1
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Fu Y, Du H, Wang P, Yin N, Cai X, Geng Z, Li Y, Cui Y. Effects of foods and food components on the in vitro bioaccessibility of total arsenic and arsenic species from Hizikia fusiforme seaweed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165775. [PMID: 37499825 DOI: 10.1016/j.scitotenv.2023.165775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Seaweed is an important food source, especially in many Asian countries, because of its high nutritional value; however, increasing arsenic (As) accumulation may pose serious hazards to human health. The influence of food components on As bioaccessibility and transformation in the high As-containing seaweed Hizikia fusiforme was determined using an in vitro gastrointestinal digestion method. The results showed that co-digestion with several daily foods (such as celery, broccoli, onion, green chili, tomato) produced a higher As bioaccessibility (approximately 6-11 % increase) compared with that of seaweed alone. Vegetables such as fennel (Foeniculum valgare Mill.), celery (Apium grareolens L.), blanched garlic leaves (Allium sativum L.), scallions (Allium fistulosum L.), ginger (Zingiber officinale Rosc.), and green pepper (Capsicum frutescens L. vat. grussum Bailey) decreased bioaccessible inorganic As (18-35 %) in both the gastric and small intestinal phases. Meanwhile, the process of reducing As(V) to As(III) also occurred during co-digestion with some food matrices. Egg white and other animal proteins were the most effective reducing agents, transforming >70 % As(V) into As(III) in the solution system. These results may have important implications for health risk assessment via co-consumption. The present study provides the first evidence showing that the co-consumption of some vegetables and proteins leads to a higher toxicity of inorganic arsenic-containing food. In addition, the positive and negative effects of co-digestion on the bioaccessibility of essential metals (iron, manganese) compared to single digestion were evaluated in this study.
Collapse
Affiliation(s)
- Yaqi Fu
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Huili Du
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Pengfei Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Ziqi Geng
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yunpeng Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China
| | - Yanshan Cui
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, People's Republic of China; Research Center for Eco-environmental sciences, Chinese Academy of Science, Beijing 100085, People's Republic of China.
| |
Collapse
|
3
|
Peng Z, He Y, Guo Z, Wu Q, Li S, Zhu Z, Grimi N, Xiao J. Species-specific arsenic species and health risk assessment in seaweeds from tropic coasts of South China Sea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115634. [PMID: 37897978 DOI: 10.1016/j.ecoenv.2023.115634] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 10/30/2023]
Abstract
Arsenic (As) is a notorious toxic contamination in marine environments, while the toxicity and health risk of As is highly dependent on As species in seafoods. In this study, we hypothesized that the species-specific As bioaccumulation and species resulted in species-specific healthy risk of As in seaweeds. To test the hypothesis, we collected 10 common edible seaweeds from the coast of Hainan Island in South China Sea. Then we comparatively quantified concentration of total As and 5 major As species [AsB, DMA, MMA, As(III), and As(V)] in seaweeds. The results revealed that the concentrations of total As varied significantly among 10 seaweed species. Specially, the highest total As concentration were found in brown seaweeds, followed by red seaweeds, and green seaweeds. Furthermore, the percentage of 5 As species to total As differed significantly among 10 seaweeds. The percentage of AsB was highest in Caulerpa lentillifera (53%) and lowest in Sargassum oligocystum (13%), while that of As(V) was lowest in Caulerpa lentillifera (21%) and highest in Sargassum oligocystum (81%). The iAs [As(III) + As(V)] exhibited highest value in brown seaweeds and least value in green seaweeds. The potential human health risk assessment indicated that the consumption of brown seaweeds of Sargassum oligocystum and Sargassum polycystum could cause a considerable carcinogenic risk and non-carcinogenic risk to residents. Overall, our findings here largely validated our hypothesis that the species-specific As bioaccumulation and As species had great significance to healthy risk of As in seaweeds.
Collapse
Affiliation(s)
- Ziting Peng
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yuke He
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqiang Guo
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Qian Wu
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei Key Laboratory of Industrial Microbiology, National "111″ Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Research Center of Food Fermentation Engineering and Technology, Hubei University of Technology, Wuhan, China
| | - Shuyi Li
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Zhenzhou Zhu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Nabil Grimi
- Sorbonne University, Université de Technologie de Compiègne, ESCOM, EA 4297 TIMR, Centre de recherche Royallieu - CS 60319, 60203 Compiègne Cedex, France
| | - Juan Xiao
- Engineering Research Center of Utilization of Tropical polysaccharide resources, Ministry of Education/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
4
|
Fjære E, Poulsen R, Duinker A, Liaset B, Hansen M, Madsen L, Myrmel LS. Iodine Bioavailability and Accumulation of Arsenic and Cadmium in Rats Fed Sugar Kelp ( Saccharina latissima). Foods 2022; 11:foods11243943. [PMID: 36553687 PMCID: PMC9777903 DOI: 10.3390/foods11243943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Suboptimal iodine status is a prominent public health issue in several European coun-tries. Brown algae have a high iodine content that, upon intake, may exceed the recommended dietary intake level, but iodine bioavailability has been reported to be lower than from potassium iodide (KI) and highly depends on algae species. Further, potential negative effects from other components in algae, such as cadmium (Cd) and arsenic (As), have also been addressed. In this study, we observed a lower bioavailability of iodine from farmed sugar kelp (Saccharina latissima) than from KI in female Wistar IGS rats. Urinary iodine excretion was 94-95% in rats fed KI and 73-81% in rats fed sugar kelp, followed by increased faecal iodine levels in rats fed sugar kelp. No effects on body weight, feed efficiency, or plasma markers for liver or kidney damage were detected. The highest dose of iodine reduced plasma free thyroxine (fT4) and total T4 levels, but no significant effects on circulating levels of thyroid-stimulating hormone (TSH) and free triiodo-thyronine (fT3) were detected. Faeces and urine measurements indicate that 60-80% of total As and 93% of Cd ingested were excreted in rats fed 0.5 and 5% kelp. Liver metabolomic profiling demonstrates that a high inclusion of sugar kelp in the diet for 13 weeks of feeding modulates metabolites with potential antioxidant activity and phytosterols.
Collapse
Affiliation(s)
- Even Fjære
- Institute of Marine Research, NO-5817 Bergen, Norway
- Correspondence: ; Tel.: +47-55-23-85-00
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
| | - Arne Duinker
- Institute of Marine Research, NO-5817 Bergen, Norway
| | - Bjørn Liaset
- Institute of Marine Research, NO-5817 Bergen, Norway
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, Aarhus University, DK-4000 Roskilde, Denmark
| | - Lise Madsen
- Institute of Marine Research, NO-5817 Bergen, Norway
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
5
|
Dietary exposure to arsenic species in Japan in 2019 using a total diet study based on composite sample with market basket approach at the national level. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
The importance of nutrition in pregnancy and lactation: lifelong consequences. Am J Obstet Gynecol 2022; 226:607-632. [PMID: 34968458 PMCID: PMC9182711 DOI: 10.1016/j.ajog.2021.12.035] [Citation(s) in RCA: 221] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
Most women in the United States do not meet the recommendations for healthful nutrition and weight before and during pregnancy. Women and providers often ask what a healthy diet for a pregnant woman should look like. The message should be “eat better, not more.” This can be achieved by basing diet on a variety of nutrient-dense, whole foods, including fruits, vegetables, legumes, whole grains, healthy fats with omega-3 fatty acids that include nuts and seeds, and fish, in place of poorer quality highly processed foods. Such a diet embodies nutritional density and is less likely to be accompanied by excessive energy intake than the standard American diet consisting of increased intakes of processed foods, fatty red meat, and sweetened foods and beverages. Women who report “prudent” or “health-conscious” eating patterns before and/or during pregnancy may have fewer pregnancy complications and adverse child health outcomes. Comprehensive nutritional supplementation (multiple micronutrients plus balanced protein energy) among women with inadequate nutrition has been associated with improved birth outcomes, including decreased rates of low birthweight. A diet that severely restricts any macronutrient class should be avoided, specifically the ketogenic diet that lacks carbohydrates, the Paleo diet because of dairy restriction, and any diet characterized by excess saturated fats. User-friendly tools to facilitate a quick evaluation of dietary patterns with clear guidance on how to address dietary inadequacies and embedded support from trained healthcare providers are urgently needed. Recent evidence has shown that although excessive gestational weight gain predicts adverse perinatal outcomes among women with normal weight, the degree of prepregnancy obesity predicts adverse perinatal outcomes to a greater degree than gestational weight gain among women with obesity. Furthermore, low body mass index and insufficient gestational weight gain are associated with poor perinatal outcomes. Observational data have shown that first-trimester gain is the strongest predictor of adverse outcomes. Interventions beginning in early pregnancy or preconception are needed to prevent downstream complications for mothers and their children. For neonates, human milk provides personalized nutrition and is associated with short- and long-term health benefits for infants and mothers. Eating a healthy diet is a way for lactating mothers to support optimal health for themselves and their infants.
Collapse
|
7
|
Lin Y, Huang Z, Wu L, Zhao P, Wang X, Ma X, Chen W, Bi R, Jia Y. Influence of phosphorus on the uptake and biotransformation of arsenic in Porphyra haitanensis at environmental relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149534. [PMID: 34392210 DOI: 10.1016/j.scitotenv.2021.149534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Edible seaweeds are rich in essential vitamins and minerals, which made them a popular food worldwide. Porphyra haitanensis is one of the most commonly consumed seaweeds with the known ability to accumulate a high level of total arsenic (As). A large number of articles have shown arsenic and phosphorus (P) interactions in microalgae due to the plant's inability to differentiate arsenate from phosphate. However, very limited information is available for edible seaweed at environmentally relevant concentrations. In this study, P. haitanensis was treated with arsenic as AsV (As1: 0.06 μM, As2: 0.4 μM, As3: 1.2 μM) and phosphorous (P1: 3.2 μM, P2: 13 μM) in a filtered seawater matrix under laboratory condition for six days. A better growth rate was found in seaweeds grown in P2 treatments. Moreover, superoxide dismutase (SOD) activity and malondialdehyde (MDA) content measurements revealed that a higher P concentration prevent seaweeds from lipid peroxidation and oxidative stress. Transcriptome studies indicated the As replacement to P has the ability to target seaweed cell membrane composition, transmembrane transport, DNA and ATP binding. The inorganic As (iAs) had a concentration of 0.54 to 4.45 mg/kg in P. haitanensis on Day 6 with As1, As2, and As3 treatments under low P regime (P1), which exceeds the limits of iAs concentration (0.1-0.5 mg/kg) in National Food Safety Standard-Limits of Pollutants in Food (GB 2762-2017). High P regime (P2) not only reduced the total As but also iAs effectively, even in the highest As treatment (As3), the iAs concentration was less than 0.5 mg/kg on Day 6. These findings provide a good insight for seafood safety guarantees and are important for the management of coastal artificial seaweed farming.
Collapse
Affiliation(s)
- Yubing Lin
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Zhangxun Huang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Lin Wu
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Puhui Zhao
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xinjie Wang
- Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Xu Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Weizhou Chen
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Ran Bi
- Institute of Marine Sciences, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Yongfeng Jia
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
8
|
Bae S, Kamynina E, Guetterman HM, Farinola AF, Caudill MA, Berry RJ, Cassano PA, Stover PJ. Provision of folic acid for reducing arsenic toxicity in arsenic-exposed children and adults. Cochrane Database Syst Rev 2021; 10:CD012649. [PMID: 34661903 PMCID: PMC8522704 DOI: 10.1002/14651858.cd012649.pub2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Arsenic is a common environmental toxin. Exposure to arsenic (particularly its inorganic form) through contaminated food and drinking water is an important public health burden worldwide, and is associated with increased risk of neurotoxicity, congenital anomalies, cancer, and adverse neurodevelopment in children. Arsenic is excreted following methylation reactions, which are mediated by folate. Provision of folate through folic acid supplements could facilitate arsenic methylation and excretion, thereby reducing arsenic toxicity. OBJECTIVES To assess the effects of provision of folic acid (through fortified foods or supplements), alone or in combination with other nutrients, in lessening the burden of arsenic-related health outcomes and reducing arsenic toxicity in arsenic-exposed populations. SEARCH METHODS In September 2020, we searched CENTRAL, MEDLINE, Embase, 10 other international databases, nine regional databases, and two trials registers. SELECTION CRITERIA Randomised controlled trials (RCTs) and quasi-RCTs comparing the provision of folic acid (at any dose or duration), alone or in combination with other nutrients or nutrient supplements, with no intervention, placebo, unfortified food, or the same nutrient or supplements without folic acid, in arsenic-exposed populations of all ages and genders. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included two RCTs with 822 adults exposed to arsenic-contaminated drinking water in Bangladesh. The RCTs compared 400 µg/d (FA400) or 800 µg/d (FA800) folic acid supplements, given for 12 or 24 weeks, with placebo. One RCT, a multi-armed trial, compared FA400 plus creatine (3 g/d) to creatine alone. We judged both RCTs at low risk of bias in all domains. Due to differences in co-intervention, arsenic exposure, and participants' nutritional status, we could not conduct meta-analyses, and therefore, provide a narrative description of the data. Neither RCT reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Folic acid supplements alone versus placebo Blood arsenic. In arsenic-exposed individuals, FA likely reduces blood arsenic concentrations compared to placebo (2 studies, 536 participants; moderate-certainty evidence). For folate-deficient and folate-replete participants who received arsenic-removal water filters as a co-intervention, FA800 reduced blood arsenic levels more than placebo (percentage change (%change) in geometric mean (GM) FA800 -17.8%, 95% confidence intervals (CI) -25.0 to -9.8; placebo GM -9.5%, 95% CI -16.5 to -1.8; 1 study, 406 participants). In one study with 130 participants with low baseline plasma folate, FA400 reduced total blood arsenic (%change FA400 mean (M) -13.62%, standard error (SE) ± 2.87; placebo M -2.49%, SE ± 3.25), and monomethylarsonic acid (MMA) concentrations (%change FA400 M -22.24%, SE ± 2.86; placebo M -1.24%, SE ± 3.59) more than placebo. Inorganic arsenic (InAs) concentrations reduced in both groups (%change FA400 M -18.54%, SE ± 3.60; placebo M -10.61%, SE ± 3.38). There was little to no change in dimethylarsinic acid (DMA) in either group. Urinary arsenic. In arsenic-exposed individuals, FA likely reduces the proportion of total urinary arsenic excreted as InAs (%InAs) and MMA (%MMA) and increases the proportion excreted as DMA (%DMA) to a greater extent than placebo (2 studies, 546 participants; moderate-certainty evidence), suggesting that FA enhances arsenic methylation. In a mixed folate-deficient and folate-replete population (1 study, 352 participants) receiving arsenic-removal water filters as a co-intervention, groups receiving FA had a greater decrease in %InAs (within-person change FA400 M -0.09%, 95% CI -0.17 to -0.01; FA800 M -0.14%, 95% CI -0.21 to -0.06; placebo M 0.05%, 95% CI 0.00 to 0.10), a greater decrease in %MMA (within-person change FA400 M -1.80%, 95% CI -2.53 to -1.07; FA800 M -2.60%, 95% CI -3.35 to -1.85; placebo M 0.15%, 95% CI -0.37 to 0.68), and a greater increase in %DMA (within-person change FA400 M 3.25%, 95% CI 1.81 to 4.68; FA800 M 4.57%, 95% CI 3.20 to 5.95; placebo M -1.17%, 95% CI -2.18 to -0.17), compared to placebo. In 194 participants with low baseline plasma folate, FA reduced %InAs (%change FA400 M -0.31%, SE ± 0.04; placebo M -0.13%, SE ± 0.04) and %MMA (%change FA400 M -2.6%, SE ± 0.37; placebo M -0.71%, SE ± 0.43), and increased %DMA (%change FA400 M 5.9%, SE ± 0.82; placebo M 2.14%, SE ± 0.71), more than placebo. Plasma homocysteine: In arsenic-exposed individuals, FA400 likely reduces homocysteine concentrations to a greater extent than placebo (2 studies, 448 participants; moderate-certainty evidence), in the mixed folate-deficient and folate-replete population receiving arsenic-removal water filters as a co-intervention (%change in GM FA400 -23.4%, 95% CI -27.1 to -19.5; placebo -1.3%, 95% CI -5.3 to 3.1; 1 study, 254 participants), and participants with low baseline plasma folate (within-person change FA400 M -3.06 µmol/L, SE ± 3.51; placebo M -0.05 µmol/L, SE ± 4.31; 1 study, 194 participants). FA supplements plus other nutrient supplements versus nutrient supplements alone In arsenic-exposed individuals who received arsenic-removal water filters as a co-intervention, FA400 plus creatine may reduce blood arsenic concentrations more than creatine alone (%change in GM FA400 + creatine -14%, 95% CI -22.2 to -5.0; creatine -7.0%, 95% CI -14.8 to 1.5; 1 study, 204 participants; low-certainty evidence); may not change urinary arsenic methylation indices (FA400 + creatine: %InAs M 13.2%, SE ± 7.0; %MMA M 10.8, SE ± 4.1; %DMA M 76, SE ± 7.8; creatine: %InAs M 14.8, SE ± 5.5; %MMA M 12.8, SE ± 4.0; %DMA M 72.4, SE ±7.6; 1 study, 190 participants; low-certainty evidence); and may reduce homocysteine concentrations to a greater extent (%change in GM FA400 + creatinine -21%, 95% CI -25.2 to -16.4; creatine -4.3%, 95% CI -9.0 to 0.7; 1 study, 204 participants; low-certainty evidence) than creatine alone. AUTHORS' CONCLUSIONS There is moderate-certainty evidence that FA supplements may benefit blood arsenic concentration, urinary arsenic methylation profiles, and plasma homocysteine concentration versus placebo. There is low-certainty evidence that FA supplements plus other nutrients may benefit blood arsenic and plasma homocysteine concentrations versus nutrients alone. No studies reported on cancer, all-cause mortality, neurocognitive function, or congenital anomalies. Given the limited number of RCTs, more studies conducted in diverse settings are needed to assess the effects of FA on arsenic-related health outcomes and arsenic toxicity in arsenic-exposed adults and children.
Collapse
Affiliation(s)
- Sajin Bae
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Elena Kamynina
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | | - Adetutu F Farinola
- Faculty of Public Health, Department of Human Nutrition and Dietetics, University of Ibadan, Ibadan, Nigeria
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | |
Collapse
|
9
|
Chen S, Liu Y, Wang C, Yan J, Lu D. Speciation of As(III) and As(V) in Food by Magnetic Dispersive Microsolid Phase Extraction with Dispersive Liquid–Liquid Microextraction with Graphite Furnace Atomic Absorption Spectrometry (GFAAS) Detection. ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1925290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Shizhong Chen
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yuxiu Liu
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chunlei Wang
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Juntao Yan
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Dengbo Lu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
10
|
Seaweeds as a “Palatable” Challenge between Innovation and Sustainability: A Systematic Review of Food Safety. SUSTAINABILITY 2021. [DOI: 10.3390/su13147652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Moderate or severe food insecurity affect 2 billion people worldwide. The four pillars of food security (availability, access, use and stability) are in danger due to the impact of climatic and anthropogenic factors which impact on the food system. Novel foods, like seaweeds, have the potential to increase food yields so that to contribute in preventing or avoiding future global food shortages. The purpose of this systematic review was to assess microbiological, chemical, physical, and allergenic risks associated with seaweed consumption. Four research strings have been used to search for these risks. Preferred Reporting Item for Systematic Reviews and Meta-analysis (PRISMA) guidelines were applied. Finally, 39 articles met the selected criteria. No significant hazards for microbiological, allergenic, and physical risks were detected. Regarding chemical risk, algae can accumulate various heavy metals, especially when harvested in polluted sites. Cultivating seaweeds in a controlled environment allows to avoid this risk. Periodic checks will be necessary on the finished products to monitor heavy metals levels. Since the consumption of algae seems to be on the rise everywhere, it seems to be urgent that food control authorities establish the safety levels to which eating algae does not represent any risk for human health.
Collapse
|
11
|
Mise N, Ohtsu M, Ikegami A, Hosoi Y, Nakagi Y, Yoshida T, Kayama F. Concentration of folic acid (FA) in serum of Japanese pregnant women. REVIEWS ON ENVIRONMENTAL HEALTH 2020; 35:277-280. [PMID: 32651989 DOI: 10.1515/reveh-2020-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Objectives Exposure to inorganic arsenic (iAs) is a world-wide health concern. We reported that Japanese children and pregnant women are exposed to moderate levels of iAs through food. Reducing iAs contamination from foods of high iAs is an important issue unique in Japan. Integrated iAs is methylated to less toxic organic forms, and S-adenosyl-L-methyonine (SAM), a common methyl-donor of DNA and histones, is utilized in this process. Chronic consumption of SAM by iAs metabolism due to exposure to iAs might alter the epigenetic modification of genome. The SAM biosynthesis pathway is dependent on folate cycle, and it is possible that ingestion of sufficient folic acid (FA) is protective to iAs induced toxicity. Methods In the course of our cross-sectional body burden analyses of Pb and iAs in Japanese children and pregnant women, termed "PbAs study", FA concentration in serum of 104 pregnant women was measured. Results Mean (±SEM) of serum FA concentration was 15.8 ± 1.3 (ng/mL). There are significant number of people showing very high FA (>30 ng/ mL), and large fraction of them were taking supplements daily. Conclusions These results suggested that level of FA ingestion of Japanese pregnant women is high for supporting normal fetal development.
Collapse
Affiliation(s)
- Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Mayumi Ohtsu
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Yoko Hosoi
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| | - Yoshihiko Nakagi
- Department of Health Science, Asahikawa Medical University, Midorigaoka-higashi, Asahikawa, Hokkaido, Japan
| | - Takahiko Yoshida
- Department of Health Science, Asahikawa Medical University, Midorigaoka-higashi, Asahikawa, Hokkaido, Japan
| | - Fujio Kayama
- Department of Environmental and Preventive Medicine, Jichi Medical University, Yakushiji, Shimotsuke, Tochigi, Japan
| |
Collapse
|
12
|
Ohtsu M, Mise N, Ikegami A, Mizuno A, Kobayashi Y, Nakagi Y, Nohara K, Yoshida T, Kayama F. Oral exposure to lead for Japanese children and pregnant women, estimated using duplicate food portions and house dust analyses. Environ Health Prev Med 2019; 24:72. [PMID: 31805868 PMCID: PMC6896297 DOI: 10.1186/s12199-019-0818-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/23/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lead is a toxic metal abundant in the environment. Consumption of food contaminated at low levels of lead, especially by small children and pregnant women, raises a health concern. METHODS Duplicated food portions and drinking water were collected over 3 days from 88 children and 87 pregnant women in Shimotsuke, Tochigi, Japan. Participants were recruited in this study between January 2014 and October 2015. Dust was also collected from their homes. Lead concentrations were measured and consequent oral lead exposure levels were estimated for this population at high risk to environmental toxicants. Lead concentrations of peripheral and cord blood, taken from children and pregnant women, and were also analyzed. RESULTS Lead concentrations in food, drinking water, and house dust were low in general. Oral lead exposure to lead was higher for children (Mean ± SEM; 5.21 ± 0.30 μg/kg BW/week) than in pregnant women (1.47 ± 0.13 μg/kg BW/week). Food and house dust were main sources of lead contamination, but the contribution of house dust widely varied. Means ± SEM of peripheral and cord blood lead concentrations were 0.69 ± 0.04 μg/dL and 0.54 ± 0.05 μg/dL, respectively for pregnant women and 1.30 ± 0.07 μg/dL (peripheral only) in children. We detect no correlation between smoking situations and blood lead concentration in pregnant women. CONCLUSION We conclude that oral lead exposure levels for Japanese children and pregnant women were generally low, with higher concentrations and exposure for children than for pregnant women. More efforts are necessary to clarify the sources of lead contamination and reduce lead exposure of the population at high risk even in Japan.
Collapse
Affiliation(s)
- Mayumi Ohtsu
- Department of Environmental and Preventive Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Atsuko Mizuno
- Department of Pharmacology, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Yayoi Kobayashi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Yoshihiko Nakagi
- Department of Health Science, Asahikawa Medical University, Midorigaoka-higashi, Asahikawa, Hokkaido, 078-8802, Japan
| | - Keiko Nohara
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takahiko Yoshida
- Department of Health Science, Asahikawa Medical University, Midorigaoka-higashi, Asahikawa, Hokkaido, 078-8802, Japan
| | - Fujio Kayama
- Department of Environmental and Preventive Medicine, Jichi Medical University, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
13
|
Camurati JR, Salomone VN. Arsenic in edible macroalgae: an integrated approach. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 23:1-12. [PMID: 31578125 DOI: 10.1080/10937404.2019.1672364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arsenic is a metalloid naturally present in marine environments. Various toxic elements including arsenic (As) are bioaccumulated by macroalgae. This metalloid is subsequently incorporated as arsenate into the organism due to similarity to phosphate. In recent decades, the use of macroalgae in food has increased as a result of their numerous benefits; however, As consumption may exert potential consequences for human health. The objective of this review was to discuss the articles published up to 2019 on As in seaweed, including key topics such as speciation, toxicity of the most common species in marine macroalgae, and their effects on human health. Further, this review will emphasize the extraction methods and analysis techniques most frequently used in seaweed and the need to develop certified reference materials (CRMs) in order to support the validation of analytical methodologies for As speciation in macroalgae. Finally, this review will discuss current legislation in relation to the risk associated with consumption. The number of articles found and the different approaches, biological, analytical and toxicological, show the growing interest there has been in this field in the last few years. In addition, this review reveals aspects of As chemistry that need further study, such as transformation of organic metalloid species during digestion and cooking, which necessitates analytical improvement and toxicological experiments. Taken together our findings may contribute to revision of current legislation on As content in edible seaweed relating to human health in a growing market.
Collapse
Affiliation(s)
- Julieta R Camurati
- Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET-UNSAM, Campus Miguelete, BA, Argentina
| | - Vanesa N Salomone
- Instituto de Investigación e Ingeniería Ambiental (IIIA), CONICET-UNSAM, Campus Miguelete, BA, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CABA, Argentina
| |
Collapse
|