1
|
Chavez-Esquivel G, Ángeles-Beltrán D, de la Torre PMT, Cortes-Cordova DE, Huerta-Arcos L, de Los Santos PE. Antimicrobial and antifungal edible coatings with ZnO nanoparticles dispersed in a chitosan-guar gum matrix for hass avocado preservation. Int J Biol Macromol 2025; 308:142467. [PMID: 40158575 DOI: 10.1016/j.ijbiomac.2025.142467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/15/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
ZnO nanoparticles were synthesized via the sol-gel method and calcined at 400 °C (4ZnO) and 600 °C (6ZnO). ZnO nanoparticles were mechanically incorporated into chitosan-guar gum (QG) gels to develop edible active coatings (EACs). The coating antimicrobial efficacy was assessed using a double-layer agar test against Clavibacter michiganensis, Pseudomonas savastanoi, Tatumella terrea, Xanthomonas axonopodis, and Ralstonia solanacearum. Additionally, QG, 4ZnO/QG, and 6ZnO/QG coatings were tested to protect Hass avocados against the Phytophthora cinnamomi fungal infection. All coatings were characterized by water vapor transmission rate (WVTR), water vapor permeability (WVP), thermogravimetric analysis, Fourier Transform Infrared Spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The results revealed that the calcination temperature of ZnO nanoparticles significantly influenced the antimicrobial performance and the physicochemical properties of 4ZnO/QG and 6ZnO/QG coatings. Higher ZnO calcination temperatures generated larger wurtzite crystal sizes and ZnO particle agglomeration in the EACs, associated with a higher ability to inhibit bacterial and fungal growth. However, low WVTR and WVP values and high thermal stability were closely linked to lower ZnO calcination temperatures. Application of 4ZnO/QG and 6ZnO/QG coatings on Hass avocados effectively delayed ripening by inhibiting fungal growth, preserving firmness, minimizing weight loss, and maintaining nutritional quality for up to 16 days. These coatings present a promising solution for post-harvest preservation and food safety in climacteric fruits.
Collapse
Affiliation(s)
- G Chavez-Esquivel
- Área de Química, departamento de Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Av San Pablo 420, Nueva el Rosario, Azcapotzalco, 02128, Ciudad de México, Mexico.
| | - D Ángeles-Beltrán
- Área de Química, departamento de Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Av San Pablo 420, Nueva el Rosario, Azcapotzalco, 02128, Ciudad de México, Mexico
| | - P M Tellez de la Torre
- Área de Química, departamento de Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Av San Pablo 420, Nueva el Rosario, Azcapotzalco, 02128, Ciudad de México, Mexico
| | - D E Cortes-Cordova
- Área de Química, departamento de Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, Av San Pablo 420, Nueva el Rosario, Azcapotzalco, 02128, Ciudad de México, Mexico
| | - L Huerta-Arcos
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - P Estrada de Los Santos
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación Carpio y Plan de Ayala S/N, Col. Santo Tomás, Miguel Hidalgo, 11340, Ciudad de México, Mexico
| |
Collapse
|
2
|
Yan J, Zhu Y, Luo T, Liao X, Chen X, Hua F, He H. Evaluation of a multifunctional orthodontic adhesive incorporating zinc oxide quantum dots. Am J Orthod Dentofacial Orthop 2025:S0889-5406(25)00098-8. [PMID: 40119867 DOI: 10.1016/j.ajodo.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 03/24/2025]
Abstract
INTRODUCTION The objective of this study was to further evaluate the long-term antibiofilm and fluorescence properties as well as enamel demineralization prevention ability, removal efficiency, and biocompatibility of an orthodontic adhesive modified with zinc oxide quantum dots (ZnQDs). METHODS ZnQDs were synthesized and characterized by transmission electron microscope and fluorescence observation. Minimal inhibitory concentration and minimum bactericidal concentration of ZnQDs against Streptococcus mutans were evaluated. ZnQDs (20% by weight) were incorporated into Transbond XT adhesive paste to form the multifunctional orthodontic adhesive (quantum dots adhesive 20 [QDA20]). Long-term antibiofilm capability and fluorescence properties were evaluated after saliva storage aging. A biofilm demineralization model was constructed, and the enamel demineralization degree was evaluated by color analysis, Raman analysis and microcomputed tomography. Bracket bonding and debonding procedures were performed on a head simulator, and the effectiveness of adhesive removal was assessed. Subcutaneous tissue, blood, and organ compatibility assays were performed on a rat subcutaneous tissue implant model. RESULTS ZnQDs had a diameter of approximately 5 nm, and the minimal inhibitory concentration and minimum bactericidal concentration against S mutans were 0.32 and 1.25 mg/mL. ZnQDs showed long-lasting antibiofilm and fluorescent properties and could reduce the color change and mineral loss of enamel during the biofilm demineralization process. On the head simulator, QDA20 could help the operator remove adhesive more thoroughly without damaging enamel. Histologic analysis of subcutaneous tissue and organs, and blood analysis proved that QDA20 was well-biocompatible. CONCLUSIONS ZnQDs showed excellent antibiofilm and fluorescent properties and thus could be a multifunctional adhesive to overcome the 2 major challenges of enamel demineralization and difficulty in recognizing adhesives during fixed orthodontic treatment.
Collapse
Affiliation(s)
- Jiarong Yan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yun Zhu
- Department of Orthodontics and Prosthodontics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ting Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaozhu Liao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China; Clinical Research Center for Oral Diseases of Zhejiang Province, Zhejiang University, Hangzhou, China; Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University, Hangzhou, China; Cancer Center of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Fang Hua
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Center for Orthodontics and Pediatric Dentistry at Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, China; Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom.
| | - Hong He
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Paul S, Das S, Sepay N, Basak N, Sen B, Islam E, Das U, van Smaalen S, Abbas SJ, Ali SI. Acentric Order-Disorder Zn 3Sb 4CO 6F 6: Crystal Structure, Dye Degradation, Cr(VI) Removal, Antibacterial Activity, and Catalytic C-C Bond Formation. Inorg Chem 2025; 64:2649-2668. [PMID: 39912918 DOI: 10.1021/acs.inorgchem.4c03972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Acentric Zn3Sb4CO6F6 has been synthesized by a hydrothermal technique. Single crystal X-ray diffraction study reveals that it crystallizes in cubic symmetry with a = 8.1480 (5) Å and Z = 2 (I4̅3 m). The carbon atom has tetrahedral coordination by Sb, either as an ordered structure at the center of the tetrahedron or as a disordered structure with carbon displaced toward three Sb atoms; the latter model leads to more acceptable Sb-C interatomic distances. Zn3Sb4CO6F6 has been established as the first multifunctional [M-L-C-O-F] compound, with exceptional properties, i.e., photocatalyst, adsorbent, catalyst for organic reactions, and antibacterial agent. This compound successfully degraded 89.5% of 50 mg/L methylene blue dye under solar illumination. It was also proved to be a proficient adsorbent toward Cr(VI) removal with qmax of 47.18 mg/g. The antibacterial activity was investigated by "agar cup assay" against both Gram-positive and Gram-negative bacterial strains. Zn3Sb4CO6F6 also functions as an excellent catalyst for the solvent-free Knoevenagel condensation reaction, with more than 90% yield. Theoretical investigations further proved that Zn3Sb4CO6F6 exhibits a direct band gap energy of 1.76 eV, which is consistent with the experimental findings. The synthesized compound was also characterized through fourier transform infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction study.
Collapse
Affiliation(s)
- Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, P-1/2 Suhrawardy Avenue, Kolkata, West Bengal 700017, India
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Nadia 741235, West Bengal, India
| | - Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Nadia 741235, West Bengal, India
| | - Uttam Das
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
- Department of Chemistry, Kalyani Government Engineering College, Nadia 741235, West Bengal, India
| | - Sander van Smaalen
- Laboratory of Crystallography, University of Bayreuth, Bayreuth 95440, Germany
| | - Sk Jahir Abbas
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
4
|
Kim SH, Kim DY, Park JS, Park M, Park MC. Antimicrobial and Antibiofilm Activities of Urinary Catheter Incorporated with ZnO-Carbon Nanotube. ACS APPLIED BIO MATERIALS 2025; 8:1397-1405. [PMID: 39874181 DOI: 10.1021/acsabm.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Urinary tract infections are among the most common nosocomial infections, with the majority being catheter-associated urinary tract infections (CAUTIs). This study demonstrated that an antimicrobial and antibiofilm urinary catheter containing zinc oxide-carbon nanotubes (ZnO-CNT) can inhibit CAUTIs in patients. ZnO-CNT polymers were synthesized by mixing ZnO and CNT using a high-shear mixer, and the synthesized ZnO-CNT polymers were incorporated into a silicone matrix to produce a ZnO-CNT urinary catheter. Scanning electron microscopy was used to evaluate the morphology and atomic composition of the polymer and urinary catheter, which contained 1.23% Zn element. Dynamic light scattering analysis showed an average particle size of 253.4 nm with a zeta potential of +21.4 mV. To assess antimicrobial activity, the ZnO-CNT polymer and urinary catheter were tested using minimum inhibitory concentration (MIC) and antibiofilm assays. The ZnO-CNT polymers exhibited MIC values of 0.0078, 1, 0.00625, and 0.0039% against E. coli, P. aeruginosa, E. faecalis, and S. aureus, respectively. Antibiofilm assays conducted at concentrations ranging from 1/4 to 2 × MIC demonstrated effective inhibition of biofilm formation at 1 × MIC or lower concentrations in E. coli and P. aeruginosa. The ZnO-CNT urinary catheter inhibited biofilm formation by 53.42 and 56.44% after 120 h of incubation compared to the silicone urinary catheter against E. coli and P. aeruginosa, respectively. These findings suggest that the ZnO-CNT urinary catheter could not only replace commonly used silicone catheters to reduce patient discomfort but also serve as a viable alternative to antimicrobial urinary catheters coated with metal alloys such as silver, gold, or palladium.
Collapse
Affiliation(s)
- Seong Hwan Kim
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50832, Republic of Korea
| | - Dong Yun Kim
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea
| | - Je Seon Park
- Department of Pharmaceutical Engineering, Inje University, Gimhae 50832, Republic of Korea
| | - Myungchan Park
- Department of Urology, Haeundae Paik Hospital, Inje University College of Medicine, Busan 48108, Republic of Korea
| | - Min Chul Park
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50832, Republic of Korea
| |
Collapse
|
5
|
Masadeh MM, Bany-Ali NM, Khanfar MS, Alzoubi KH, Masadeh MM, Al Momany EM. Synergistic Antibacterial Effect of ZnO Nanoparticles and Antibiotics against Multidrug-resistant Biofilm Bacteria. Curr Drug Deliv 2025; 22:92-106. [PMID: 38231065 DOI: 10.2174/0115672018279213240110045557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The misuse of antibiotics leads to a global increase in antibiotic resistance. Therefore, it is imperative to search for alternative compounds to conventional antibiotics. ZnO nanoparticles (Zn NP) are one of these alternatives because they are an effective option to overcome biofilm bacterial cells and a novel way to overcome multidrug resistance in bacteria. The current research study aims to characterize the efficacy of ZnO nanoparticles alone and in combination with other antibacterial drugs against bacterial biofilms. METHODS ZnO NPs were prepared by co-precipitation method, and their anti-biofilm and antibacterial activities alone or combined with four types of broad-spectrum antibacterial (Norfloxacin, Colistin, Doxycycline, and Ampicillin) were evaluated against E. coli and S. aureus bacterial strains. Finally, the cytotoxicity and the hemolytic activity were evaluated. RESULTS ZnO NPs were prepared, and results showed that their size was around 10 nm with a spherical shape and a zeta potential of -21.9. In addition, ZnO NPs were found to have a strong antibacterial effect against Gram-positive and Gram-negative microorganisms, with a minimum inhibitory concentration (MIC) of 62.5 and 125 μg/mL, respectively. Additionally, they could eradicate biofilmforming microorganisms at a concentration of 125 μg/m. ZnO NPs were found to be non-toxic to erythrocyte cells. Still, some toxicity was observed for Vero cells at effective concentration ranges needed to inhibit bacterial growth and eradicate biofilm-forming organisms. When combined with different antibacterial, ZnO NP demonstrated synergistic and additive effects with colistin, and the MIC and MBEC of the combination decreased significantly to 0.976 μg/mL against planktonic and biofilm strains of MDR Gram-positive bacteria, resulting in significantly reduced toxicity. CONCLUSION The findings of this study encourage the development of alternative therapies with high efficacy and low toxicity. ZnO nanoparticles have demonstrated promising results in overcoming multi-drug resistant bacteria and biofilms, and their combination with colistin has shown a significant reduction in toxicity. Further studies are needed to investigate the potential of ZnO nanoparticles as a viable alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Noor M Bany-Ali
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan, 22110
| | - Majd M Masadeh
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, University Sains Malaysia, 11800, Penang, Malaysia
| | - Enaam M Al Momany
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, P.O. box 330127, Zarqa 13133, Jordan
| |
Collapse
|
6
|
Ravichandran R, Annamalai A, Annamalai K, Jeevarathinam A, Ranganathan S, Elumalai S. Hand-crafted potent hydroxyl-rich husk succoured Fe 3O 4 @ Cu, Mn, Ni, Co - tetra-metallic heterogenous nanocomposite as a catalytic accelerant. NANOSCALE 2024; 16:12081-12094. [PMID: 38818925 DOI: 10.1039/d4nr01211a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
An innovative means of synthesizing mechanically recoverable ternary nanocomposite (NC) comprising Fe3O4 supported on Oryza sativa husk (OSH) and ornamented with 3d tetra-metals (M = Mn, Co, Ni, Cu) is proposed using a manual grinding method. This NC was prepared via a one-step manual method. The added advantage of this method is the non-usage of solvents during the synthesis of the NC. In situ, the NPs were grown on OSH-supported magnetite NPs, where they combined to form a matrix to facilitate the formation of the metal NPs in it. The as-crafted Oryza sativa husk-supported magnetite @ tetra-metallic nanocore hybrid (OSFTC) was confirmed via several characterisation techniques, such as XRD, FT-IR, HR-TEM, FE-SEM, XPS, VSM, NMR, and UV-vis analysis. The interesting twist in this NC is that the leaching-in of metals toward the core of the NC increases the magnetic nature of the composite as evidenced by VSM analysis. The electrostatic attraction between NPs formed and the matrix plausibly results in enhanced photocatalytic degradation of pharma-waste in an efficient way. The activity of the OSFTC increases for ciprofloxacin and paracetamol by 67 and 71%. Furthermore, the hydrogenation of anthropogenic pollutants via a foreign agent yields a good conversion percentage of 92%. In addition, the noxious hexavalent chromium is converted to a trivalent cation with the help of OSFTC, indicating good conversion under ambient conditions. Herein, OSFTC also exhibited effective activity against both Gram-positive and Gram-negative bacteria. Moreover, the ternary composite demonstrates consistent and commendable activity against pharmaceutical compounds and carcinogenic pollutants. The OSFTC was designed in a way to perform the cleavage of bonds for toxic materials efficiently.
Collapse
Affiliation(s)
- Ramya Ravichandran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India.
| | - Arun Annamalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India.
| | - Kumaresan Annamalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India.
| | - Anandhavalli Jeevarathinam
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India.
| | - Suresh Ranganathan
- Department of Chemistry, Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore - 641021, India
| | - Sundaravadivel Elumalai
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu - 603203, India.
| |
Collapse
|
7
|
Yang M, Du D, Hao Y, Meng Z, Zhang H, Liu Y. Preparation of an injectable zinc-containing hydrogel with double dynamic bond and its potential application in the treatment of periodontitis. RSC Adv 2024; 14:19312-19321. [PMID: 38887645 PMCID: PMC11181151 DOI: 10.1039/d4ra00546e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Periodontal tissue regeneration continues to face significant clinical challenges. Periodontitis leads to alveolar bone resorption and even tooth loss due to persistent microbial infection and persistent inflammatory response. As a promising topical drug delivery system, the application of hydrogels in the controlled release of periodontal bioactive drugs has aroused great interest. Therefore, the design and preparation of an injectable hydrogel with self-repairing properties for periodontitis treatment is still in great demand. In this study, polysaccharide-based self-healing hydrogels with antimicrobial osteogenic properties were developed. Zinc ions are introduced into a dynamic cross-linking network formed by dynamic Schiff bases between carboxymethyl chitosan and oxidized hyaluronic acid via coordination bonds. The OC-Zn hydrogels exhibited good tissue adhesion, good fatigue resistance, excellent self-healing ability, low cytotoxicity, good broad-spectrum antimicrobial activity, and osteogenic activity. Therefore, the designed hydrogels allow the development of drug delivery systems as a potential treatment for periodontitis.
Collapse
Affiliation(s)
- Mei Yang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Dejiang Du
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Zhaojian Meng
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Haiyu Zhang
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| | - Yuhan Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University Qingdao 266000 Shandong China
| |
Collapse
|
8
|
Xu X, Wang J, Sun TC, Li Q, Ning RD. In situ forming Hydrogel with adding ZnO Nano-particle for effectively methicillin-resistant Staphylococcus aureus infected frostbite injury. Regen Ther 2024; 26:956-966. [PMID: 39512738 PMCID: PMC11541235 DOI: 10.1016/j.reth.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/16/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Hydrogel has emerged as a promising wound dressing material, and in situ forming hydrogel has emerged as a promising wound dressing recently. But most in situ forming hydrogel are normally unstable. Herein, we report an in-situ forming hydrogel synthesized from poly(Nisopropylacrylamide166-co-n-butyl acrylate9)-poly(ethyleneglycol)-poly(N-isopropylacrylamide166-co-n-butyl acrylate9) copolymer (P(NIPAM166-co-nBA9)-PEG-P(NIPAM166-conBA9), denoted as PEP) and zinc oxide nano-particle(ZnO nano-particle) in response to skin temperature. This thermoresponsive hydrogel exhibits sol-gel reversibility at high temperatures, which is closed to the temperature of human skin. To investigate its healing effects, we used the Hydrogel dressing® in an SD rat model. The biocompatibility and antibacterial ability against methicillin-resistant Staphylococcus aureus(MRSA) of this PEP-ZnO hydrogel wound dressing are confirmed in vitro and in vivo, which could transparently promote the healing of a MRSA-infected frostbitten skin Injury. Materials and methods Thirty rats were randomly divided into two groups. The treatment group received hydrogel and transparent film dressing 30 min to 1 h post-burn, while the control group received only cotton dressing. The wound area was measured, and the wound closure rate was calculated on days 3, 7, and 14 post-surgery. Tissue samples were collected from each rat on these days and stored at -80 °C for histological analysis using H&E, Masson and immunohistochemical staining. This analysis assessed factors such as granulation tissue length, re-epithelialization, re-angiogenesis, collagen deposition, inflammatory cell infiltration, and collagen production. Clinical and histological assessments at 14 days showed more rapid healing in the hydrogel dressing group compared to the control group. Conclusion Our results indicate that the design of our hydrogel for cooling injury wounds effectively improves healing and mitigates the damage from low temperatures.
Collapse
Affiliation(s)
- Xun Xu
- The Third Affiliated Hospital of Anhui Medical University, Hefei's First People's Hospital, Anhui Medical University, Hefei, Anhui 230000, People's Republic of China
| | - Jun Wang
- The Third Affiliated Hospital of Anhui Medical University, Hefei's First People's Hospital, Anhui Medical University, Hefei, Anhui 230000, People's Republic of China
| | - Tian-Ci Sun
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Qing Li
- The First Affiliated Hospital of USTC, An Hui Provincial Hospital, Hefei, Anhui 230000, People's Republic of China
| | - Ren-De Ning
- The Third Affiliated Hospital of Anhui Medical University, Hefei's First People's Hospital, Anhui Medical University, Hefei, Anhui 230000, People's Republic of China
| |
Collapse
|
9
|
Ahmed WI, Mohammed AN, Sleim ASA. Efficacy evaluation of hydrogen peroxide disinfectant based zinc oxide nanoparticles against diarrhea causing Escherichia coli in ruminant animals and broiler chickens. Sci Rep 2024; 14:9159. [PMID: 38644372 PMCID: PMC11033286 DOI: 10.1038/s41598-024-59280-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024] Open
Abstract
Different strains of Escherichia coli that exhibit genetic characteristics linked to diarrhea pose a major threat to both human and animal health. The purpose of this study was to determine the prevalence of pathogenic Escherichia coli (E. coli), the genetic linkages and routes of transmission between E. coli isolates from different animal species. The efficiency of disinfectants such as hydrogen peroxide (H2O2), Virkon®S, TH4+, nano zinc oxide (ZnO NPs), and H2O2-based zinc oxide nanoparticles (H2O2/ZnO NPs) against isolated strains of E. coli was evaluated. Using 100 fecal samples from different diarrheal species (cow n = 30, sheep n = 40, and broiler chicken n = 30) for E. coli isolation and identification using the entero-bacterial repetitive intergenic consensus (ERIC-PCR) fingerprinting technique. The E. coli properties isolated from several diarrheal species were examined for their pathogenicity in vitro. Scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), Fourier-transform infrared spectrum (FT-IR), X-ray diffraction (XRD), zeta potential, and particle size distribution were used for the synthesis and characterization of ZnO NPs and H2O2/ZnO NPs. The broth macro-dilution method was used to assess the effectiveness of disinfectants and disinfectant-based nanoparticles against E. coli strains. Regarding the results, the hemolytic activity and Congo red binding assays of pathogenic E. coli isolates were 55.3 and 44.7%, respectively. Eleven virulent E. coli isolates were typed into five ERIC-types (A1, A2, B1, B2, and B3) using the ERIC-PCR method. These types clustered into two main clusters (A and B) with 75% similarity. In conclusion, there was 90% similarity between the sheep samples' ERIC types A1 and A2. On the other hand, 89% of the ERIC types B1, B2, and B3 of cows and poultry samples were comparable. The H2O2/ZnO NPs composite exhibits potential antibacterial action against E. coli isolates at 0.04 mg/ml after 120 min of exposure.
Collapse
Affiliation(s)
- Walaa I Ahmed
- Bacteriology Lab., Alexandria Provincial Lab., Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Asmaa N Mohammed
- Department of Hygiene, Zoonoses and Epidemiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Al-Shimaa A Sleim
- Bacteriology Lab., Alexandria Provincial Lab., Animal Health Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| |
Collapse
|
10
|
Bai Q, Zhang Y, Cai R, Wu H, Fu H, Zhou X, Chai J, Teng X, Liu T. AMP-Coated TiO 2 Doped ZnO Nanomaterials Enhanced Antimicrobial Activity and Efficacy in Otitis Media Treatment by Elevating Hydroxyl Radical Levels. Int J Nanomedicine 2024; 19:2995-3007. [PMID: 38559446 PMCID: PMC10981428 DOI: 10.2147/ijn.s449888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
Background In the past decades, antimicrobial resistance (AMR) has been a major threat to global public health. Long-term, chronic otitis media is becoming more challenging to treat, thus the novel antibiotic alternative agents are much needed. Methods ZnO@TiO2@AMP (ATZ NPs) were synthesized through a solvothermal method and subjected to comprehensive characterization. The in vitro and in vivo antibacterial effect and biocompatibility of ATZ NPs were evaluated. For the antibacterial mechanism exploration, we utilized the Electron Paramagnetic Resonance (EPR) Spectrometer to detect and analyze the hydroxyl radicals produced by ATZ NPs. Results ATZ NPs exhibited a spherical structure of 99.85 nm, the drug-loading rate for ZnO was 20.73%, and AMP within ATZ NPs was 41.86%. Notably, the Minimum Inhibitory Concentration (MIC) value of ATZ NPs against Staphylococcus aureus (S. aureus), methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus pneumoniae (S. pneumoniae) were 10 μg/mL, and Minimum Bactericidal Concentration (MBC) value of ATZ NPs against S. aureus, and S. pneumoniae were 50 μg/mL. In comparison to the model group, the treatment of otitis media with ATZ NPs significantly reduces inflammatory exudation in the middle ear cavity, with no observable damage to the tympanic membrane. Both in vivo and in vitro toxicity tests indicating the good biocompatibility of ATZ NPs. Moreover, EPR spectroscopy results highlighted the superior ability of ATZ NPs to generate hydroxyl radicals (·OH) compared to ZnO NPs. Conclusion ATZ NPs exhibited remarkable antibacterial properties both in vivo and in vitro. This innovative application of advanced ATZ NPs, bringing great promise for the treatment of otitis media.
Collapse
Affiliation(s)
- Qianyu Bai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agriculture University, Beijing, People’s Republic of China
| | - Yichi Zhang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agriculture University, Beijing, People’s Republic of China
| | - Runqiu Cai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agriculture University, Beijing, People’s Republic of China
| | - Haiyan Wu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agriculture University, Beijing, People’s Republic of China
| | - Huiqun Fu
- 101 Institute of the Ministry of Civil Affairs, Beijing, People’s Republic of China
| | - Xuemei Zhou
- 101 Institute of the Ministry of Civil Affairs, Beijing, People’s Republic of China
| | - Jie Chai
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Xuepeng Teng
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Tianlong Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agriculture University, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Vagena IA, Gatou MA, Theocharous G, Pantelis P, Gazouli M, Pippa N, Gorgoulis VG, Pavlatou EA, Lagopati N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:397. [PMID: 38470728 PMCID: PMC10933906 DOI: 10.3390/nano14050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.
Collapse
Affiliation(s)
- Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National Kapodistrian University of Athens (NKUA), 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
12
|
Jiang B, Zhao Y, Cao Y, Sun C, Lu W, Fang Y. Advances in the Interaction between Food-Derived Nanoparticles and the Intestinal Barrier. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3291-3301. [PMID: 38346354 DOI: 10.1021/acs.jafc.3c08145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The maintenance of the intestinal barrier is crucial for the overall balance of the gut and the organism. Dysfunction of the intestinal barrier is closely associated with intestinal diseases. In recent years, due to the increased presence of nanoparticles (NPs) in the human diet, there has been a growing concern regarding the safety and potential impact of these NPs on gastrointestinal health. The interactions between food-derived NPs and the intestinal barrier are numerous. This review provides an introduction to the structure and function of the intestinal barrier along with a comprehensive summary of the interactions between food NPs and the intestinal barrier. Additionally, we highlight the potential connection between the food NPs-induced dysfunction of the intestinal barrier and inflammatory bowel disease. Finally, we discuss the enhancement of food NPs on the repair of the intestinal barrier damage and the nutrients absorption. This review holds significant importance in furthering our understanding of the regulatory mechanisms of food-derived NPs on the intestinal barrier.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yiguo Zhao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yiping Cao
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Cuixia Sun
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Wei Lu
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Yapeng Fang
- Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, 200240 Shanghai, China
| |
Collapse
|
13
|
Al-Momani H, Massadeh MI, Almasri M, Al Balawi D, Aolymat I, Hamed S, Albiss BA, Ibrahim L, Balawi HA, Al Haj Mahmoud S. Anti-Bacterial Activity of Green Synthesised Silver and Zinc Oxide Nanoparticles against Propionibacterium acnes. Pharmaceuticals (Basel) 2024; 17:255. [PMID: 38399471 PMCID: PMC10891609 DOI: 10.3390/ph17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Propionibacterium acnes plays a critical role in the development of acne vulgaris. There has been a rise in the number of patients carrying P. acnes strains that are resistant to antibiotics. Thus, alternative anti-microbial agents are required. Zinc oxide (ZnO-NPs) and silver (Ag-NPs) nanoparticles can be used against several antibiotic-resistant bacteria. The impact of Ag-NPs and ZnO-NPs against two clinical strains of P. acnes, P1 and P2, and a reference strain, NCTC747, were investigated in this research. A chemical approach for the green synthesis of Ag-NPs and ZnO-NPs from Peganum harmala was employed. The microtiter plate method was used to examine the effects of NPs on bacterial growth, biofilm development, and biofilm eradication. A broth microdilution process was performed in order to determine minimal inhibitory (MIC) concentrations. Ag-NPs and ZnO-NPs had a spherical shape and average dimensions of 10 and 50 nm, respectively. MIC values for all P. acnes strains for Ag-NPs and ZnO-NPs were 125 µg/mL and 250 µg/mL, respectively. Ag-NP and ZnO-NP concentrations of 3.9- 62.5 µg/mL and 15-62.5 µg/mL significantly inhibited the growth and biofilm formation of all P. acnes strains, respectively. ZnO-NP concentrations of 15-62.5 μg/mL significantly inhibited the growth of NCTC747 and P2 strains. The growth of P1 was impacted by concentrations of 31.25 μg/mL and 62.5 μg/mL. Biofilm formation in the NCTC747 strain was diminished by a ZnO-NP concentration of 15 μg/mL. The clinical strains of P. acnes were only affected by ZnO-NP titres of more than 31.25 μg/mL. Established P. acne biofilm biomass was significantly reduced in all strains at a Ag-NP and ZnO-NP concentration of 62.5 µg/mL. The findings demonstrated that Ag-NPs and ZnO-NPs exert an anti-bacterial effect against P. acnes. Further research is required to determine their potential utility as a treatment option for acne.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Muhannad I. Massadeh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Muna Almasri
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Dua’a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Saja Hamed
- Department of Pharmaceutical & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, Irbid 22110, Jordan;
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Hadeel Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa’ Applied University, AL-Salt 19117, Jordan;
| |
Collapse
|
14
|
Rashid MH, Sujoy SI, Rahman MS, Haque MJ. Aloe vera assisted green synthesis of Ag and Cu co-doped ZnO nanoparticles and a comprehensive analysis of their structural, morphological, optical, electrical and antibacterial properties. Heliyon 2024; 10:e25438. [PMID: 38322891 PMCID: PMC10844577 DOI: 10.1016/j.heliyon.2024.e25438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
This study investigates the potential of utilizing Aloe vera-assisted green synthesis with transition metal dopants of Ag and Cu for greater efficiency and sustainability in advanced scientific applications utilizing ZnO nanoparticles. Samples were prepared using the co-precipitation method, maintaining a basic pH media of 10. Aloe vera gel extract was chosen for its acclaimed role as a stabilizing and reducing agent and its proven antioxidant, antibacterial, and anticancer properties. The XRD report revealed the hexagonal Wurtzite crystal structure of nanoparticles, exhibiting a crystallite size range of 17-23 nm with substantial alterations in lattice parameters, dislocation density, and bond lengths when dopants were added. Additionally, EDX analysis confirmed the perfect doping of Ag and Cu in ZnO without any impurities. SEM analysis indicated a reduction in agglomeration, accompanied by a transition in particle morphology from columnar to globular. Additionally, the optical study showed a band gap range of 3.18-3.27 eV, confirming it to be a wide band gap semiconductor. The effect of dopants resulted in an increase in transparency and band gap, while a decrease in absorption coefficient in the visible wavelength region. With increasing temperature, a decline in electrical resistivity was noted, with co-doped nanoparticles consistently exhibiting the lowest resistivity, affirming semiconductor characteristics. Most importantly, A remarkable antibacterial efficacy was noticed at low concentrations against gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria. The zone of inhibition produced by nanoparticles exhibited values akin to the antibiotic control, even at substantially lower doses. This research offers a comprehensive analysis of the effects of Ag and Cu in Aloe vera-assisted green-synthesized ZnO nanoparticles, concurrently addressing their potential applications in biomedical, energy storage, and optoelectronic devices.
Collapse
Affiliation(s)
- Md Hasnat Rashid
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Saiful Islam Sujoy
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| | - Md Saifur Rahman
- Department of Physics, Rajshahi University, Rajshahi, 6205, Bangladesh
| | - Md Jahidul Haque
- Department of Glass & Ceramic Engineering, Rajshahi University of Engineering & Technology, Rajshahi, 6204, Bangladesh
| |
Collapse
|
15
|
Bora A, Sarmah D, Rather MA, Mandal M, Karak N. Nanocomposite of starch, gelatin and itaconic acid-based biodegradable hydrogel and ZnO/cellulose nanofiber: A pH-sensitive sustained drug delivery vehicle. Int J Biol Macromol 2024; 256:128253. [PMID: 37989430 DOI: 10.1016/j.ijbiomac.2023.128253] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
In recent years, hydrogels as drug carriers have been receiving great interest due to their ability to change their behavior in response to one or more external stimuli. However, their initial burst release profile limits their practical applications. Therefore, we prepared a bio-based hydrogel nanocomposite (HNC) using starch, itaconic acid, acrylic acid and gelatin in the presence of CNF/ZnO-based nanohybrid (ZONH) and used it to evaluate the pH-sensitive drug release properties in different pH solutions. The prepared HNCs were analyzed using various spectroscopic and microscopic techniques. The BET analysis and swelling test of the HNC indicated improved porosity and swelling capacity due to the addition of ZONH. From the drug release study, sustained drug release rate was observed at pH 4 than those at pH 7.4 and 9, indicating controlled release as well as pH responsive behavior of the HNC. Moreover, the drug released HNC was reused as a photocatalyst for dye degradation and achieved good degradation (%). The antibacterial activity of ZONH and HNC was observed against EC and SA bacterial strains from the antibacterial test. In summary, the prepared HNC can be considered as a potential sustainable DDS for biomedical applications as well as a photocatalyst for dye contaminated water treatment.
Collapse
Affiliation(s)
- Ashok Bora
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India
| | - Dimpee Sarmah
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India
| | - Muzamil Ahmad Rather
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India
| | - Manabendra Mandal
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India
| | - Niranjan Karak
- Advanced Polymer and Nanomaterial Laboratory (APNL), Department of Chemical Sciences, Tezpur University, Napaam, 784028 Tezpur, Assam, India.
| |
Collapse
|
16
|
Mohammadipour HS, Tajzadeh P, Atashparvar M, Yeganehzad S, Erfani M, Akbarzadeh F, Gholami S. Formulation and antibacterial properties of lollipops containing of chitosan- zinc oxide nano particles on planktonic and biofilm forms of Streptococcus mutans and Lactobacillus acidophilus. BMC Oral Health 2023; 23:957. [PMID: 38041064 PMCID: PMC10693077 DOI: 10.1186/s12903-023-03604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/01/2023] [Indexed: 12/03/2023] Open
Abstract
This study aimed to formulate and characterize the experimental lollipops containing chitosan- zinc oxide nanoparticles (CH-ZnO NPs) and investigate their antimicrobial effects against some cariogenic bacteria. The CH-ZnO NPs were synthesized and characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) analysis, and Transmission electron microscope (TEM). Then, four groups were made, including lollipops coated with 2 and 4 ml of CH-ZnO NPs, 0.7 ml CH-ZnO NPs incorporated lollipops, and those with no CH-ZnO NPs. Their antibacterial effectiveness against Streptococcus mutans and Lactobacillus acidophilus was evaluated by direct contact test and tissue culture plate method in planktonic and biofilm phases, respectively. Chlorhexidine mouthrinse (CHX) was used as a positive control group. In the planktonic phase, the antibacterial properties of both groups coated with CH-ZnO NPs were comparable and significantly higher than incorporated ones. There was no significant difference between CHX and the lollipops coated with 4 ml of NPs against S. mutans and CHX and two coated groups against L. acidophilus. None of the experimental lollipops in the biofilm phase could reduce both bacteria counts. The experimental lollipops coated with 2 and 4 ml of CH-ZnO NPs could reveal favorable antimicrobial properties against two cariogenic bacteria in the planktonic phase.
Collapse
Affiliation(s)
- Hamideh Sadat Mohammadipour
- Restorative and Cosmetic Dentistry, Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parastoo Tajzadeh
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Samira Yeganehzad
- Department of Food Processing, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Maryam Erfani
- Radiology Department, Razavi International Hospital, Mashhad, Iran
| | - Fatemeh Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Islamic Azad University, Mashhad, Iran
| | - Sima Gholami
- Department of Restorative and Cosmetic Dentistry, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Manikandan V, Min SC. Roles of polysaccharides-based nanomaterials in food preservation and extension of shelf-life of food products: A review. Int J Biol Macromol 2023; 252:126381. [PMID: 37595723 DOI: 10.1016/j.ijbiomac.2023.126381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
In food production sectors, food spoilage and contamination are major issues that threaten and negatively influence food standards and safety. Several physical, chemical, and biological methods are used to extend the shelf-life of food products, but they have their limitations. Henceforth, researchers and scientists resort to novel methods to resolve these existing issues. Nanomaterials-based extension of food shelf life has broad scope rendering a broad spectrum of activity including high antioxidant and antimicrobial activity. Numerous research investigations have been made to identify the possible roles of nanoparticles in food preservation. A wide range of nanomaterials via different approaches is ultimately applied for food preservation. Among them, chemically synthesized methods have several limitations, unlike biological synthesis. However, biological synthesis protocols are quite expensive and laborious. Predominant studies demonstrated that nanoparticles can protect fruits and vegetables by preventing microbial contamination. Though several nanomaterials designated for food preservation are available, detailed knowledge of the mechanism remains unclear. Hence, this review aims to highlight the various nanomaterials and their roles in increasing the shelf life of food products. Adding to the novel market trends, nano-packaging will open new frontiers and prospects for ensuring food safety and quality.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea
| | - Sea C Min
- Department of Food Science and Technology, Seoul Women's University, 621, Hwarangro, Nowon-gu, Seoul 01797, Republic of Korea.
| |
Collapse
|
18
|
Visagamani AM, Shanthi D, Muthukrishnaraj A, Venkatadri B, Ahamed JI, Kaviyarasu K. Innovative Preparation of Cellulose-Mediated Silver Nanoparticles for Multipurpose Applications: Experiment and Molecular Docking Studies. ACS OMEGA 2023; 8:38860-38870. [PMID: 37901521 PMCID: PMC10601087 DOI: 10.1021/acsomega.3c02432] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/29/2023] [Indexed: 10/31/2023]
Abstract
In recent years, inorganic metal nanoparticle fabrication by extraction of a different part of the plant has been gaining more importance. In this research, cellulose-mediated Ag nanoparticles (cellulose/Ag NPs) with excellent antibacterial and antioxidant properties and photocatalytic activity have been synthesized by the microwave-assisted hydrothermal method. This method is a green, simple, and low-cost method that does not use any other capping or reducing agents. X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), and UV-visible spectroscopic techniques were used to investigate the structure, morphology, as well as components of the generated cellulose/Ag NPs. In fact, XRD results confirm the formation of the face-centered cubic phase of Ag nanoparticles, while the FTIR spectra showed that the synergy of carbohydrates and proteins is responsible for the formation of cellulose/Ag NPs by the green method. It was found that the green-synthesized silver nanoparticles showed good crystallinity and a size range of about 20-30 nm. The morphology results showed that cellulose has a cavity-like structure and the green-synthesized Ag NPs were dispersed throughout the cellulose polymer matrix. In comparison to cellulose/Ag NPs and Ag nanoparticles, cellulose/Ag NPs demonstrated excellent antibacterial activity, Proteus mirabilis (MTCC 1771) possessed a maximum inhibition zone of 18.81.5 mm at 2.5 g/mL, and Staphylococcus aureus (MTTC 3615) had a minimum inhibition zone of 11.30.5 mm at 0.5 g/mL. Furthermore, cellulose/Ag NPs also exhibited a significant radical scavenging property against the DDPH free radical, and there was a higher degradation efficiency compared to pure Ag NPs against Rhodamine B as 97.38% removal was achieved. Notably, cellulose/Ag NPs remarkably promoted the transfer and separation of photogenerated electron-hole (e-/h+) pairs, thereby offering prospective application of the photodegradation efficiency for Rhodamine B (RhB) as well as antibacterial applications. With the findings from this study, we could develop efficient and environmentally friendly cellulose/Ag nanoparticles using low-cost, environmentally friendly materials, making them suitable for industrial and technological applications.
Collapse
Affiliation(s)
| | - Durairaj Shanthi
- Department
of Chemistry, VelTech MultiTech Dr. Rangarajan
Dr. Sakunthala Engineering College, Avadi, Chennai 600062, India
| | - Appusamy Muthukrishnaraj
- Department
of Chemistry, Faculty of Engineering, Karpagam
Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Babu Venkatadri
- Department
of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan, ROC
| | - J. Irshad Ahamed
- Department
of Chemistry, Kandaswami Naidu College for
Men, Anna Nagar East, Chennai 600102, India
| | - Kasinathan Kaviyarasu
- UNESCO-UNISA
Africa Chair in Nanosciences/Nanotechnology Laboratories, College
of Graduate Studies, University of South
Africa (UNISA), Muckleneuk Ridge, Pretoria 0002, South Africa
- Nanosciences
African Network (NANOAFNET), Materials Research Group (MRG), iThemba LABS−National Research Foundation (NRF), 1 Old Faure Road, Somerset West 7129, Western Cape, South Africa
| |
Collapse
|
19
|
Sharma I, Sharma MV, Haque MA, Simal-Gandara J. Antifungal action and targeted mechanism of Bio fabricated zinc oxide (ZnO) nanoparticles against Ascochytafabae. Heliyon 2023; 9:e19179. [PMID: 37662815 PMCID: PMC10469064 DOI: 10.1016/j.heliyon.2023.e19179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The current work focuses on analysing the structural, optical, and anti-fungal efficacy of ZnO nanoparticles using well diffusion agar methods and minimum inhibitory concentration (MIC). ZnO nanoparticles were created using the sol gel method. To check the synthesized material's spatial and optical characteristics, XRD, UV, and RAMAN studies were performed. The median diameter of produced nanostructures is in the region of nanometre, according to XRD measurements. Results from Raman Spectroscopy for the nanostructure are provided, together with comparisons to current development theory and reliable experimental data. The band gap of the zinc oxide sample is found by graphing (h) 2versus input photon energy and gradually decreasing the linear component of the (h) 2 to zero. The band gap energy is expressed by the line's intersection with the energy axis. Calculations show that the energy band gap is 3.22eV.The fungus Ascochytafabae is in control of the Phaseolus vulgaris L. (beans) blight disease. It mostly affects the plant's stem, leaves, and fruits. Phaseolus vulgaris plant leaf with Ascochytafabae infection was isolated, and ZnO nanoparticle effects were observed. It emerged that the synthesized ZnO nanoparticles were highly efficient against Ascochytafabae. By using the well diffusion method and an absolute concentration of ZnO nanoparticles, the maximum inhibitory concentration was 15.0 ± 0.2 mm.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Physics, Career Point University, Hamirpur, H.P., India
| | | | - M. Akful Haque
- Department of Pharmaceutical Analysis, Anurag University, Hyderabad, Telangana, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004, Ourense, Spain
| |
Collapse
|
20
|
Zhang H, Luo P, Huang X. Engineered nanomaterials enhance drug delivery strategies for the treatment of osteosarcoma. Front Pharmacol 2023; 14:1269224. [PMID: 37670948 PMCID: PMC10475588 DOI: 10.3389/fphar.2023.1269224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/07/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor in adolescents, and the clinical treatment of OS mainly includes surgery, radiotherapy, and chemotherapy. However, the side effects of chemotherapy drugs are an issue that clinicians cannot ignore. Nanomedicine and drug delivery technologies play an important role in modern medicine. The development of nanomedicine has ushered in a new turning point in tumor treatment. With the emergence and development of nanoparticles, nanoparticle energy surfaces can be designed with different targeting effects. Not only that, nanoparticles have unique advantages in drug delivery. Nanoparticle delivery drugs can not only reduce the toxic side effects of chemotherapy drugs, but due to the enhanced permeability retention (EPR) properties of tumor cells, nanoparticles can survive longer in the tumor microenvironment and continuously release carriers to tumor cells. Preclinical studies have confirmed that nanoparticles can effectively delay tumor growth and improve the survival rate of OS patients. In this manuscript, we present the role of nanoparticles with different functions in the treatment of OS and look forward to the future treatment of improved nanoparticles in OS.
Collapse
Affiliation(s)
- Haorui Zhang
- Department of Spine, Trauma Surgery, The First People’s Hospital of Guangyuan, Guangyuan, China
| | - Ping Luo
- Science and Technology Education Section, The First People’s Hospital of Guangyuan, Guangyuan, China
| | - Xiaojun Huang
- Department of Spine, Trauma Surgery, The First People’s Hospital of Guangyuan, Guangyuan, China
| |
Collapse
|
21
|
Valdiglesias V, Alba-González A, Fernández-Bertólez N, Touzani A, Ramos-Pan L, Reis AT, Moreda-Piñeiro J, Yáñez J, Laffon B, Folgueira M. Effects of Zinc Oxide Nanoparticle Exposure on Human Glial Cells and Zebrafish Embryos. Int J Mol Sci 2023; 24:12297. [PMID: 37569675 PMCID: PMC10418813 DOI: 10.3390/ijms241512297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are among the most widely used nanomaterials. They have multiple applications in cosmetics, textiles, paints, electronics and, recently, also in biomedicine. This extensive use of ZnO NPs notably increases the probability that both humans and wildlife are subjected to undesirable effects. Despite being among the most studied NPs from a toxicological point of view, much remains unknown about their ecotoxicological effects or how they may affect specific cell types, such as cells of the central nervous system. The main objective of this work was to investigate the effects of ZnO NPs on human glial cells and zebrafish embryo development and to explore the role of the released Zn2+ ions in these effects. The effects on cell viability on human A172 glial cells were assessed with an MTT assay and morphological analysis. The potential acute and developmental toxicity was assessed employing zebrafish (Danio rerio) embryos. To determine the role of Zn2+ ions in the in vitro and in vivo observed effects, we measured their release from ZnO NPs with flame atomic absorption spectrometry. Then, cells and zebrafish embryos were treated with a water-soluble salt (zinc sulfate) at concentrations that equal the number of Zn2+ ions released by the tested concentrations of ZnO NPs. Exposure to ZnO NPs induced morphological alterations and a significant decrease in cell viability depending on the concentration and duration of treatment, even after removing the overestimation due to NP interference. Although there were no signs of acute toxicity in zebrafish embryos, a decrease in hatching was detected after exposure to the highest ZnO NP concentrations tested. The ability of ZnO NPs to release Zn2+ ions into the medium in a concentration-dependent manner was confirmed. Zn2+ ions did not seem entirely responsible for the effects observed in the glial cells, but they were likely responsible for the decrease in zebrafish hatching rate. The results obtained in this work contribute to the knowledge of the toxicological potential of ZnO NPs.
Collapse
Affiliation(s)
- Vanessa Valdiglesias
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Anabel Alba-González
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Natalia Fernández-Bertólez
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Assia Touzani
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Lucía Ramos-Pan
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Biología, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain; (V.V.); (N.F.-B.); (A.T.); (L.R.-P.)
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
| | - Ana Teresa Reis
- EPIUnit—Instituto de Saúde Pública, Universidade do Porto, Rua das Taipas 135, 4050-600 Porto, Portugal;
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Rua das Taipas 135, 4050-600 Porto, Portugal
- Environmental Health Department, National Institute of Health, Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
| | - Jorge Moreda-Piñeiro
- Universidade da Coruña, Grupo Química Analítica Aplicada (QANAP), Instituto Universitario Medio Ambiente (IUMA), Departamento de Química, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain;
| | - Julián Yáñez
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), Oza, 15071 A Coruña, Spain
- Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía—CICA, Departamento de Psicología, Facultad de Ciencias de la Educación, Campus Elviña s/n, 15071 A Coruña, Spain
| | - Mónica Folgueira
- Universidade da Coruña, Grupo NEUROVER, Centro Interdisciplinar de Química e Bioloxía—CICA, Rúa As Carballeiras, 15071 A Coruña, Spain; (A.A.-G.); (J.Y.); (M.F.)
- Universidade da Coruña, Grupo NEUROVER, Facultad de Ciencias, Campus A Zapateira s/n, 15071 A Coruña, Spain
| |
Collapse
|
22
|
Eleiwa NZH, Ali MAA, Said EN, Metwally MMM, Abd-ElHakim YM. Bee venom (Apis mellifera L.) rescues zinc oxide nanoparticles induced neurobehavioral and neurotoxic impact via controlling neurofilament and GAP-43 in rat brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:88685-88703. [PMID: 37442924 PMCID: PMC10412495 DOI: 10.1007/s11356-023-28538-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
This study investigated the possible beneficial role of the bee venom (BV, Apis mellifera L.) against zinc oxide nanoparticles (ZNPs)-induced neurobehavioral and neurotoxic impacts in rats. Fifty male Sprague Dawley rats were alienated into five groups. Three groups were intraperitoneally injected distilled water (C 28D group), ZNPs (100 mg/kg b.wt) (ZNPs group), or ZNPs (100 mg/kg.wt) and BV (1 mg/ kg.bwt) (ZNPs + BV group) for 28 days. One group was intraperitoneally injected with 1 mL of distilled water for 56 days (C 56D group). The last group was intraperitoneally injected with ZNPs for 28 days, then BV for another 28 days at the same earlier doses and duration (ZNPs/BV group). Depression, anxiety, locomotor activity, spatial learning, and memory were evaluated using the forced swimming test, elevated plus maze, open field test, and Morris water maze test, respectively. The brain contents of dopamine, serotonin, total antioxidant capacity (TAC), malondialdehyde (MDA), and Zn were estimated. The histopathological changes and immunoexpressions of neurofilament and GAP-43 protein in the brain tissues were followed. The results displayed that BV significantly decreased the ZNPs-induced depression, anxiety, memory impairment, and spatial learning disorders. Moreover, the ZNPs-induced increment in serotonin and dopamine levels and Zn content was significantly suppressed by BV. Besides, BV significantly restored the depleted TAC but minimized the augmented MDA brain content associated with ZNPs exposure. Likewise, the neurodegenerative changes induced by ZNPs were significantly abolished by BV. Also, the increased neurofilament and GAP-43 immunoexpression due to ZNPs exposure were alleviated with BV. Of note, BV achieved better results in the ZNPs + BV group than in the ZNPs/BV group. Conclusively, these results demonstrated that BV could be employed as a biologically effective therapy to mitigate the neurotoxic and neurobehavioral effects of ZNPs, particularly when used during ZNPs exposure.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Abo-Alkasem Ali
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Yasmina M Abd-ElHakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| |
Collapse
|
23
|
Khan MM, Matussin SN, Rahman A. Recent development of metal oxides and chalcogenides as antimicrobial agents. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02878-1. [PMID: 37198515 DOI: 10.1007/s00449-023-02878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Pathogenic microbes are a major concern in hospitals and other healthcare facilities because they affect the proper performance of medical devices, surgical devices, etc. Due to the antimicrobial resistance or multidrug resistance, combatting these microbial infections has grown to be a significant research area in science and medicine as well as a critical health concern. Antibiotic resistance is where microbes acquire and innately exhibit resistance to antimicrobial agents. Therefore, the development of materials with promising antimicrobial strategy is a necessity. Amongst other available antimicrobial agents, metal oxide and chalcogenide-based materials have shown to be promising antimicrobial agents due to their inherent antimicrobial activity as well as their ability to kill and inhibit the growth of microbes effectively. Moreover, other features including the superior efficacy, low toxicity, tunable structure, and band gap energy has makes metal oxides (i.e. TiO2, ZnO, SnO2 and CeO2 in particular) and chalcogenides (Ag2S, MoS2, and CuS) promising candidates for antimicrobial applications as illustrated by examples discussed in this review.
Collapse
Affiliation(s)
- Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam.
| | - Shaidatul Najihah Matussin
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| | - Ashmalina Rahman
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE, 1410, Brunei Darussalam
| |
Collapse
|
24
|
Walunj P, Roy A, Jadhav V, Athare P, Dhaygude A, Aher J, Algethami JS, Lokhande D, Alqahtani MS, Bhagare A, Alghamdi S, Eltayeb LB, Al-Moraya IS, Yadav KK, Ahn Y, Jeon BH. Polyol-mediated zinc oxide nanoparticles using the refluxing method as an efficient photocatalytic and antimicrobial agent. Front Bioeng Biotechnol 2023; 11:1177981. [PMID: 37152657 PMCID: PMC10154524 DOI: 10.3389/fbioe.2023.1177981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Nanomaterials have attracted more curiosity recently because of their wide-ranging application in environmental remediation and electronic devices. The current study focuses on zinc oxide nanoparticles' (ZnO NPs) simple production, characterization, and applications in several fields, including medicinal and photocatalytic degradation of dyes. The non-aqueous-based reflux method is helpful for ZnO NP synthesis; the procedure involves refluxing zinc acetate dihydrate precursor in ethylene glycol for 3 hours in the absence of sodium acetate, in which the refluxing rate and the cooling rate are optimized to get the desired phase, and the unique morphology of polyol-mediated ZnO NPs; it has been achieved using the capping agent TBAB (tetra-butyl ammonium bromide) and precursor zinc acetate dihydrate. UV-Vis, FTIR, XRD, and FESEM structurally characterized polyol-mediated ZnO-NPs. The results show that the material is pure and broadly aggregated into spherical nanoparticles with an average particle size of 18.09 nm. According to XRD analysis, heat annealing made the crystallites more prominent and favored a monocrystalline state. These results and the low cost of making polyol-mediated ZnO NPs demonstrate photocatalytic and antimicrobial properties.
Collapse
Affiliation(s)
- Payal Walunj
- M. V. P. Samaj’s K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, India
| | - Arpita Roy
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Vikram Jadhav
- M. V. P. Samaj’s K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, India
| | - Pragati Athare
- M. V. P. Samaj’s K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, India
| | - Akshay Dhaygude
- M. V. P. Samaj’s K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, India
| | - Jayraj Aher
- Department of Chemistry, K. R. T. Arts, B. H. Commerce, and A. M. Science College, Nashik, India
| | - Jari S. Algethami
- Department of Chemistry, College of Science and Arts, Najran University, Najran, Saudi Arabia
- Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, Saudi Arabia
| | - Dnyaneshwar Lokhande
- Department of Chemistry, M.V.P. Samaj’s K.P.G. Arts, Science, and Commerce College, Igatpuri, Nashik, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Arun Bhagare
- M. V. P. Samaj’s K. K. Wagh Arts, Science, and Commerce College, Pimpalgaon (B.), Nashik, India
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, Saudi Arabia
| | | | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Yongtae Ahn
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Al-Momani H, Al Balawi D, Hamed S, Albiss BA, Almasri M, AlGhawrie H, Ibrahim L, Al Balawi H, Al Haj Mahmoud S, Pearson J, Ward C. The impact of biosynthesized ZnO nanoparticles from Olea europaea (Common Olive) on Pseudomonas aeruginosa growth and biofilm formation. Sci Rep 2023; 13:5096. [PMID: 36991258 PMCID: PMC10060419 DOI: 10.1038/s41598-023-32366-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractThere is a limitation in the range of effectual antibiotics due to the Pseudomonas aeruginosa (PA) infection due to its innate antimicrobial resistance. Researchers have therefore been concentrating their efforts to discover advanced and cost effective antibacterial agents among the ever-increasing PA bacterial resistance strains. It has been discovered that various nanoparticles can be employed as antimicrobial agents. Here, we evaluated the antibacterial properties of the Zinc Oxide nanoparticles (ZnO NPs), which was biosynthesized, being examined on six hospital strains of PA alongside a reference strain (ATCC 27853). A chemical approach was applied to biosynthesize the ZnO NPs from Olea europaea was performed, and confirmed by using X-ray diffraction and Scanning Electron Microscopes. The nanoparticles then applied their antibacterial properties to examine them against six clinically isolated PA strains alongside the reference strain. This process tested for the results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). The Growth, biofilm formation and eradication were analyzed. The influence of the differentiating degrees ZnO NPs in regard to Quorom sensing gene expression were further examined. The ZnO NPs exhibited a crystalline size and diameter (Dc) of 40–60 nm and both the MIC and MBC tests revealed positive outcomes of concentrations of 3 and 6 mg/ml for each PA strain, respectively. At sub inhibitory concentration, The ZnO NPs were found to significantly inhibit the growth and biofilm formation of all PA strains and decreases in the biomass and metabolic behavior of PA established biofilms; these decreases varied depending on the dosage. At ZnO NPs concentrations of 900 µg/ml, the expression of majority of quorum sensing genes of all strains were significantly reduced, at ZnO NPs concentrations of 300 µg/ml, few genes were significantly impacted. In conclusion, the treatment of PA and could be other antibiotic resistant bacteria can therefore be approached by using ZnO NPs as it has been uncovered that they withhold advanced antibacterial properties.
Collapse
|
26
|
Skrajnowska D, Idkowiak J, Szterk A, Ofiara K, Augustyniak K, Bobrowska-Korczak B. Effect of Nano- and Microzinc Supplementation on the Mineral Composition of Bones of Rats with Induced Mammary Gland Cancer. Foods 2023; 12:foods12061348. [PMID: 36981273 PMCID: PMC10047967 DOI: 10.3390/foods12061348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The aim of this study was to determine changes in the mineral composition of the bones of rats with chemically induced mammary gland cancer and to attempt to establish whether a specific diet modification involving the inclusion of zinc ions in two forms-nano and micro-will affect the mineral composition of the bones. METHODS Female Sprague-Dawley rats were used for the research. The animals were randomly assigned to three experimental groups. All animals were fed a standard diet (Labofeed H), and selected groups additionally received zinc nanoparticles or microparticles in the amount of 4.6 mg/mL. To induce mammary cancer, the animals were given 7,12-dimethyl-1,2-benz[a]anthracene. The content of Ag, As, B, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, and V was determined using ICP-MS, while that of Ca, Fe, K, Mg, Na, and Zn was determined using FAAS. RESULTS The use of a diet enriched with zinc nano- or microparticles significantly influenced the content of the elements tested. In the bones of rats fed a diet with zinc nanoparticles, changes were found in the content of Ca, Mg, Zn, Cd, U, V, and Tl, while in the case of the diet supplemented with zinc microparticles, there were differences in six elements-Ca, Mg, B, Cd, Ag, and Pb-compared to animals receiving an unsupplemented diet. CONCLUSIONS The content of elements in the bone tissue of rats in the experimental model indicates disturbances of mineral metabolism in the tissue at an early stage of mammary cancer.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Arkadiusz Szterk
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Karol Ofiara
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Kinga Augustyniak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
27
|
Rai RS, P GJ, Bajpai V, Khan MI, Elboughdiri N, Shanableh A, Luque R. An eco-friendly approach on green synthesis, bio-engineering applications, and future outlook of ZnO nanomaterial: A critical review. ENVIRONMENTAL RESEARCH 2023; 221:114807. [PMID: 36455633 DOI: 10.1016/j.envres.2022.114807] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Synthesizing ZnO nanostructures ranging from 1 nm to 4 nm confines the electron cloud and exhibits a quantum effect generally called as quantum confinement effect attracting many researchers in the field of electronics and optics. ZnO nanostructures are used in medical applications to formulate antioxidant, antibacterial, antifungal, anti-inflammatory, wound healing, and anti-diabetic medications. This work is a comprehensive study of green synthesis of ZnO nanomaterials using different biological sources and highlights different processes able to produce nanostructures including nanowires, nanorods, nanotubes and other nano shapes of ZnO nanostructures. Different properties of ZnO nanostructures and their targeted bioengineering applications are also described. The strategies and challenges of the eco-friendly approach to enhance the application span of ZnO nanomaterials are also summarized, with future prospects for greener design of ZnO nanomaterials are also suggested.
Collapse
Affiliation(s)
- Ravi Shankar Rai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India.
| | - Girish J P
- Department of Mechanical Engineering with Specialization in Design and Manufacturing, Indian Institute of Information Technology Design and Manufacturing, Kurnool, A.P, India.
| | - Vivek Bajpai
- Department of Mechanical Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Muhammad Imran Khan
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes, 6029, Tunisia.
| | - Abdallah Shanableh
- Research Institute of Sciences and Engineering (RISE), University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya Str., 117198, Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón, EC092302, Ecuador
| |
Collapse
|
28
|
He G, Nie JJ, Liu X, Ding Z, Luo P, Liu Y, Zhang BW, Wang R, Liu X, Hai Y, Chen DF. Zinc oxide nanoparticles inhibit osteosarcoma metastasis by downregulating β-catenin via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Bioact Mater 2023; 19:690-702. [PMID: 35600978 PMCID: PMC9112061 DOI: 10.1016/j.bioactmat.2022.05.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) therapy faces many challenges, especially the poor survival rate once metastasis occurs. Therefore, it is crucial to explore new OS treatment strategies that can efficiently inhibit OS metastasis. Bioactive nanoparticles such as zinc oxide nanoparticles (ZnO NPs) can efficiently inhibit OS growth, however, the effect and mechanisms of them on tumor metastasis are still not clear. In this study, we firstly prepared well-dispersed ZnO NPs and proved that ZnO NPs can inhibit OS metastasis-related malignant behaviors including migration, invasion, and epithelial-mesenchymal transition (EMT). RNA-Seqs found that differentially expressed genes (DEGs) in ZnO NP-treated OS cells were enriched in wingless/integrated (Wnt) and hypoxia-inducible factor-1 (HIF-1) signaling pathway. We further proved that Zn2+ released from ZnO NPs induced downregulation of β-catenin expression via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. ZnO NPs combined with ICG-001, a β-catenin inhibitor, showed a synergistic inhibitory effect on OS lung metastasis and a longer survival time. In addition, tissue microarray (TMA) of OS patients also detected much higher β-catenin expression which indicated the role of β-catenin in OS development. In summary, our current study not only proved that ZnO NPs can inhibit OS metastasis by degrading β-catenin in HIF-1α/BNIP3/LC3B-mediated mitophagy pathway, but also provided a far-reaching potential of ZnO NPs in clinical OS treatment with metastasis. Zn2+ released from bioactive ZnO NPs trigger OS metastasis inhibition. ZnO NPs inhibit OS metastasis through degrading β-catenin expression via HIF-1α/BNIP3/LC3B-mediated mitophagy pathway. Tissue microarray of OS patients detected higher β-catenin expression which confirmed the potential of ZnO NPs in clinical.
Collapse
Affiliation(s)
- Guanping He
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Jing-Jun Nie
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Xiao Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zihao Ding
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Peng Luo
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Yu Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Bo-Wen Zhang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
- Corresponding author.
| | - Yong Hai
- Department of Orthopedics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
- Corresponding author.
| | - Da-Fu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, 100035, China
- Corresponding author.
| |
Collapse
|
29
|
Mubeen K, Shah MZU, Sajjad M, Irshad A, Ali Z, Zafar Z, Shah A. Boosting the electrochemical performance of ZnO nanomaterials through a conductive CuS matrix for aqueous supercapacitors. NEW J CHEM 2023. [DOI: 10.1039/d2nj05744a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The impressive electrochemical performance of metal oxides/metal sulfides and their derivatives are proven to be innovative electrodes for achieving a remarkable performance for supercapacitors.
Collapse
Affiliation(s)
- Khalida Mubeen
- Department of Physics and Mathematics Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Muhammad Zia Ullah Shah
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Muhammad Sajjad
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, P. R. China
| | - Afshan Irshad
- Department of Physics and Mathematics Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zahid Ali
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| | - Zainab Zafar
- Experimental Physics Labs, National Centre for Physics, Islamabad, Pakistan
| | - A. Shah
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad 45650, Pakistan
| |
Collapse
|
30
|
Hu X, Lu C, Tang H, Pouri H, Joulin E, Zhang J. Active Food Packaging Made of Biopolymer-Based Composites. MATERIALS (BASEL, SWITZERLAND) 2022; 16:279. [PMID: 36614617 PMCID: PMC9821968 DOI: 10.3390/ma16010279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Food packaging plays a vital role in protecting food products from environmental damage and preventing contamination from microorganisms. Conventional food packaging made of plastics produced from unrenewable fossil resources is hard to degrade and poses a negative impact on environmental sustainability. Natural biopolymers are attracting interest for reducing environmental problems to achieve a sustainable society, because of their abundance, biocompatibility, biodegradability, chemical stability, and non-toxicity. Active packaging systems composed of these biopolymers and biopolymer-based composites go beyond simply acting as a barrier to maintain food quality. This review provides a comprehensive overview of natural biopolymer materials used as matrices for food packaging. The antioxidant, water barrier, and oxygen barrier properties of these composites are compared and discussed. Furthermore, biopolymer-based composites integrated with antimicrobial agents-such as inorganic nanostructures and natural products-are reviewed, and the related mechanisms are discussed in terms of antimicrobial function. In summary, composites used for active food packaging systems can inhibit microbial growth and maintain food quality.
Collapse
Affiliation(s)
- Xuanjun Hu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Chao Lu
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Howyn Tang
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Hossein Pouri
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Etienne Joulin
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| | - Jin Zhang
- Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
- School of Biomedical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
31
|
Gopal J, Hua PY, Muthu M, Wu HF. A MALDI-MS-based impact assessment of ZnO nanoparticles, nanorods and quantum dots on the lipid profile of bacterial pathogens. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 15:87-98. [PMID: 36484165 DOI: 10.1039/d2ay01640k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
MALDI-MS was used for studying the impact of zinc oxide (ZnO) nanomaterials on Pseudomonas aeruginosa and Staphylococcus aureus. The growth patterns of both these bacterial pathogens in the presence of the ZnO nanomaterials and the subsequent lipidomic changes were assessed using an optimized simple, rapid MALDI-MS based methodology. All three nanostructures tested exhibited differential bactericidal activity unique to P. aeruginosa and S. aureus. The results indicated that the ZnO nanomaterials were highly inhibitory to S. aureus even at 70 mg L-1, while in the case of P. aeruginosa, the ZnO nanomaterials were compatible for up to 10 h and beyond 10 h only marginal growth inhibition was observed. The results proved that the shapes of the ZnO nanomaterials did not affect their toxicity properties. MALDI-MS was applied to study the lipidomic changes of P. aeruginosa and S. aureus after nanomaterial treatment, in order to throw light on the mechanism of growth inhibition. The results from the MALDI-MS studies showed that the ZnO nanostructures exhibited only marginal changes in the lipidomic profile both in the case of P. aeruginosa and S. aureus. These preliminary results indicate that the mechanism of growth inhibition by the ZnO nanomaterial is not through lipid-based interactions, but apparently more so via protein inhibitions.
Collapse
Affiliation(s)
- Judy Gopal
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Pei-Yang Hua
- Department of Chemistry, National Sun Yat Sen University, Kaohsiung, 804, Taiwan.
| | - Manikandan Muthu
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat Sen University, Kaohsiung, 804, Taiwan.
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 800, Taiwan
- Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
32
|
Effect of Repeated Contact to Food Simulants on the Chemical and Functional Properties of Nano ZnO Composited LDPE Films for Reusable Food Packaging. Polymers (Basel) 2022; 15:polym15010009. [PMID: 36616360 PMCID: PMC9824836 DOI: 10.3390/polym15010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
The effect of repeated contact with food simulants on the properties and functionality of zinc oxide (ZnO) in nanocomposite films was investigated to examine possible safety hazards from the point of view of long-term use as food packaging. Low-density polyethylene (LDPE) embedded with 5 wt% nano-ZnO was immersed in distilled water, 50% ethanol, 4% acetic acid, and n-heptane. The cycle of immersion-rinse-dry was repeated up to 40 times for same sample under constant condition. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), field emission-scanning electron microscopy (FE-SEM), and UV-Vis spectroscopy analyses were performed to identify the changes in the chemical and functional properties of the nanocomposite film. Acetic acid had the greatest impact on the LDPE-ZnO nanocomposite films, while other food simulants caused little change. A new carboxylate bond was formed by the reaction of ZnO with acetic acid, as evidenced by the FTIR spectra. In addition, XRD and XAS confirmed the phase changes of nano-ZnO into zinc salts such as zinc hydroxy acetate or zinc acetate dihydrate. Furthermore, the light barrier property of the nanocomposite film drastically decreased, owing to the change in the bandgap of ZnO and film morphology.
Collapse
|
33
|
Mutukwa D, Taziwa RT, Khotseng L. Antibacterial and Photodegradation of Organic Dyes Using Lamiaceae-Mediated ZnO Nanoparticles: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12244469. [PMID: 36558321 PMCID: PMC9785588 DOI: 10.3390/nano12244469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/31/2023]
Abstract
The green synthesis of zinc oxide nanoparticles (ZnO NPs) using plant extracts has been receiving tremendous attention as an alternative to conventional physical and chemical methods. The Lamiaceae plant family is one of the largest herbal families in the world and is famous for its aromatic and polyphenolic biomolecules that can be utilised as reducing and stabilising agents during the synthesis of ZnO NPs. This review will go over the synthesis and how synthesis parameters affect the Lamiaceae-derived ZnO NPs. The Lamiaceae-mediated ZnO NPs have been utilised in a variety of applications, including photocatalysis, antimicrobial, anticancer, antioxidant, solar cells, and so on. Owing to their optical properties, ZnO NPs have emerged as potential catalysts for the photodegradation of organic dyes from wastewater. Furthermore, the low toxicity, biocompatibility, and antibacterial activity of ZnO against various bacteria have led to the application of ZnO NPs as antibacterial agents. Thus, this review will focus on the application of Lamiaceae-mediated ZnO NPs for the photodegradation of organic dyes and antibacterial applications.
Collapse
Affiliation(s)
- Dorcas Mutukwa
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| | - Raymond T. Taziwa
- Department of Applied Science, Faculty of Science Engineering and Technology, Walter Sisulu University, Old King William Town Road, Potsdam Site, East London 5200, South Africa
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Rd., Private Bag X17, Bellville 7535, South Africa
| |
Collapse
|
34
|
Nastulyavichus A, Khaertdinova L, Tolordava E, Yushina Y, Ionin A, Semenova A, Kudryashov S. Additive Nanosecond Laser-Induced Forward Transfer of High Antibacterial Metal Nanoparticle Dose onto Foodborne Bacterial Biofilms. MICROMACHINES 2022; 13:2170. [PMID: 36557469 PMCID: PMC9788456 DOI: 10.3390/mi13122170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Additive laser-induced forward transfer (LIFT) of metal bactericidal nanoparticles from a polymer substrate directly onto food bacterial biofilms has demonstrated its unprecedented efficiency in combating pathogenic microorganisms. Here, a comprehensive study of laser fluence, metal (gold, silver and copper) film thickness, and the transfer distance effects on the antibacterial activity regarding biofilms of Gram-negative and Gram-positive food bacteria (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Listeria monocytogenes, Salmonella spp.) indicated the optimal operation regimes of the versatile modality. LIFT-induced nanoparticle penetration into a biofilm was studied by energy-dispersion X-ray spectroscopy, which demonstrated that nanoparticles remained predominantly on the surface of the biofilm.
Collapse
Affiliation(s)
| | | | - Eteri Tolordava
- Lebedev Physical Institute, 119991 Moscow, Russia
- N.F. Gamaleya Federal Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Yulia Yushina
- Federal State Budgetary Scientific Institution “Federal Scientific Center for Food Systems named after V.M. Gorbatov” Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey Ionin
- Lebedev Physical Institute, 119991 Moscow, Russia
| | - Anastasia Semenova
- Federal State Budgetary Scientific Institution “Federal Scientific Center for Food Systems named after V.M. Gorbatov” Russian Academy of Sciences, 109316 Moscow, Russia
| | | |
Collapse
|
35
|
Osman MS, Al-qubati M, Saeed M, Abdulqawi N, Algradee MA, Alwan A, Sultan AM. Effective inhibition of waterborne and fungal pathogens using ZnO nanoparticles prepared from an aqueous extract of propolis: optimum biosynthesis, characterization, and antimicrobial activity. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
36
|
Abu Nayem S, Shah SS, Chaity SB, Biswas BK, Nahar B, Aziz MA, Hossain MZ. Jute stick extract assisted hydrothermal synthesis of zinc oxide nanoflakes and their enhanced photocatalytic and antibacterial efficacy. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
37
|
Sonntag SR, Gniesmer S, Gapeeva A, Adelung R, Cojocaru A, Mishra YK, Kaps S, Tura A, Grisanti S, Grisanti S, Nassar K. Zinc Oxide Tetrapods Modulate Wound Healing and Cytokine Release In Vitro-A New Antiproliferative Substance in Glaucoma Filtering Surgery. Life (Basel) 2022; 12:1691. [PMID: 36362846 PMCID: PMC9692309 DOI: 10.3390/life12111691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 09/09/2024] Open
Abstract
Glaucoma filtering surgery is applied to reduce intraocular pressure (IOP) in cases of uncontrolled glaucoma. However, postoperative fibrosis reduces the long-term success of both standard trabeculectomy and microstents. The aim of this study was to test the antiproliferative and anti-inflammatory potential of ZnO-tetrapods (ZnO-T) on human Tenon's fibroblasts (HTFs) for glaucoma surgery. The toxicity of ZnO-T on HTFs was determined using an MTT test. For analysis of fibroblast proliferation, migration, and transdifferentiation, cultures were stained for Ki67, alpha-smooth muscle actin (α-SMA), and p-SMAD. A fully quantitative multiplex ELISA was used to determine the concentrations of different cytokines, platelet-derived growth factor (PDGF), and hepatocyte growth factor (HGF) in culture supernatants with and without previous ZnO-T treatment. Treatment with higher concentrations (10 and 20 µg/mL) was associated with HTF toxicity, as shown in the wound healing assay. Furthermore, the number of Ki67, α-SMA-positive, and pSMAD-positive cells, as well as IL-6 and HGF in supernatants, were significantly reduced following incubation with ZnO-T. In conclusion, we were able to show the antiproliferative and anti-inflammatory potentials of ZnO-T. Therefore, the use of ZnO-T may provide a new approach to reducing postoperative fibrosis in glaucoma filtering surgery.
Collapse
Affiliation(s)
| | - Stefanie Gniesmer
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| | - Anna Gapeeva
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Rainer Adelung
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Ala Cojocaru
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
- Phi-Stone AG, 24143 Kiel, Germany
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sonderborg, Denmark
| | - Sören Kaps
- Institute for Materials Science, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany
| | - Aysegül Tura
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| | - Swaantje Grisanti
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| | - Khaled Nassar
- Department of Ophthalmology, University of Lübeck, 23538 Lubeck, Germany
| |
Collapse
|
38
|
Milling Effect on the Structural and Antibacterial Properties of ZnO and CuO Nanoparticles. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Shahrousvand M, Golshan Ebrahimi N. Designing Nanofibrous Poly(ε-caprolactone)/Hydroxypropyl Cellulose/Zinc Oxide/Melilotus Officinalis Wound Dressings Using Response Surface Methodology. Int J Pharm 2022; 629:122338. [PMID: 36309291 DOI: 10.1016/j.ijpharm.2022.122338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Nanofibrous wound dressing is one of the most prominent stratagems for wound caring/management. This research is an approach for designing an electrospun wound dressing based on poly(ε-caprolactone)/hydroxypropyl cellulose/zinc oxide nanoparticles (PCL/HPC/n-ZnO), in which response surface methodology (RSM) was utilized to ascertain the optimum sample. It was observed that the addition of n-ZnO and Melilotus Officinalis (MO) extract could increase the fibers mean diameter, pore size, and crystallinity of mats. The mentioned quantities for a sample with the highest MO content (PHZM10) were equal to 469±105 nm, 544±370 nm, and 49.67%, respectively. Moreover, enhancing the amount of MO led to an increase in mechanical properties. In this respect, the PHZM10 sample had the modulus, strength, and toughness of 82.41±0.61, 20.45±0.30 MPa, and 4194.86 mJ, respectively. Also, according to the MTT assay, no cytotoxicity was reported from any of the manufactured samples. Besides, it was concluded that the antibacterial activity and nanofibrous structure of mats, and also their potential for release of MO extract could accelerate the wound healing. Hence, the wound closure index for the PHZM10 group was 99.3±1.1%. Based on all noted results, the PCL/HPC/n-ZnO/MO electrospun mats can be proposed as reassuring wound dressing candidates.
Collapse
|
40
|
Liu X, Chen L, Dong Q, Wang Z, Zhang D, He J, Ye Y, Zhou J, Zhu W, Hu Z, Din ZU, Ma T, Ding W, Cai J. Emerging starch composite nanofibrous films for food packaging: Facile construction, hydrophobic property, and antibacterial activity enhancement. Int J Biol Macromol 2022; 222:868-879. [PMID: 36167104 DOI: 10.1016/j.ijbiomac.2022.09.187] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/02/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022]
Abstract
Polymers synthesized from green resources have many advantages in food packaging and hence their development is very important. Herein, starch/polyvinyl alcohol (PVA) nanofibrous composite films were fabricated by electrospinning technology. Steam-induced cross-linking reaction with glutaraldehyde (GTA) and silver sodium zirconium phosphate (Ag-ZrP) was employed to improve the hydrophobic and antibacterial properties of the constructed nanofibrous films, respectively. The effects of starch/PVA ratio on the micro-morphology and mechanical properties of the binary composite film were investigated. The composite film showed optimal uniformity, bead-free electrospun nanofibers, with enhanced mechanical strength for the 60/40 (v/v) starch/PVA composite. Moreover, the crystallinity of PVA was reduced during the electrospinning process, whereas the introduction of PVA strengthened the hydrogen interactions and improved the thermal stability of the composite films. After the cross-linking with GTA, the starch/PVA films became more hydrophobic. Furthermore, the starch/PVA films embedded with Ag-ZrP had outstanding antibacterial property against both Gram-negative and Gram-positive bacteria. This work demonstrated the potential prospects of electrospun starch nanofibrous films in the food packaging field.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Lei Chen
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Qi Dong
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhijing Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Die Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jiangling He
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Yuanyuan Ye
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jiaojiao Zhou
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Weijia Zhu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zhongze Hu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Agriculture, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Tiezheng Ma
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, PR China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China; National R&D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
41
|
Zhou R, Cui DJ, Zhao Q, Liu KK, Zhao WB, Liu Q, Ma RN, Jiao Z, Dong L, Shan CX. Effective control of microbial spoilage in soybeans by water-soluble ZnO nanoparticles. Food Chem 2022; 388:132994. [PMID: 35460964 DOI: 10.1016/j.foodchem.2022.132994] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 04/01/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
Abstract
The microbial spoilage of soybeans during soaking process severely deteriorates the quality of soybean products and threatens human health. Herein, water-soluble aminated zinc oxide nanoparticles (ZnO NPs) were developed to effectively control the microbial spoilage in soybeans during soaking. ZnO NPs achieved significant inactivation of three dominant spoilage bacteria (bacillus cereus, bacillus megaterium and enterococcus faecium) isolated from the deteriorated soybeans, which could adhere to the bacterial surface and damage the cell wall/membrane, but also generate large amounts of reactive oxygen species (ROS). Compared to two commercial ZnO, water-soluble ZnO exhibited superior antibacterial properties due to producing more ROS and bacteria-adhered ability. After ZnO NPs treatment, the content of the residual Zn (51.1 mg/kg) in soybeans was the safety standards of Zn element in soybeans products for human). Therefore, the water-soluble ZnO NPs showed great potentials as efficient and safe antimicrobial agents for soybeans preservation during soaking process.
Collapse
Affiliation(s)
- Rui Zhou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Dong-Jie Cui
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Wen-Bo Zhao
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Qian Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Ruo-Nan Ma
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Zhen Jiao
- Henan Key Laboratory of Ion-Beam Bioengineering, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| |
Collapse
|
42
|
Puspasari V, Ridhova A, Hermawan A, Amal MI, Khan MM. ZnO-based antimicrobial coatings for biomedical applications. Bioprocess Biosyst Eng 2022; 45:1421-1445. [PMID: 35608710 PMCID: PMC9127292 DOI: 10.1007/s00449-022-02733-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Rapid transmission of infectious microorganisms such as viruses and bacteria through person-to-person contact has contributed significantly to global health issues. The high survivability of these microorganisms on the material surface enumerates their transmissibility to the susceptible patient. The antimicrobial coating has emerged as one of the most interesting technologies to prevent growth and subsequently kill disease-causing microorganisms. It offers an effective solution a non-invasive, low-cost, easy-in-use, side-effect-free, and environmentally friendly method to prevent nosocomial infection. Among antimicrobial coating, zinc oxide (ZnO) stands as one of the excellent materials owing to zero toxicity, high biocompatibility to human organs, good stability, high abundancy, affordability, and high photocatalytic performance to kill various infectious pathogens. Therefore, this review provides the latest research progress on advanced applications of ZnO nanostructure-based antibacterial coatings for medical devices, biomedical applications, and health care facilities. Finally, future challenges and clinical practices of ZnO-based antibacterial coating are addressed.
Collapse
Affiliation(s)
- Vinda Puspasari
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Aga Ridhova
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency, South Tangerang, Banten, 15315, Indonesia
| | - Muhamad Ikhlasul Amal
- Research Center for Metallurgy, National Research and Innovation Agency, PUSPIPTEK Gd. 470, South Tangerang, Banten, 15315, Indonesia
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam.
| |
Collapse
|
43
|
Hezam A, Abutaha N, Almekhlafi FA, Morshed Nagi Saeed A, Abishad P, Wadaan MA. Smart plasmonic Ag/Ag2O/ZnO nanocomposite with promising photothermal and photodynamic antibacterial activity under 600 nm visible light illumination. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO 2: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175820. [PMID: 36079203 PMCID: PMC9457460 DOI: 10.3390/ma15175820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/27/2023]
Abstract
Traditional antimicrobial methods, such as antibiotics and disinfectants, may cause adverse effects, such as bacterial resistance and allergic reactions. Photocatalysts based on titanium dioxide (TiO2) have shown great potential in the field of antimicrobials because of their high efficiency, lack of pollution, and lack of side effects. This paper focuses on the antimicrobial activity of TiO2 under different light sources. To improve the photocatalytic efficiency of TiO2, we can reduce electron-hole recombination and extend the photocatalytic activity to the visible light region by doping with different ions or compounds and compounding with polymers. We can also improve the surface properties of materials, increase the contact area with microorganisms, and further enhance the resistance to microorganisms. In addition, we also reviewed their main synthesis methods, related mechanisms, and main application fields to provide new ideas for the enhancement of photocatalytic microorganism performance and application popularization in the future.
Collapse
|
45
|
An L, Hu X, Perkins P, Ren T. A Sustainable and Antimicrobial Food Packaging Film for Potential Application in Fresh Produce Packaging. Front Nutr 2022; 9:924304. [PMID: 35873444 PMCID: PMC9301339 DOI: 10.3389/fnut.2022.924304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
N-halamines are a group of compounds containing one or more nitrogen-halogen covalent bond(s). This high-energy halide bond provides a strong oxidative state so that it is able to inactivate microorganisms effectively. In this study, a sustainable film was developed based on polylactic acid (PLA) with incorporated N-halamine compound 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (MC), as a promising antimicrobial food packaging material. Results showed that the incorporation of MC prevented the crystallization of PLA and improved the physical properties of the films. In addition, both the moisture barrier and the oxygen permeability were improved with the presence of MC. Importantly, the antimicrobial film was able to inactivate inoculated microorganisms by a factor of seven log cycles in as little as 5 min of contact. Films that contained higher levels of MC further enhanced the antimicrobial efficacy. Fresh strawberries packed with the fabricated films maintained the quality for up to 5 days. Due to the ease of fabrication and the effective biocidal property, these films have a wide range of potential applications in the field of food packaging to extend the shelf life of fresh produce.
Collapse
Affiliation(s)
- Ling An
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
| | | | - Tian Ren
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, China
- *Correspondence: Tian Ren
| |
Collapse
|
46
|
Alp-Erbay E. Nanomaterials Utilized in Food Packaging: State-of-the-Art. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09318-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Qin Z, Wang S, Wang L, Yao J, Zhu G, Guo B, Militky J, Venkataraman M, Zhang M. Nanofibrous membranes with antibacterial and thermoregulatory functions fabricated by coaxial electrospinning. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
Zhao D, Guo K, Han S, Doronkin DE, Lund H, Li J, Grunwaldt JD, Zhao Z, Xu C, Jiang G, Kondratenko EV. Controlling Reaction-Induced Loss of Active Sites in ZnO x/Silicalite-1 for Durable Nonoxidative Propane Dehydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dan Zhao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29A, 18059 Rostock, Germany
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Ke Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Shanlei Han
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29A, 18059 Rostock, Germany
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Dmitry E. Doronkin
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
| | - Henrik Lund
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29A, 18059 Rostock, Germany
| | - Jianshu Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstr. 20, 76131 Karlsruhe, Germany
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Chunming Xu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, P. R. China
| | - Guiyuan Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, Beijing 102249, P. R. China
| | - Evgenii V. Kondratenko
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Strasse 29A, 18059 Rostock, Germany
| |
Collapse
|
49
|
Huang L, Liu M, Feng Z, Xu X, Chen L, Ma Z, Li L. Biocompatible tellurium nanoneedles with long-term stable antibacterial activity for accelerated wound healing. Mater Today Bio 2022; 15:100271. [PMID: 35572856 PMCID: PMC9097717 DOI: 10.1016/j.mtbio.2022.100271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022]
Abstract
Tellurium (Te) nanomaterials (NMs) have emerged as a new antibacterial candidate to respond to the complex global health challenge of bacterial resistance. Herein, Te nanoneedles (NNs) that act both chemically and physically on bacteria are synthesized by a facile method using Na2TeO3, urea and glucose. It is found that the prepared Te NNs have a strong affinity to the cell membrane of bacteria and subsequently promote the generation of reactive oxygen species (ROS) in bacteria, resulting in an excellent antibacterial effect toward Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). What's more, this needle-like morphology also can physically damage the bacterial cell membranes. The Te NNs per se are inert in mammalian cells to produce ROS at a proper concentration, indicating considerable biocompatibility of this material. As a proof-of-concept, the antibacterial Te NNs were used as an anti-inflammatory reagent for promoting bacteria-infected wound healing in vivo, during which Te NNs caused no evident side effects to major organs in mice. Additionally, the antibacterial activity is maintained in the presence of surface oxidation of Te NNs after long-term dispersion in phosphate buffered saline solution. The needle-like Te NMs with long-term antibacterial stability and good biocompatibility have great potential for the treatment of associated infectious diseases.
Collapse
|
50
|
Iqbal M, Ibrar A, Ali A, Memon FH, Rehman F, Bhatti Z, Soomro F, Ali A, Thebo KH. Facile synthesis of zinc oxide nanostructures and their antibacterial and antioxidant properties. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|