1
|
Li W, Zeng X, Wang L, Yin L, Wang Q, Yang H. Comparative Analysis of Gut Microbiota Diversity Across Different Digestive Tract Sites in Ningxiang Pigs. Animals (Basel) 2025; 15:936. [PMID: 40218330 PMCID: PMC11987976 DOI: 10.3390/ani15070936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Microbial communities in the gastrointestinal tract play a critical role in nutrient absorption, metabolism, and overall health of animals. Understanding the structure and function of tissue-specific microbial communities in Ningxiang pigs is essential for optimizing their growth, development, and nutritional efficiency. However, the diversity and functional roles of microbiota in different nutrient absorption tissues remain underexplored. METHODS We collected samples from four key nutrient absorption tissues (NFC: Cecal Content, NFI: Ileal Content, NFL: Colonic Content, NFG: Gastric Content, N = 6) of Ningxiang pigs and performed 16S rRNA gene sequencing to analyze microbial community composition. Bioinformatics analyses included alpha and beta diversity assessments, linear discriminant analysis effect size (LEfSe) for biomarker identification, and PICRUSt2-based functional prediction. Comparative metabolic abundance analysis was conducted to explore functional differences among tissues. RESULTS Alpha diversity indices (ACE, Chao1, Simpson, and Shannon) revealed significant differences in microbial richness and evenness among the four tissues. At the phylum level, Firmicutes dominated the microbiota, while Bacteroidota was prominent in NFC and NFL. LEfSe analysis identified tissue-specific dominant microbial groups, such as f_Prevotellaceae in NFC, o_Lactobacillales in NFG, f_Clostridiaceae in NFI, and f_Muribaculaceae in NFL. Functional profiling using PICRUSt2 showed that the microbiota was primarily involved in organismal systems (e.g., aging, digestion), cellular processes (e.g., cell growth, transport), environmental information processing (e.g., signaling), genetic information processing (e.g., transcription, translation), and metabolic regulation (e.g., amino acid and carbohydrate metabolism). Comparative metabolic abundance analysis highlighted distinct functional profiles across tissues, with significant differences observed in pathways related to the immune system, energy metabolism, lipid metabolism, transcriptional and translational regulation, and aging. CONCLUSIONS Our findings demonstrate that tissue-specific microbial communities in Ningxiang pigs exhibit distinct structural and functional characteristics, which are closely associated with nutrient absorption and metabolic regulation. These results provide valuable insights into the roles of microbiota in the growth and health of Ningxiang pigs and pave the way for future studies on microbe-mediated nutritional interventions.
Collapse
Affiliation(s)
- Wangchang Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Xianglin Zeng
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Lu Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Lanmei Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Qiye Wang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| | - Huansheng Yang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China; (W.L.)
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
2
|
Yang H. Gut Microbiota, Circulating Metabolites and Risk of Endometriosis: A Two-Step Mendelian Randomization Study. Pol J Microbiol 2024; 73:491-503. [PMID: 39670637 PMCID: PMC11639408 DOI: 10.33073/pjm-2024-041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 12/14/2024] Open
Abstract
Epidemiological studies and animal models have suggested a possible link between gut microbiota (GM), circulating metabolites, and endometriosis (EMs) pathogenesis. However, whether these associations are causal or merely due to confounding factors remains unclear. We conducted a two-sample and two-step Mendelian randomization (MR) study to elucidate the potential causal relationship between GM and EMs, and the mediating role of circulating metabolites. Our MR analysis revealed that higher abundances of class Negativicutes, and order Selenomonadales, as well as genera Dialister, Enterorhabdus, Eubacterium xylanophilum group, Methanobrevibacter were associated with an increased risk of EMs (Odds Ratio (OR) range: 1.0019-1.0037). Conversely, higher abundances of genera Coprococcus 1 and Senegalimassilia were linked to reduced risk of EMs (OR range: 0.9964-0.9967). Additionally, elevated levels of circulating metabolites such as 1-eicosatrienoyl-glycerophosphocholine and 1-oleoylglycerophosphocholine were found to be associated with heightened risk of EMs (OR range: 2.21-3.16), while higher concentrations of 3-phenylpropionate and dihomo-linolenate were protective (OR range: 0.285-0.535). Two-step MR analysis indicated that specific microbial taxa, notably genus Enterorhabdus and order Selenomonadales, might function as mediators linking circulating metabolites to the risk of EMs. Our findings suggest a probable causal relationship between GM, circulating metabolites, and EMs, indicating that GM may mediate the influence of circulating metabolites on the pathophysiology of EMs. These results offer new leads for future mechanistic studies and could inform clinical translational research.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
3
|
Yang H. The causality between gut microbiota and endometriosis: a bidirectional Mendelian randomization study. Front Med (Lausanne) 2024; 11:1434582. [PMID: 39650192 PMCID: PMC11621931 DOI: 10.3389/fmed.2024.1434582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/13/2024] [Indexed: 12/11/2024] Open
Abstract
Background Observational studies and animal experiments had suggested a potential relationship between gut microbiota abundance and pathogenesis of endometriosis (EMs), but the relevance of this relationship remains to be clarified. Methods We perform a two-sample bidirectional Mendelian randomization (MR) analysis to explore whether there is a causal correlation between the abundance of the gut microbiota and EMs and the direction of causality. Genome-wide association study (GWAS) data ukb-d-N80, finn-b-N14-EM, and MiBinGen were selected. Inverse variance weighted (IVW), weighted median, and MR Egger are selected for causal inference. The Cochran Q test, Egger intercept test, and leave-one-out analysis are performed for sensitivity analyses. Results In the primary outcome, we find that a higher abundance of class Negativicutes, genus Dialister, genus Enterorhabdus, genus Eubacterium xylanophilum group, genus Methanobrevibacter and order Selenomonadales predict a higher risk of EMs, and a higher abundance of genus Coprococcus and genus Senegalimassilia predict a lower risk of EMs. During verifiable outcomes, we find that a higher abundance of phylum Cyanobacteria, genus Ruminococcaceae UCG002, and genus Coprococcus 3 predict a higher risk of EMs, and a higher abundance of genus Flavonifracto, genus Bifidobacterium, and genus Rikenellaceae RC9 predict a lower risk of EMs. In primary reverse MR analysis, we find that EMs predict a lower abundance of the genus Eubacterium fissicatena group, genus Prevotella7, genus Butyricicoccus, family Lactobacillaceae, and a higher abundance of genus Ruminococcaceae UCG009. In verifiable reverse MR analysis, we find that EMs predict a lower abundance of the genus Ruminococcaceae UCG004 and a higher abundance of the genus Howardella. Conclusion Our study implies a mutual causality between gut microbiota abundance and the pathogenesis of EMs, which may provide a novel direction for EMs diagnosis, prevention, and treatment, may promote future functional or clinical analysis.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gynecology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
4
|
Bernal K, Touma C, Erradhouani C, Boronat-Belda T, Gaillard L, Al Kassir S, Le Mentec H, Martin-Chouly C, Podechard N, Lagadic-Gossmann D, Langouet S, Brion F, Knoll-Gellida A, Babin PJ, Sovadinova I, Babica P, Andreau K, Barouki R, Vondracek J, Alonso-Magdalena P, Blanc E, Kim MJ, Coumoul X. Combinatorial pathway disruption is a powerful approach to delineate metabolic impacts of endocrine disruptors. FEBS Lett 2022; 596:3107-3123. [PMID: 35957500 DOI: 10.1002/1873-3468.14465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 01/14/2023]
Abstract
The prevalence of metabolic diseases, such as obesity, diabetes, metabolic syndrome and chronic liver diseases among others, has been rising for several years. Epidemiology and mechanistic (in vivo, in vitro and in silico) toxicology have recently provided compelling evidence implicating the chemical environment in the pathogenesis of these diseases. In this review, we will describe the biological processes that contribute to the development of metabolic diseases targeted by metabolic disruptors, and will propose an integrated pathophysiological vision of their effects on several organs. With regard to these pathomechanisms, we will discuss the needs, and the stakes of evolving the testing and assessment of endocrine disruptors to improve the prevention and management of metabolic diseases that have become a global epidemic since the end of last century.
Collapse
Affiliation(s)
- Kévin Bernal
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Charbel Touma
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Chedi Erradhouani
- Université Paris Cité, France.,Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Talía Boronat-Belda
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Lucas Gaillard
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Sara Al Kassir
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Hélène Le Mentec
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Corinne Martin-Chouly
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Normand Podechard
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Dominique Lagadic-Gossmann
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - Sophie Langouet
- Inserm, EHESP, Irset (Institut de recherche en santé environnement et travail) - UMR_S 1085, Université Rennes, France
| | - François Brion
- Ecotoxicologie des substances et des milieux, Parc ALATA, INERIS, Verneuil-en-Halatte, France
| | - Anja Knoll-Gellida
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Patrick J Babin
- Department of Life and Health Sciences, INSERM U1211, MRGM, University of Bordeaux, Pessac, France
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karine Andreau
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Robert Barouki
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Jan Vondracek
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Paloma Alonso-Magdalena
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, Elche, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Etienne Blanc
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| | - Min Ji Kim
- INSERM UMR-S 1124, Paris, France.,Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Paris, France.,Université Paris Cité, France
| |
Collapse
|
5
|
Zamora V, Carlos Andreu-Ballester J, Rodero M, Cuéllar C. Anisakis simplex: Immunomodulatory effects of larval antigens on the activation of Toll like Receptors. Int Immunopharmacol 2021; 100:108120. [PMID: 34537480 DOI: 10.1016/j.intimp.2021.108120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022]
Abstract
AIMS The objective of this investigation is to evaluate the mechanisms Anisakis simplex employs to modify its host immune system, regarding the larval antigens interactions with Toll-Like-Receptors (TLRs). METHODS AND RESULTS In a previous study, we described that the stimulation of bone marrow derived dendritic cells (BMDCs) with A. simplex larval antigens drive an acute inflammatory response in BALB/c mice, but a more discrete and longer response in C57BL/6J. Moreover, when A. simplex larval antigens were combined with TLR agonists (TLR 1/2-9), they modified mainly TLR2, TLR4 and TLR9 agonists responses in both mice strains, and also TLR3, TLR5 and TLR7 in BALB/c. Antigen-presenting ability was analyzed by the detection of CD11c + cells expressing surface markers (CD80-86, MHC I-II), intracellular cytokines (IL-10, IL-12, TNF-α) and intracellular proteins (Myd88, NF-κβ) by Flow Cytometry. Secreted IL-10 was measured by ELISA. CONCLUSION Our findings confirm not only that the host genetic basis plays a role in the development of a Th2/Th1/Treg response, but also it states A. simplex larval antigens present specific mechanisms to modify the innate response of the host. As allergies share common pathways with the immune response against this particular helminth, our results provide a better understanding into the specific mechanisms of A. simplex allergy related diseases.
Collapse
Affiliation(s)
- Vega Zamora
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain.
| | | | - Marta Rodero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| | - Carmen Cuéllar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Spain
| |
Collapse
|
6
|
Dellacecca ER, Cosgrove C, Mukhatayev Z, Akhtar S, Engelhard VH, Rademaker AW, Knight K, Poole ICL. Antibiotics Drive Microbial Imbalance and Vitiligo Development in Mice. J Invest Dermatol 2020; 140:676-687.e6. [PMID: 31472106 PMCID: PMC9851193 DOI: 10.1016/j.jid.2019.08.435] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Vitiligo is impacted by environmental triggers. We studied the contribution of the microbiome in FH mice, in which depigmentation is mediated by tyrosinase-reactive T cells. The mice received oral antibiotics and were monitored for depigmentation. The microbiome was studied in fecal and skin samples using 16S rRNA analysis. The resulting T-cell distributions were evaluated. In untreated mice, pigment loss did not expand to the pelage, whereas mice in the ampicillin group were approximately 1/3 depigmented at 30 weeks. In contrast to models of autoimmunity that are less dependent on IFN-γ, ampicillin but not neomycin treatment correlated with accelerated disease and reduced bacteria in the fecal pellets. Modified cytokine patterns in the tissue and serum suggest a response that transcends the gut. Ampicillin-induced depigmentation was accompanied by gut but not skin dysbiosis, and reduced T cell numbers in both sites. Neomycin induced a redistribution of gut T cells and an accumulation of skin regulatory T cells. This treatment spurred a Bacteroides-dominated population of fecal bacteria. Reduced diversity is prominent particularly after ampicillin treatment, when the gut is dominated by Pseudomonas species. In line with current concepts relating the microbiome and the immune system, we predict that dietary measures might promote skin health and delay vitiligo onset.
Collapse
Affiliation(s)
- Emilia R. Dellacecca
- Oncology Research Institute, Loyola University Chicago (IL), USA,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago (IL), USA,Department of Dermatology, Northwestern University, Chicago (IL), USA
| | - Cormac Cosgrove
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago (IL), USA,Department of Dermatology, Northwestern University, Chicago (IL), USA
| | - Zhussipbek Mukhatayev
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago (IL), USA,Department of Dermatology, Northwestern University, Chicago (IL), USA,Department of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Suhail Akhtar
- Oncology Research Institute, Loyola University Chicago (IL), USA,Department of Surgery, Loyola University Chicago (IL), USA
| | - Victor H. Engelhard
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville (VA), USA
| | - Alfred W. Rademaker
- Department of Preventive Medicine, Northwestern University, Chicago (IL), USA
| | - Katherine Knight
- Department of Microbiology and Immunology, Loyola University Chicago (IL), USA
| | - I. Caroline Le Poole
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago (IL), USA,Department of Dermatology, Northwestern University, Chicago (IL), USA,Department of Microbiology and Immunology, Northwestern University, Chicago (IL), USA
| |
Collapse
|
7
|
The Th17/Treg Cell Balance: A Gut Microbiota-Modulated Story. Microorganisms 2019; 7:microorganisms7120583. [PMID: 31756956 PMCID: PMC6956175 DOI: 10.3390/microorganisms7120583] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022] Open
Abstract
The intestinal tract of vertebrates is normally colonized with a remarkable number of commensal microorganisms that are collectively referred to as gut microbiota. Gut microbiota has been demonstrated to interact with immune cells and to modulate specific signaling pathways involving both innate and adaptive immune processes. Accumulated evidence suggests that the imbalance of Th17 and Treg cells is associated with the development of many diseases. Herein, we emphatically present recent findings to show how specific gut microbiota organisms and metabolites shape the balance of Th17 and Treg cells. We also discuss the therapeutic potential of fecal microbiota transplantation (FMT) in diseases caused by the imbalance of Th17 and Treg cells
Collapse
|
8
|
Yuan X, Kang Y, Zhuo C, Huang XF, Song X. The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun 2019; 512:373-380. [PMID: 30898321 DOI: 10.1016/j.bbrc.2019.02.152] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a severe mental disorder with unknown etiology. Many mechanisms, including dysregulation of neurotransmitters, immune disturbance, and abnormal neurodevelopment, are proposed for the pathogenesis of schizophrenia. The significance of communication between intestinal flora and the central nervous system through the gut-brain axis is increasingly being recognized. The intestinal microbiota plays an important role in regulating neurotransmission, immune homeostasis, and brain development. We hypothesize that an imbalance in intestinal flora causes immune activation and dysfunction in the gut-brain axis, contributing to schizophrenia. In this review, we examine recent studies that explore the intestinal flora and immune-mediated neurodevelopment of schizophrenia. We conclude that an imbalance in intestinal flora may reduce protectants and increase neurotoxin and inflammatory mediators, causing neuronal and synaptic damage, which induces schizophrenia.
Collapse
Affiliation(s)
- Xiuxia Yuan
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China
| | - Yulin Kang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Chuanjun Zhuo
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| | - Xueqin Song
- The First Affiliated Hospital/Zhengzhou University, Zhengzhou, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, China; Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou, China.
| |
Collapse
|