Affiliation(s)
- M. Bernardeau
- DuPont-Danisco, Industrial Biosciences, Animal Nutrition, Marlborough, UK
- Normandy University, ABTE, 14032 Caen, France
| | | | | | - P. Nurminen
- DuPont Nutrition and Health, Kantvik, Finland
| |
Collapse
|
39
|
Xia X, Zhang Y, Li M, Garba B, Zhang Q, Wang Y, Zhang H, Li P. Isolation and characterization of a Bacillus subtilis strain with aflatoxin B 1 biodegradation capability. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.12.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Frobose HL, Erceg JA, Fowler SQ, Tokach MD, DeRouchey JM, Woodworth JC, Dritz SS, Goodband RD. The progression of deoxynivalenol-induced growth suppression in nursery pigs and the potential of an algae-modified montmorillonite clay to mitigate these effects. J Anim Sci 2017; 94:3746-3759. [PMID: 27898884 DOI: 10.2527/jas.2016-0663] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two experiments were conducted to characterize the progression of deoxynivalenol (DON)-induced growth suppression and to investigate algae-modified montmorillonite clay (AMMC) as a means to alleviate the effects of DON in nursery pigs. In both experiments, naturally DON-contaminated wheat was used to produce diets with desired DON levels. In Exp. 1, 280 barrows and gilts (10.0 ± 0.2 kg BW) were used in a 28-d experiment arranged in a 2 × 2 + 1 factorial design with 8 replicates per treatment. The 5 treatments consisted of 2 positive control (PC) diets with DON below detection limits and with or without 0 or 0.50% AMMC and 3 negative control (NC) diets with 5 mg/kg of DON and containing 0, 0.25, or 0.50% AMMC. No DON × AMMC interactions were observed. Overall, pigs fed DON had decreased ( < 0.001) ADG and final BW regardless of AMMC addition. Feeding DON-contaminated diets elicited the most severe depression ( < 0.001) in ADFI and G:F from d 0 to 3, remaining poorer overall ( < 0.01) but lessening in severity as exposure time increased. Pigs fed DON diets had greater ( < 0.05) within pen BW variation (CV) on d 28. Although the addition of 0.50% AMMC to diets restored ( < 0.05) ADFI from d 14 to 21 to levels similar to the PC, no other differences were observed for AMMC inclusion. In Exp. 2, 360 barrows (11.4 ± 0.2 kg BW) were used in a 21-d experiment with 9 dietary treatments arranged in a 3 × 3 factorial design with DON and AMMC inclusion as main effects. There were 8 replicate pens per treatment. Treatments consisted of 3 PC diets without DON, 3 low-DON (1.5 mg/kg DON) NC diets, and 3 high-DON (3 mg/kg DON) NC diets with 0, 0.17, or 0.50% AMMC incorporated at each DON level. No DON × AMMC interactions were observed. As DON level increased, ADG and final BW decreased (quadratic, < 0.05), driven by decreased (quadratic, < 0.01) ADFI and poorer (quadratic; < 0.05) G:F. At both 1.5 and 3 mg/kg DON, reductions in ADG were most marked from d 0 to 7 (15 to 22% lower) and were least distinct from d 14 to 21 (5 to 6% lower). Incorporating AMMC at increasing levels had no effect on ADG, ADFI, G:F, or final BW. Overall, these experiments reinforce DON effects on feed intake but also indicate that the effects of DON on G:F may be more severe than previously thought. Furthermore, some pigs appear to develop tolerance to DON, as effects on ADFI and G:F lessen over time. However, the addition of AMMC did not offset the deleterious effects of DON.
Collapse
|
41
|
Zhu Y, Hassan YI, Lepp D, Shao S, Zhou T. Strategies and Methodologies for Developing Microbial Detoxification Systems to Mitigate Mycotoxins. Toxins (Basel) 2017; 9:E130. [PMID: 28387743 PMCID: PMC5408204 DOI: 10.3390/toxins9040130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/01/2023] Open
Abstract
Mycotoxins, the secondary metabolites of mycotoxigenic fungi, have been found in almost all agricultural commodities worldwide, causing enormous economic losses in livestock production and severe human health problems. Compared to traditional physical adsorption and chemical reactions, interest in biological detoxification methods that are environmentally sound, safe and highly efficient has seen a significant increase in recent years. However, researchers in this field have been facing tremendous unexpected challenges and are eager to find solutions. This review summarizes and assesses the research strategies and methodologies in each phase of the development of microbiological solutions for mycotoxin mitigation. These include screening of functional microbial consortia from natural samples, isolation and identification of single colonies with biotransformation activity, investigation of the physiological characteristics of isolated strains, identification and assessment of the toxicities of biotransformation products, purification of functional enzymes and the application of mycotoxin decontamination to feed/food production. A full understanding and appropriate application of this tool box should be helpful towards the development of novel microbiological solutions on mycotoxin detoxification.
Collapse
Affiliation(s)
- Yan Zhu
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Yousef I Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Suqin Shao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| | - Ting Zhou
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G5C9, Canada.
| |
Collapse
|
42
|
|
43
|
Ji C, Fan Y, Zhao L. Review on biological degradation of mycotoxins. ACTA ACUST UNITED AC 2016; 2:127-133. [PMID: 29767078 PMCID: PMC5941024 DOI: 10.1016/j.aninu.2016.07.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/03/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022]
Abstract
The worldwide contamination of feeds and foods with mycotoxins is a significant problem. Mycotoxins pose huge health threat to animals and humans. As well, mycotoxins bring enormous economic losses in food industry and animal husbandry annually. Thus, strategies to eliminate or inactivate mycotoxins in food and feed are urgently needed. Traditional physical and chemical methods have some limitations such as limited efficacy, safety issues, losses in the nutritional value and the palatability of feeds, as well as the expensive equipment required to implement these techniques. Biological degradation of mycotoxins has shown promise because it works under mild, environmentally friendly conditions. Aflatoxin (AF), zearalenone (ZEA) and deoxynivalenol (DON) are considered the most economically important mycotoxins in terms of their high prevalence and significant negative effects on animal performance. Therefore, this review will comprehensively describe the biological degradation of AF, ZEA and DON by microorganisms (including fungi and bacteria) and specific enzymes isolated from microbial systems that can convert mycotoxins with varied efficiency to non- or less toxic products. Finally, some strategies and advices on existing difficulties of biodegradation research are also briefly proposed in this paper.
Collapse
|
44
|
Microbial biotransformation of DON: molecular basis for reduced toxicity. Sci Rep 2016; 6:29105. [PMID: 27381510 PMCID: PMC4933977 DOI: 10.1038/srep29105] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/14/2016] [Indexed: 11/08/2022] Open
Abstract
Bacteria are able to de-epoxidize or epimerize deoxynivalenol (DON), a mycotoxin, to deepoxy-deoxynivalenol (deepoxy-DON or DOM-1) or 3-epi-deoxynivalenol (3-epi-DON), respectively. Using different approaches, the intestinal toxicity of 3 molecules was compared and the molecular basis for the reduced toxicity investigated. In human intestinal epithelial cells, deepoxy-DON and 3-epi-DON were not cytotoxic, did not change the oxygen consumption or impair the barrier function. In intestinal explants, exposure for 4 hours to 10 μM DON induced intestinal lesions not seen in explants treated with deepoxy-DON and 3-epi-DON. A pan-genomic transcriptomic analysis was performed on intestinal explants. 747 probes, representing 323 genes, were differentially expressed, between DON-treated and control explants. By contrast, no differentially expressed genes were observed between control, deepoxy-DON and 3-epi-DON treated explants. Both DON and its biotransformation products were able to fit into the pockets of the A-site of the ribosome peptidyl transferase center. DON forms three hydrogen bonds with the A site and activates MAPKinases (mitogen-activated protein kinases). By contrast deepoxy-DON and 3-epi-DON only form two hydrogen bonds and do not activate MAPKinases. Our data demonstrate that bacterial de-epoxidation or epimerization of DON altered their interaction with the ribosome, leading to an absence of MAPKinase activation and a reduced toxicity.
Collapse
|
45
|
Tian Y, Tan Y, Liu N, Liao Y, Sun C, Wang S, Wu A. Functional Agents to Biologically Control Deoxynivalenol Contamination in Cereal Grains. Front Microbiol 2016; 7:395. [PMID: 27064760 PMCID: PMC4811902 DOI: 10.3389/fmicb.2016.00395] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/14/2016] [Indexed: 01/30/2023] Open
Abstract
Mycotoxins, as microbial secondary metabolites, frequently contaminate cereal grains and pose a serious threat to human and animal health around the globe. Deoxynivalenol (DON), a commonly detected Fusarium mycotoxin, has drawn utmost attention due to high exposure levels and contamination frequency in the food chain. Biological control is emerging as a promising technology for the management of DON contamination. Functional biological control agents (BCAs), which include antagonistic microbes, natural fungicides derived from plants and detoxification enzymes, can be used to control DON contamination at different stages of grain production. In this review, studies regarding different biological agents for DON control in recent years are summarized for the first time. Furthermore, this article highlights the significance of BCAs for controlling DON contamination, as well as the need for more practical and efficient BCAs concerning food safety.
Collapse
Affiliation(s)
- Ye Tian
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Yanglan Tan
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Yucai Liao
- College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Changpo Sun
- Academy of State Administration of GrainBeijing, China
| | - Shuangxia Wang
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
46
|
Frobose H, Fruge E, Tokach M, Hansen E, DeRouchey J, Dritz S, Goodband R, Nelssen J. The influence of pelleting and supplementing sodium metabisulfite (Na2S2O5) on nursery pigs fed diets contaminated with deoxynivalenol. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.09.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Kosawang C, Karlsson M, Jensen DF, Dilokpimol A, Collinge DB. Transcriptomic profiling to identify genes involved in Fusarium mycotoxin Deoxynivalenol and Zearalenone tolerance in the mycoparasitic fungus Clonostachys rosea. BMC Genomics 2014; 15:55. [PMID: 24450745 PMCID: PMC3902428 DOI: 10.1186/1471-2164-15-55] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 01/16/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Clonostachys rosea strain IK726 is a mycoparasitic fungus capable of controlling mycotoxin-producing Fusarium species, including F. graminearum and F. culmorum, known to produce Zearalenone (ZEA) and Deoxynivalenol (DON). DON is a type B trichothecene known to interfere with protein synthesis in eukaryotes. ZEA is a estrogenic-mimicing mycotoxin that exhibits antifungal growth. C. rosea produces the enzyme zearalenone hydrolase (ZHD101), which degrades ZEA. However, the molecular basis of resistance to DON in C. rosea is not understood. We have exploited a genome-wide transcriptomic approach to identify genes induced by DON and ZEA in order to investigate the molecular basis of mycotoxin resistance C. rosea. RESULTS We generated DON- and ZEA-induced cDNA libraries based on suppression subtractive hybridization. A total of 443 and 446 sequenced clones (corresponding to 58 and 65 genes) from the DON- and ZEA-induced library, respectively, were analysed. DON-induced transcripts represented genes encoding metabolic enzymes such as cytochrome P450, cytochrome c oxidase and stress response proteins. In contrast, transcripts encoding the ZEA-detoxifying enzyme ZHD101 and those encoding a number of ATP-Binding Cassette (ABC) transporter transcripts were highly frequent in the ZEA-induced library. Subsequent bioinformatics analysis predicted that all transcripts with similarity to ABC transporters could be ascribed to only 2 ABC transporters genes, and phylogenetic analysis of the predicted ABC transporters suggested that they belong to group G (pleiotropic drug transporters) of the fungal ABC transporter gene family. This is the first report suggesting involvement of ABC transporters in ZEA tolerance. Expression patterns of a selected set of DON- and ZEA-induced genes were validated by the use of quantitative RT-PCR after exposure to the toxins. The qRT-PCR results obtained confirm the expression patterns suggested from the EST redundancy data. CONCLUSION The present study identifies a number of transcripts encoding proteins that are potentially involved in conferring resistance to DON and ZEA in the mycoparasitic fungus C. rosea. Whilst metabolic readjustment is potentially the key to withstanding DON, the fungus produces ZHD101 to detoxify ZEA and ABC transporters to transport ZEA or its degradation products out from the fungal cell.
Collapse
Affiliation(s)
- Chatchai Kosawang
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
48
|
McCormick SP. Microbial detoxification of mycotoxins. J Chem Ecol 2013; 39:907-18. [PMID: 23846184 DOI: 10.1007/s10886-013-0321-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/24/2013] [Accepted: 06/28/2013] [Indexed: 11/24/2022]
Abstract
Mycotoxins are fungal natural products that are toxic to vertebrate animals including humans. Microbes have been identified that enzymatically convert aflatoxin, zearalenone, ochratoxin, patulin, fumonisin, deoxynivalenol, and T-2 toxin to less toxic products. Mycotoxin-degrading fungi and bacteria have been isolated from agricultural soil, infested plant material, and animal digestive tracts. Biotransformation reactions include acetylation, glucosylation, ring cleavage, hydrolysis, deamination, and decarboxylation. Microbial mycotoxin degrading enzymes can be used as feed additives or to decontaminate agricultural commodities. Some detoxification genes have been expressed in plants to limit the pre-harvest mycotoxin production and to protect crop plants from the phytotoxic effects of mycotoxins. Toxin-deficient mutants may be useful in assessing the role of mycotoxins in the ecology of the microorganisms.
Collapse
Affiliation(s)
- Susan P McCormick
- Bacterial Foodborne Pathogens and Mycology Research Unit, USDA-ARS-NCAUR, Peoria, IL, 61604, USA.
| |
Collapse
|