1
|
Li C, Lu Y, Zhang Z, Huang L, Wang Z. Online PGC-LC-MS analysis of colonic mucin O-glycans in ovalbumin-induced food allergy in Balb/c mice by treatment with sea cucumber chondroitin sulfate polysaccharide. Int J Biol Macromol 2025; 307:141808. [PMID: 40054794 DOI: 10.1016/j.ijbiomac.2025.141808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/17/2025]
Abstract
The highly sulfated polysaccharide sea cucumber chondroitin sulfate (SCCS) can alleviate intestinal damage and display strong anti-food-allergic activity. The O-glycopattern levels in colonic mucin are closely related to the its protective effect on function of the intestinal barrier. However, the effect of the SCCS on colonic mucin O-glycan has not been investigated. In this study, ovalbumin (OVA)-sensitized allergic mice and SCCS treatment were used. Mouse colonic mucin O-glycome was released and analyzed through reductive β-elimination combined with PGC-LC-MS. A total of presumptive 20 neutral and 28 acidic O-glycan structures were identified, in which the core 2 type acidic O-glycan structure is predominant in Balb/c female mice. Treatment with OVA and SCCS did not change the numbers of colon mucin O-glycan type, but the expression level of total O-glycosylation was more abundant in the SCCS group mice than in the OVA group (1.8-fold), especially for acidic O-glycans (co-modified by fucose and sulfate groups). Furthermore, supplementation with SCCS reversed most of the O-glycan decreasing trend, which may be associated with a return to healthy levels of gut microbiota. In conclusion, our results demonstrate that SCCS could restore colonic mucin O-glycosylation levels and intestinal homeostasis and contribute to enhancing intestinal barrier function.
Collapse
Affiliation(s)
- Cheng Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Yu Lu
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhijun Zhang
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, China
| | - Linjuan Huang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Glycobiology and Glycotechnology Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
He AQ, Xiao WY, Zheng T, Li KY, Li BS, Wang S, Yu QX, Liu G. Efficacy of curcumin supplementation for the treatment and prevention of pouchitis after ileal pouch-anal anastomosis: a randomized controlled trial. Eur J Nutr 2025; 64:167. [PMID: 40295333 DOI: 10.1007/s00394-025-03676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/02/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Pouchitis is the most common complication after ileal pouch-anal anastomosis (IPAA) for ulcerative colitis. Induction and maintenance of remission is a crucial therapeutic goal. We investigated curcumin's efficacy in treatment of pouchitis. METHODS The double-blind trial included an induction cohort of refractory pouchitis patients and a maintenance cohort of patients without pouchitis after IPAA. Patients received either placebo or curcumin for 8 weeks. The pouchitis activity were assessed before and after and was compared between cohorts or groups. Laboratory inflammation indicators, nutritional status and quality of life were also appraised. RESULTS 52 patients were included, with 39 and 13 patients entering the maintenance cohort and induction cohort, respectively. In maintenance cohort, the proportion of clinical remission elevated from 11 to 89% in curcumin group (p = 0.005), whereas there was no significant difference in placebo group (10% vs 5%, p = 1).In induction cohort, 67% (4/6) patients achieved clinical response after 8 weeks' intervention of curcumin, whereas none treated with placebo (p = 0.021). Patients treated with curcumin appeared less inflammation and there was no significant difference in indicators changes between two cohorts. CONCLUSIONS Curcumin has preventive and therapeutic effects on pouchitis. Curcumin supplementation can reduce the disease activity and improve the nutritional status of patients with after IPAA. TRIAL REGISTRATION ChiCTR, ChiCTR1900022243. Registered 31 March 2019, https://www.chictr.org.cn/historyversionpub.aspx?regno=ChiCTR1900022243.
Collapse
Affiliation(s)
- An-Qi He
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Wan-Yi Xiao
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Ting Zheng
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Kai-Yu Li
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Bao-Song Li
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Song Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China
| | - Qing-Xiang Yu
- Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin, 300052, People's Republic of China.
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Anshan Road NO.154, Heping District, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Tanabe M, Kunisawa K, Saito I, Ojika H, Saito K, Nabeshima T, Mouri A. High-Cellulose Diet Ameliorates Cognitive Impairment by Modulating Gut Microbiota and Metabolic Pathways in Mice. J Nutr 2025:S0022-3166(25)00187-7. [PMID: 40216297 DOI: 10.1016/j.tjnut.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Nutrition is a key factor in cognitive function, and safe dietary interventions are promising to prevent cognitive impairment in pediatric psychiatric disorders. We previously demonstrated that childhood social isolation (SI) stress affects colonic function, leading to cognitive impairment. Cellulose, an insoluble dietary fiber, shows benefits to intestinal health, but its potential impact on cognitive impairment has not been explored. OBJECTIVES This study investigated whether a high-cellulose diet ameliorates cognitive impairment induced by SI through modulation of gut microbiota and metabolic pathways. METHODS C57BL/6J male mice (3 wk old; n = 10-15/group) were randomly divided into 2 groups: individually housed (SI) group and housed 5 mice per cage (group-housed) group. Each group received either a normal diet (5% cellulose) or a high-cellulose diet (30% cellulose) for 5 wk daily until the end of the behavioral testing. We evaluated behavior abnormalities, gut microbiota composition, and metabolites, and performed 2-way analysis of variance. RESULTS Intake of a high-cellulose diet ameliorated cognitive impairment, including decreased time spent in a novel location of SI mice in novel object location test (NOLT; +30%; P < 0.01) with reduction of Iba-1 positive cells, microglia, in the hippocampus (-33%; P < 0.05). The high-cellulose diet indicated a significant difference in gut microbiota clustering plots (P < 0.01) and enhanced the variation in malate-aspartate shuttle pathways in SI mice (P < 0.01). Notably, fecal microbiota transplantation (FMT) from SI mice fed a high-cellulose diet after antibiotic treatment, replicated amelioration of cognitive impairment in NOLT (+46%; P < 0.01). Additionally, the FMT replicated a decrease of Iba-1 positive cells indicating suppressed hippocampal microglial activation (-52%; P < 0.01), and enhanced the variation in malate-aspartate shuttle pathways (P < 0.01). CONCLUSIONS These findings suggest that a high-cellulose diet may ameliorate pediatric-specific cognitive impairment through modulation of the gut microbiota and metabolic pathways.
Collapse
Affiliation(s)
- Moeka Tanabe
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan; Laboratory of Health and Medical Science Innovation, Fujita Health University Graduate School of Medical Science, Aichi, Japan
| | - Kazuo Kunisawa
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan; International Center for Brain Science, Fujita Health University, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
| | - Imari Saito
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Haruto Ojika
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan
| | - Kuniaki Saito
- Laboratory of Health and Medical Science Innovation, Fujita Health University Graduate School of Medical Science, Aichi, Japan; Advanced Diagnostic System Development, Fujita Health University Graduate School of Medical Science, Aichi, Japan
| | - Toshitaka Nabeshima
- Laboratory of Health and Medical Science Innovation, Fujita Health University Graduate School of Medical Science, Aichi, Japan; International Center for Brain Science, Fujita Health University, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation & Development of Pharmaceuticals & Devices, Fujita Health University Graduate School of Medical Sciences, Aichi, Japan; International Center for Brain Science, Fujita Health University, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Aichi, Japan.
| |
Collapse
|
4
|
Duan Y, Lu Y, Liu Z, Zhang J, Yang Z, Guo Y, Yang Y, Lin W, Shuai Y, Huang J, Xu Y, Wu R, Wu Y, Li Y, Ke J. Qingre Huayu Jianpi prescription alleviates the inflammatory transformation of colitis-associated colorectal cancer by inhibiting the IL-17RA/ACT1/NF-κB axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119554. [PMID: 40043824 DOI: 10.1016/j.jep.2025.119554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/04/2025] [Accepted: 02/22/2025] [Indexed: 03/28/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inflammation-to-cancer transformation is critical for the progression of ulcerative colitis to colitis-associated colorectal cancer (CAC). AIM OF THE STUDY To explore the role and potential mechanisms of Qingre Huayu Jianpi prescription (QHJ) treatment in the development of CAC. MATERIALS AND METHODS Combined network pharmacology and transcriptome analyses were used to investigate QHJ-associated targets and pathways in the context of CAC. Using clinical data and a murine CAC model, we examined QHJ effects on pathological morphology, inflammatory factors, and key target pathways. RESULTS Network pharmacology analysis identified the interleukin 17 receptor A (IL-17RA)/ACT1/nuclear factor kappa B (NF-κB) axis as critical in the inflammation-to-CAC transformation and for QHJ effects in CAC. Western blot and multiplex immunofluorescence analyses revealed significant upregulation of the IL-17RA/ACT1/NF-κB axis along with matrix metalloproteinase (MMP)7, MMP9, and chemokine ligand 2 (CCL2) in human tumor tissues. QHJ significantly ameliorated CAC-related symptoms in mice in vivo by downregulating the IL-17RA/ACT1/NF-κB axis. This reduced the number of colorectal adenomas, increased colorectal length, and improved the structure of colonic mucosal glands. Additionally, QHJ inhibited the expression of pro-inflammatory factors and decreased the levels of MMP7, MMP9, and CCL2, ultimately suppressing the inflammation-to-cancer transformation. CONCLUSION QHJ exhibited significant therapeutic effects on CAC in mice, likely due to its inhibitory action on the IL-17RA/ACT1/NF-κB axis. This study lays the foundation for research into the pathogenesis of CAC and the clinical application of QHJ.
Collapse
Affiliation(s)
- Yilin Duan
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yao Lu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhenglin Liu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jin Zhang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhiyu Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Yihan Guo
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yi Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Wenjia Lin
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuxing Shuai
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiaying Huang
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yingjian Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Renxiong Wu
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, 525200, China
| | - Yongqiang Wu
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, 525200, China.
| | - Yanwu Li
- Guangzhou University of Chinese Medicine Science and Technology Innovation Center, Guangzhou, 510405, China.
| | - Junyu Ke
- Gaozhou Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Chinese Medicine, Gaozhou, 525200, China.
| |
Collapse
|
5
|
Park G, Johnson K, Miller K, Kadyan S, Singar S, Patoine C, Hao F, Lee Y, Patterson AD, Arjmandi B, Kris-Etherton PM, Berryman CE, Nagpal R. Almond snacking modulates gut microbiome and metabolome in association with improved cardiometabolic and inflammatory markers. NPJ Sci Food 2025; 9:35. [PMID: 40113782 PMCID: PMC11926229 DOI: 10.1038/s41538-025-00403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
Western-style dietary patterns have been linked with obesity and associated metabolic disorders and gut dysbiosis, whereas prudent dietary and snacking choices mitigate these predispositions. Using a multi-omics approach, we investigated how almond snacking counters gut imbalances linked to adiposity and an average American Diet (AAD). Fifteen adults with overweight or obesity underwent a randomized, crossover-controlled feeding trial comparing a 4-week AAD with a similar isocaloric diet supplemented with 42.5 g/day of almonds (ALD). Almond snacking increases functional gut microbes, including Faecalibacterium prausnitzii, while suppressing opportunistic pathogens, thereby favorably modulating gut microecological niches through symbiotic and microbe-metabolite interactions. Moreover, ALD elevates health-beneficial monosaccharides and fosters bacterial consumption of amino acids, owing to enhanced microbial homeostasis. Additionally, ALD enhances metabolic homeostasis through a ketosis-like effect, reduces inflammation, and improves satiety-regulating hormones. The findings suggest that prudent dietary choices, such as almond snacking, promote gut microbial homeostasis while modulating immune metabolic state.
Collapse
Affiliation(s)
- Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Katelyn Johnson
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Katelyn Miller
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Saiful Singar
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
- Center for Advancing Exercise and Nutrition Research on Aging, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Cole Patoine
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yujin Lee
- Department of Food and Nutrition, Myongji University, Yongin, South Korea
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Bahram Arjmandi
- Center for Advancing Exercise and Nutrition Research on Aging, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Claire E Berryman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
6
|
Wang X, Zhou XJ, Qiao X, Falchi M, Liu J, Zhang H. The evolving understanding of systemic mechanisms in organ-specific IgA nephropathy: a focus on gut-kidney crosstalk. Theranostics 2025; 15:656-681. [PMID: 39744688 PMCID: PMC11671385 DOI: 10.7150/thno.104631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
The interplay between multiple organs, known as inter-organ crosstalk, represents a complex and essential research domain in understanding the mechanisms and therapies for kidney diseases. The kidneys not only interact pathologically with many other organs but also communicate with other systems through various signaling pathways. It is of paramount importance to comprehend these mechanisms for the development of more efficient therapeutic strategies. Despite extensive research in IgA nephropathy (IgAN), the most common kidney disease, the elaboration mechanism of IgAN remains challenging. Numerous studies suggest that alterations in the intestinal microbiome and its metabolites are pivotal in the progression of IgAN, opening new avenues for understanding its mechanisms. Interestingly, certain presumed probiotics, such as Akkermansia muciniphila, have been implicated in the onset of IgAN, making the exploration of gut microbiota in the context of IgAN pathogenesis even more intriguing. In this review, we summarize the status of gut microbiology studies of IgAN and explore the possible mechanisms and intervention prospects. Future research and treatment directions may increasingly emphasize systemic, multi-organ combined interventions to decelerate the advancement of kidney disease and enhance the overall prognosis of patients.
Collapse
Affiliation(s)
- Xin Wang
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mario Falchi
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Beijing, China
- Peking University Institute of Nephrology, Beijing, China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
7
|
Wang Z, Ye R, Zhang S, Liu C, Chen K, Zhu K, Wang P, Wang F, Huang J. Amelioration of LPS-Induced Jejunum Injury and Mucus Barrier Damage in Mice by IgY Embedded in W/O/W Emulsion. Foods 2024; 13:4138. [PMID: 39767078 PMCID: PMC11675984 DOI: 10.3390/foods13244138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Chicken yolk immunoglobulin (IgY) is a natural immunologically active antibody extracted from egg yolk and can be used as a natural dietary supplement for the treatment of inflammation and damage to the intestines. In our study, IgY was embedded in a double emulsion (W/O/W; DE) to explore the therapeutic effect of the embedded IgY on Lipopolysaccharide (LPS)-induced jejunal injury in mice. The results showed that W/O/W-embedded IgY as a dietary supplement (IgY + DE) attenuated LPS-induced damage to mouse small intestinal structures and protected the integrity of the jejunal mucosal barrier. IgY + DE increased the amount of related transcription factors (Math1, Spdef, Elf3, and Klf4) and promoted thrush cell differentiation. IgY + DE ameliorated LPS-induced reduction in mucin quantity and markers. It promoted the expression of Muc1 and Muc2 and increased the mRNA expression levels of Muc1, Muc2, Muc3, Muc4, Muc13, and Agr2 (p < 0.05). IgY + DE increased the expression of several glycosyltransferases involved in mucin glycosylation. IgY + DE also neutralized the LPS attack on the expression of jejunal inflammatory factors IL-1β, IL-6, IL-4, and TNF-α. In conclusion, the IgY-embedded double emulsion can be used as a dietary supplement for immunotherapy to prevent LPS-induced jejunal injury in mice.
Collapse
Affiliation(s)
- Zhaohui Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Ruihua Ye
- College of Veterinary Medicine, China Agricultural University, Beijing 100083, China;
| | - Shidi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Chuanming Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Ke Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Kongdi Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Pengjie Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| | - Fuqing Wang
- Tibet Tianhong Science and Technology Co., Ltd., Lasha 851414, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, Ministry of Education, China Agricultural University, Beijing 100083, China; (Z.W.); (S.Z.); (C.L.); (K.C.); (K.Z.); (P.W.)
| |
Collapse
|
8
|
Kozai H, Watanabe C, Kosaka R, Aoki T, Hamada H, Kawashima M, Kono T, Akagi K, Kremenik MJ, Yano H, Tanaka M, Oyanagi E. Nopalea cochenillifera Regulates the Immune Response and Gut Microbiota in Mice. Nutrients 2024; 16:4376. [PMID: 39770998 PMCID: PMC11677944 DOI: 10.3390/nu16244376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cactus contains dietary fiber and minerals and is expected to have preventive effects against diabetes, arteriosclerosis, and other diseases. Additionally, cactus intake induces the production of short-chain fatty acids derived from the gut microbiota, which might influence immune functions. In this study, we examined the effects of a cactus (Nopalea cochenillifera: NC)-supplemented diet on lipopolysaccharide (LPS)-induced immune responses and intestinal barrier function. METHODS Male C3H/HeN mice were randomly divided into three groups-no fiber (NF), cellulose-containing fiber (Cellu), and cactus-added (NC) diets-for 6 weeks. The TNF-α and IL-10 responses to LPS, antibody titers, and intestinal barrier function, as well as the fecal microbiota, were analyzed. RESULTS The plasma TNF-α but not the IL-10 concentrations were significantly higher in the NC group than in the NF and Cellu groups. Furthermore, the plasma IgG antibody titers were significantly higher in the NC group than in the other groups. The NC group showed higher mucin content and IgA antibody titers in their feces compared with the Cellu group. The succinate and lactate contents, which induce a reduction in TNF-α secretion by macrophages, in the cecum of the NC group were significantly lower than those in the Cellu and NF groups. In contrast, the butyrate content was significantly higher in the cecum of the NC group compared to that of the Cellu group, with a significantly higher relative abundance of butyrate-producing bacteria. CONCLUSIONS Taken together, we found that cactus intake regulates innate and adaptive immune function via the gut microbiota in mice. Therefore, cactus supplementation might serve as a strategy to develop novel functional foods with dietary fiber.
Collapse
Affiliation(s)
- Hana Kozai
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (H.K.); (R.K.); (M.T.)
| | - Chihiro Watanabe
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan; (C.W.); (H.H.); (M.K.); (T.K.); (K.A.); (H.Y.)
| | - Rina Kosaka
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (H.K.); (R.K.); (M.T.)
| | - Takafumi Aoki
- Department of Clinical Nutrition, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan;
| | - Hiroki Hamada
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan; (C.W.); (H.H.); (M.K.); (T.K.); (K.A.); (H.Y.)
| | - Masato Kawashima
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan; (C.W.); (H.H.); (M.K.); (T.K.); (K.A.); (H.Y.)
| | - Takumi Kono
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan; (C.W.); (H.H.); (M.K.); (T.K.); (K.A.); (H.Y.)
| | - Kosuke Akagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan; (C.W.); (H.H.); (M.K.); (T.K.); (K.A.); (H.Y.)
| | - Michael J. Kremenik
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan; (C.W.); (H.H.); (M.K.); (T.K.); (K.A.); (H.Y.)
| | - Hiromi Yano
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan; (C.W.); (H.H.); (M.K.); (T.K.); (K.A.); (H.Y.)
| | - Mamoru Tanaka
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (H.K.); (R.K.); (M.T.)
| | - Eri Oyanagi
- Department of Health and Sports Science, Kawasaki University of Medical Welfare, Kurashiki 701-0193, Japan; (C.W.); (H.H.); (M.K.); (T.K.); (K.A.); (H.Y.)
| |
Collapse
|
9
|
Duan J, Li Q, Cheng Y, Zhu W, Liu H, Li F. Therapeutic potential of Parabacteroides distasonis in gastrointestinal and hepatic disease. MedComm (Beijing) 2024; 5:e70017. [PMID: 39687780 PMCID: PMC11647740 DOI: 10.1002/mco2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 12/18/2024] Open
Abstract
Increasing evidences indicate that the gut microbiota is involved in the development and therapy of gastrointestinal and hepatic disease. Imbalance of gut microbiota occurs in the early stages of diseases, and maintaining the balance of the gut microbiota provides a new strategy for the treatment of diseases. It has been reported that Parabacteroides distasonis is associated with multiple diseases. As the next-generation probiotics, several studies have demonstrated its positive regulation on the gastrointestinal and hepatic disease, including inflammatory bowel disease, colorectal cancer, hepatic fibrosis, and fatty liver. The function of P. distasonis and its metabolites mainly affect host immune system, intestinal barrier function, and metabolic networks. Manipulation of P. distasonis with natural components lead to the protective effect on enterohepatic disease. In this review, the metabolic pathways regulated by P. distasonis are summarized to illustrate its active metabolites and their impact on host metabolism, the role and action mechanism in gastrointestinal and hepatic disease are discussed. More importantly, the natural components can be used to manipulate P. distasonis as treatment strategies, and the challenges and perspectives of P. distasonis in clinical applications are discussed.
Collapse
Affiliation(s)
- Jinyi Duan
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Qinmei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Yan Cheng
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Weifeng Zhu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Hongning Liu
- Deparment of Pharmacy, Academician WorkstationJiangxi University of Chinese MedicineNanchangChina
| | - Fei Li
- Department of Gastroenterology & HepatologyLaboratory of Hepato‐intestinal Diseases and MetabolismFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
- Department of Gastroenterology & Hepatology, Huaxi Joint Centre for Gastrointestinal CancerState Key Laboratory of Respiratory Health and MultimorbidityWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
10
|
Meldrum OW, Yakubov GE. Journey of dietary fiber along the gastrointestinal tract: role of physical interactions, mucus, and biochemical transformations. Crit Rev Food Sci Nutr 2024:1-29. [PMID: 39141568 DOI: 10.1080/10408398.2024.2390556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Dietary fiber-rich foods have been associated with numerous health benefits, including a reduced risk of cardiovascular and metabolic diseases. Harnessing the potential to deliver positive health outcomes rests on our understanding of the underlying mechanisms that drive these associations. This review addresses data and concepts concerning plant-based food functionality by dissecting the cascade of physical and chemical digestive processes and interactions that underpin these physiological benefits. Functional transformations of dietary fiber along the gastrointestinal tract from the stages of oral processing and gastric emptying to intestinal digestion and colonic fermentation influence its capacity to modulate digestion, transit, and commensal microbiome. This analysis highlights the significance, limitations, and challenges in decoding the complex web of interactions to establish a coherent framework connecting specific fiber components' molecular and macroscale interactions across multiple length scales within the gastrointestinal tract. One critical area that requires closer examination is the interaction between fiber, mucus barrier, and the commensal microbiome when considering food structure design and personalized nutritional strategies for beneficial physiologic effects. Understanding the response of specific fibers, particularly concerning an individual's physiology, will offer the opportunity to exploit these functional characteristics to elicit specific, symptom-targeting effects or use fiber types as adjunctive therapies.
Collapse
Affiliation(s)
- Oliver W Meldrum
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Gleb E Yakubov
- Soft Matter Biomaterials and Biointerfaces, School of Biosciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
11
|
Zhang J, Huang Y, Li H, Xu P, Liu Q, Sun Y, Zhang Z, Wu T, Tang Q, Jia Q, Xia Y, Xu Y, Jing X, Li J, Mo L, Xie W, Qu A, He J, Li Y. B3galt5 functions as a PXR target gene and regulates obesity and insulin resistance by maintaining intestinal integrity. Nat Commun 2024; 15:5919. [PMID: 39004626 PMCID: PMC11247088 DOI: 10.1038/s41467-024-50198-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Pregnane X receptor (PXR) has been reported to regulate glycolipid metabolism. The dysfunction of intestinal barrier contributes to metabolic disorders. However, the role of intestinal PXR in metabolic diseases remains largely unknown. Here, we show that activation of PXR by tributyl citrate (TBC), an intestinal-selective PXR agonist, improves high fat diet (HFD)-induced obesity. The metabolic benefit of intestinal PXR activation is associated with upregulation of β-1,3 galactosyltransferase 5 (B3galt5). Our results reveal that B3galt5 mainly expresses in the intestine and is a direct PXR transcriptional target. B3galt5 knockout exacerbates HFD-induced obesity, insulin resistance and inflammation. Mechanistically, B3galt5 is essential to maintain the integrity of intestinal mucus barrier. B3galt5 ablation impairs the O-glycosylation of mucin2, destabilizes the mucus layer, and increases intestinal permeability. Furthermore, B3galt5 deficiency abolishes the beneficial effect of intestinal PXR activation on metabolic disorders. Our results suggest the intestinal-selective PXR activation regulates B3galt5 expression and maintains metabolic homeostasis, making it a potential therapeutic strategy in obesity.
Collapse
Affiliation(s)
- Jinhang Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya Huang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Pharmacy, GuiQian International General Hospital, Guiyang, China
| | - Hong Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Pengfei Xu
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinhui Liu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yang Sun
- Department of Gastroenterology, The First Affiliated Hospital of Kunming Medical University, Yunnan Institute of Digestive Disease, Kunming, Yunnan Province, China
| | - Zijing Zhang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tong Wu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qin Tang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yan Xia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ying Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiandan Jing
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiahui Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu, China
| | - Wen Xie
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
12
|
Rivet-Noor CR, Merchak AR, Render C, Gay NM, Beiter RM, Brown RM, Keeler A, Moreau GB, Li S, Olgun DG, Steigmeyer AD, Ofer R, Phan T, Vemuri K, Chen L, Mahoney KE, Shin JB, Malaker SA, Deppmann C, Verzi MP, Gaultier A. Stress-induced mucin 13 reductions drive intestinal microbiome shifts and despair behaviors. Brain Behav Immun 2024; 119:665-680. [PMID: 38579936 PMCID: PMC11187485 DOI: 10.1016/j.bbi.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024] Open
Abstract
Depression is a prevalent psychological condition with limited treatment options. While its etiology is multifactorial, both chronic stress and changes in microbiome composition are associated with disease pathology. Stress is known to induce microbiome dysbiosis, defined here as a change in microbial composition associated with a pathological condition. This state of dysbiosis is known to feedback on depressive symptoms. While studies have demonstrated that targeted restoration of the microbiome can alleviate depressive-like symptoms in mice, translating these findings to human patients has proven challenging due to the complexity of the human microbiome. As such, there is an urgent need to identify factors upstream of microbial dysbiosis. Here we investigate the role of mucin 13 as an upstream mediator of microbiome composition changes in the context of stress. Using a model of chronic stress, we show that the glycocalyx protein, mucin 13, is selectively reduced after psychological stress exposure. We further demonstrate that the reduction of Muc13 is mediated by the Hnf4 transcription factor family. Finally, we determine that deleting Muc13 is sufficient to drive microbiome shifts and despair behaviors. These findings shed light on the mechanisms behind stress-induced microbial changes and reveal a novel regulator of mucin 13 expression.
Collapse
Affiliation(s)
- Courtney R Rivet-Noor
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA.
| | - Andrea R Merchak
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Caroline Render
- Undergraduate Department of Global Studies, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - Naudia M Gay
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Rebecca M Beiter
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ryan M Brown
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Austin Keeler
- Department of Biology, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - G Brett Moreau
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sihan Li
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Deniz G Olgun
- Undergraduate Department of Computer Science, University of Virginia School of Engineering and Applied Science, Charlottesville, VA 22904, USA; Undergraduate Department of Neuroscience Studies, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | | | - Rachel Ofer
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Tobey Phan
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Lei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Keira E Mahoney
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Stacy A Malaker
- Department of Chemistry, Yale University, New Haven, CT 06511, USA
| | - Chris Deppmann
- Department of Biology, University of Virginia College of Arts and Sciences, Charlottesville, VA 22904, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, NJ 08901, USA
| | - Alban Gaultier
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
13
|
Zhao T, Liu S, Ma X, Shuai Y, He H, Guo T, Huang W, Wang Q, Liu S, Wang Z, Gong G, Huang L. Lycium barbarum arabinogalactan alleviates intestinal mucosal damage in mice by restoring intestinal microbes and mucin O-glycans. Carbohydr Polym 2024; 330:121882. [PMID: 38368089 DOI: 10.1016/j.carbpol.2024.121882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/19/2024]
Abstract
Structurally defined arabinogalactan (LBP-3) from Lycium barbarum have effect on improving intestinal barrier function. However, whether its intestinal barrier function depended on the changes of intestinal mucin O-glycans have not been investigated. A dextran sodium sulfate-induced acute colitis mouse model was employed to test prevention and treatment with LBP-3. The intestinal microbiota as well as colonic mucin O-glycan profiles were analyzed. Supplementation with LBP-3 inhibited harmful bacteria, including Desulfovibrionaceae, Enterobacteriaceae, and Helicobacteraceae while significantly increased the abundance of beneficial bacteria (e.g., Lachnospiraceae, Ruminococcaceae, and Lactobacillaceae). Notably, LBP-3 augmented the content of neutral O-glycans by stimulating the fucosylation glycoforms (F1H1N2 and F1H2N2), short-chain sulfated O-glycans (S1F1H1N2, S1H1N2, and S1H2N3), and sialylated medium- and long-chain O-glycans (F1H2N2A1, H2N3A1, and F1H3N2A1). In summary, we report that supplement LBP-3 significantly reduced pathological symptoms, restored the bacterial community, and promoted the expression of O-glycans to successfully prevent and alleviate colitis in a mouse model, especially in the LBP-3 prevention testing group. The underlying mechanism of action was investigated using glycomics to better clarify which the structurally defined LBP-3 were responsible for its beneficial effect against ulcerative colitis and assess its use as a functional food or pharmaceutical supplement.
Collapse
Affiliation(s)
- Tong Zhao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Sining Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Xiaoran Ma
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yutong Shuai
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Houde He
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Tongyi Guo
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Wenqi Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qian Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shan Liu
- Tianren Goji Biotechnology Co., Ltd, Ningxia, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
14
|
Zavadinack M, Cantu-Jungles TM, Abreu H, Ozturk OK, Cordeiro LMC, de Freitas RA, Hamaker BR, Iacomini M. (1 → 3),(1 → 6) and (1 → 3)-β-D-glucan physico-chemical features drive their fermentation profile by the human gut microbiota. Carbohydr Polym 2024; 327:121678. [PMID: 38171663 DOI: 10.1016/j.carbpol.2023.121678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Mushroom polysaccharides consist of a unique set of polymers that arrive intact in the human large intestine becoming available for fermentation by resident gut bacteria with potential benefits to the host. Here we have obtained four glucans from two mushrooms (Pholiota nameko and Pleurotus pulmonarius) under different extraction conditions and their fermentation profile by human gut bacteria in vitro was evaluated. These glucans were isolated and characterized as (1 → 3),(1 → 6)-β-D-glucans varying in branching pattern and water-solubility. An aliquot of each (1 → 3),(1 → 6)-β-D-glucan was subjected to controlled smith degradation process in order to obtain a linear (1 → 3)-β-D-glucan from each fraction. The four β-D-glucans demonstrated different water solubilities and molar mass ranging from 2.2 × 105 g.mol-1 to 1.9 × 106 g.mol-1. In vitro fermentation of the glucans by human gut microbiota showed they induced different short chain fatty acid production (52.0-97.0 mM/50 mg carbohydrates), but an overall consistent high propionate amount (28.5-30.3 % of total short chain fatty acids produced). All glucans promoted Bacteroides uniformis, whereas Anaerostipes sp. and Bacteroides ovatus promotion was strongly driven by the β-D-glucans solubility and/or branching pattern, highlighting the importance of β-D-glucan discrete structures to their fermentation by the human gut microbiota.
Collapse
Affiliation(s)
- Matheus Zavadinack
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Thaisa M Cantu-Jungles
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Hellen Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Oguz K Ozturk
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil
| | - Rilton A de Freitas
- Department of Pharmacy Federal University of Paraná, Curitiba, PR CEP 80210-170, Brazil
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Marcello Iacomini
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, CEP 81531-980, Brazil.
| |
Collapse
|
15
|
Wang X, Liu J, Wang S, Xie Y, Liu Y, Fan J, Li Y, Lu Y, Huang L, Wang Z. Online LC-ESI-MS/MS comparative analysis of N/O-glycopatterns in human colostrum from different ethnic groups in Northwest China. Carbohydr Polym 2024; 327:121675. [PMID: 38171687 DOI: 10.1016/j.carbpol.2023.121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Human milk oligosaccharides, including free oligosaccharides and glycoconjugates, exert a key role in neonatal health and development. Changes in free oligosaccharides of milk from different ethnic groups have been documented. In this study, human milk was collected from Han, Hui, and Tibetan populations in northwest China, and differences in N/O-glycome among these three ethnic groups were systematically compared using online high-performance liquid chromatography-tandem mass spectrometry. Among the 63 detected N-glycans, 35 showed significant differences between the three ethnic groups (p < 0.05). Among the 70 detected O-glycans, four neutral O-glycans and six acidic O-glycans exhibited significant differences among the three ethnic groups (p < 0.05), with six acidic O-glycans reported for the first time. Overall, the extent of milk N/O-glycosylation was higher in the Han population than in the Hui or Tibetan groups. This trend was particularly pronounced for the main sialylated N/O-glycans. Except for sulfated O-glycans, which were higher in the milk from Tibetan mothers, the other types of N/O-glycans were present in similar proportions across all ethnic groups. Understanding the composition of N/O-glycans in human milk can help research on the structure-function relationship of glycans.
Collapse
Affiliation(s)
- Xiaoqin Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jing Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Shukai Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yutao Xie
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Yipei Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jiangbo Fan
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yanping Li
- Lanzhou Maternal and Child Health Care Hospital, Lanzhou 730030, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
16
|
Cheng L, Wu H, Cai X, Zhang Y, Yu S, Hou Y, Yin Z, Yan Q, Wang Q, Sun T, Wang G, Yuan Y, Zhang X, Hao H, Zheng X. A Gpr35-tuned gut microbe-brain metabolic axis regulates depressive-like behavior. Cell Host Microbe 2024; 32:227-243.e6. [PMID: 38198925 DOI: 10.1016/j.chom.2023.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/29/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Gene-environment interactions shape behavior and susceptibility to depression. However, little is known about the signaling pathways integrating genetic and environmental inputs to impact neurobehavioral outcomes. We report that gut G-protein-coupled receptor, Gpr35, engages a microbe-to-brain metabolic pathway to modulate neuronal plasticity and depressive behavior in mice. Psychological stress decreases intestinal epithelial Gpr35, genetic deletion of which induces depressive-like behavior in a microbiome-dependent manner. Gpr35-/- mice and individuals with depression have increased Parabacteroides distasonis, and its colonization to wild-type mice induces depression. Gpr35-/- and Parabacteroides distasonis-colonized mice show reduced indole-3-carboxaldehyde (IAld) and increased indole-3-lactate (ILA), which are produced from opposing branches along the bacterial catabolic pathway of tryptophan. IAld and ILA counteractively modulate neuroplasticity in the nucleus accumbens, a brain region linked to depression. IAld supplementation produces anti-depressant effects in mice with stress or gut epithelial Gpr35 deficiency. Together, these findings elucidate a gut microbe-brain signaling mechanism that underlies susceptibility to depression.
Collapse
Affiliation(s)
- Lingsha Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haoqian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Siqi Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhe Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingyuan Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiong Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Taipeng Sun
- Department of Psychosomatics and Psychiatry, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China.
| | - Xueli Zhang
- Department of Pharmacy, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
17
|
Yang J, Qin K, Sun Y, Yang X. Microbiota-accessible fiber activates short-chain fatty acid and bile acid metabolism to improve intestinal mucus barrier in broiler chickens. Microbiol Spectr 2024; 12:e0206523. [PMID: 38095466 PMCID: PMC10782983 DOI: 10.1128/spectrum.02065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The intestinal mucus barrier, located at the interface of the intestinal epithelium and the microbiota, is the first line of defense against pathogenic microorganisms and environmental antigens. Dietary polysaccharides, which act as microbiota-accessible fiber, play a key role in the regulation of intestinal microbial communities. However, the mechanism via which dietary fiber affects the intestinal mucus barrier through targeted regulation of the gut microbiota is not clear. This study provides fundamental evidence for the benefits of dietary fiber supplementation in broiler chickens through improvement in the intestinal mucus barrier by targeted regulation of the gut ecosystem. Our findings suggest that the microbiota-accessible fiber-gut microbiota-short-chain fatty acid/bile acid axis plays a key role in regulating intestinal function.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanpeng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Pham NHT, Joglekar MV, Wong WKM, Nassif NT, Simpson AM, Hardikar AA. Short-chain fatty acids and insulin sensitivity: a systematic review and meta-analysis. Nutr Rev 2024; 82:193-209. [PMID: 37290429 PMCID: PMC10777678 DOI: 10.1093/nutrit/nuad042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
CONTEXT There is substantial evidence that reduced short-chain fatty acids (SCFAs) in the gut are associated with obesity and type 2 diabetes, although findings from clinical interventions that can increase SCFAs are inconsistent. OBJECTIVE This systematic review and meta-analysis aimed to assess the effect of SCFA interventions on fasting glucose, fasting insulin, and homeostatic model assessment of insulin resistance (HOMA-IR). DATA SOURCES Relevant articles published up to July 28, 2022, were extracted from PubMed and Embase using the MeSH (Medical Subject Headings) terms of the defined keywords [(short-chain fatty acids) AND (obesity OR diabetes OR insulin sensitivity)] and their synonyms. Data analyses were performed independently by two researchers who used the Cochrane meta-analysis checklist and the PRISMA guidelines. DATA EXTRACTION Clinical studies and trials that measured SCFAs and reported glucose homeostasis parameters were included in the analysis. Standardized mean differences (SMDs) with 95%CIs were calculated using a random-effects model in the data extraction tool Review Manager version 5.4 (RevMan 5.4). The risk-of-bias assessment was performed following the Cochrane checklist for randomized and crossover studies. DATA ANALYSIS In total, 6040 nonduplicate studies were identified, 23 of which met the defined criteria, reported fasting insulin, fasting glucose, or HOMA-IR values, and reported change in SCFA concentrations post intervention. Meta-analyses of these studies indicated that fasting insulin concentrations were significantly reduced (overall effect: SMD = -0.15; 95%CI = -0.29 to -0.01, P = 0.04) in treatment groups, relative to placebo groups, at the end of the intervention. Studies with a confirmed increase in SCFAs at the end of intervention also had a significant effect on lowering fasting insulin (P = 0.008). Elevated levels of SCFAs, compared with baseline levels, were associated with beneficial effects on HOMA-IR (P < 0.00001). There was no significant change in fasting glucose concentrations. CONCLUSION Increased postintervention levels of SCFAs are associated with lower fasting insulin concentrations, offering a beneficial effect on insulin sensitivity. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42021257248.
Collapse
Affiliation(s)
- Nhan H T Pham
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Mugdha V Joglekar
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Wilson K M Wong
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Najah T Nassif
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Ann M Simpson
- are with the School of Life Sciences, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Anandwardhan A Hardikar
- are with the Diabetes and Islet Biology Group, School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- is with the Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
19
|
Zhao T, Zhang Y, Nan L, Zhu Q, Wang S, Xie Y, Dong X, Cao C, Lin X, Lu Y, Liu Y, Huang L, Gong G, Wang Z. Impact of structurally diverse polysaccharides on colonic mucin O-glycosylation and gut microbiota. NPJ Biofilms Microbiomes 2023; 9:97. [PMID: 38081891 PMCID: PMC10713555 DOI: 10.1038/s41522-023-00468-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Understanding how dietary polysaccharides affect mucin O-glycosylation and gut microbiota could provide various nutrition-based treatments. Here, the O-glycan profile of the colonic mucosa and gut microbiome were investigated in C57BL/6J mice fed six structurally diverse dietary polysaccharides and a mixture of six fibers. Dietary polysaccharides increased total O-glycans, mainly by stimulating neutral glycans. Highly branched arabinogalactan promoted terminally fucosylated core 1 O-glycans; whereas linear polysaccharides, including pectin, konjac glucomannan, inulin, and the fiber mixture, favored terminally di-fucosylated O-glycans. The last three polysaccharides also lowered the level of sulfated O-glycans and sialylated mono-fucosylated O-glycans. Varied monosaccharide composition in mixed polysaccharides had a synergistic beneficial effect, boosting fucosylated neutral glycans, decreasing acidic glycans, and stimulating microbial richness and diversity. Dietary polysaccharides containing arabinose and sulfate groups enhanced the relative abundances of Akkermansia and Muribaculaceae, respectively. The present comparison reveals the relationship between dietary polysaccharide structure, mucin O-glycan composition, and intestinal microorganisms.
Collapse
Affiliation(s)
- Tong Zhao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Yue Zhang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Linhua Nan
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Qing Zhu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Shukai Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Yutao Xie
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Xinling Dong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Cui Cao
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Xiaoliang Lin
- Infinitus (China) Company Ltd, Guangzhou, 510000, Guangdong, China
| | - Yu Lu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China
| | - Guiping Gong
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
20
|
Zhang F, Zhao Y, Liu X, Li Z, Liu N, Tang L, Jiang Q, Fan Z, Tan B, Li Y, Ma X. Effects of soluble glucomannan and insoluble cellulose treatment on mucin secretion and mucin glycosylation-related gene expression in the colons of mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7739-7746. [PMID: 37440706 DOI: 10.1002/jsfa.12858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/09/2023] [Accepted: 07/14/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND Fiber added to the diet can promote intestinal mucin secretion, relieve intestinal inflammation, and enhance the intestinal barrier function. Glycosylation is the key to mucin function. However, there are few studies on the correlation between dietary fiber and mucin glycosylation, especially two kinds of dietary fiber with different solubility. The aim of this study was to investigate the effects of soluble glucomannan (GM) and insoluble cellulose (CL) treatment on mucin secretion and mucin glycosylation-related gene expression in the colons of mice. RESULTS The GM group significantly increased the goblet cell number, crypt depth, and the expression of mucin 2 (Muc2) and mucin 3a (Muc3a) genes in the colon. At the same time, the analysis of the colon transcriptome showed that the GM group changed the expression of genes related to the mucin glycosylation process, and the GM group up-regulated the expression of Gcnt3, Gcnt4, St3gal1, Galnt13, and B3gnt6 genes involved in the O-glycosylation process. Similarly, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that differentially glycosylated genes in the GM group were mainly related to the biosynthesis of mucin type O-glycans, while the genes in the CL group were related to the biosynthesis of various types of N-glycans. The correlation analysis between colonic microbes and differentially glycosylated genes also showed that the abundance of Alistipes in the GM group was significantly associated with the expression of Gcnt3, a key glycosylation gene. CONCLUSION Glucomannan treatment was more favorable for colonic Muc2 and Muc3a secretion and mucin O-glycosylation gene expression. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fan Zhang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yirun Zhao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Xiang Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Nian Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Lizi Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Qian Jiang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yulian Li
- Xiangtan Livestock Breeding Station, Xiangtan, China
| | - Xiaokang Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
21
|
Kumar V, Kumar V, Kondepudi KK, Chopra K, Bishnoi M. Capsazepine-Induced Altered Colonic Mucosal Health Limits Isomalto-oligosaccharide Action in High-Fat Diet-Fed C57BL/6J Mice. ACS Pharmacol Transl Sci 2023; 6:600-613. [PMID: 37082749 PMCID: PMC10111622 DOI: 10.1021/acsptsci.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 04/05/2023]
Abstract
The present study sought to understand the effects of a combination of altered colonic mucosal health (intrarectal capsazepine administration) and high-fat diet (HFD) administration in mice. Furthermore, we also studied whether this combination prevents protective actions of dietary prebiotic, isomaltooligosaccharides. We studied the alterations in intestinal permeability, histological and transcriptional changes, short-chain fatty acid (SCFA) concentrations, and gut microbial abundance. Capsazepine (CPZ) was administered rectally twice a day along with HFD feeding. Following confirmation of CPZ action (loss of TRPA1 and TRPV1-associated nocifensive behavior), the intrarectal dose of CPZ was reduced to once in 2 days up to 8 weeks. Simultaneous intrarectal administration of CPZ exacerbated the HFD (8 weeks feeding)-induced damage to mucosal lining, intestinal permeability, tight junction protein expression, SCFA levels, and gut bacterial abundances. This higher degree of mucosal damage and pathological alteration in colonic mucosa prevented the previously reported protective actions of isomaltooligosaccharides as a prebiotic in HFD-fed mice. Overall, we present evidence that colonic precondition (gut permeability and mucosal lining) is an important factor in determination of HFD-induced changes in the colon, and success of diet-associated interventions (dietary fibers, pre/probiotics, etc.) is dependent on it.
Collapse
Affiliation(s)
- Vibhu Kumar
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Vijay Kumar
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
- Department
of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Kanthi Kiran Kondepudi
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanwaljit Chopra
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Mahendra Bishnoi
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
22
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
23
|
Lin SJH, Helm ET, Gabler NK, Burrough ER. Acute infection with Brachyspira hyodysenteriae affects mucin expression, glycosylation, and fecal MUC5AC. Front Cell Infect Microbiol 2023; 12:1042815. [PMID: 36683692 PMCID: PMC9852840 DOI: 10.3389/fcimb.2022.1042815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 01/08/2023] Open
Abstract
Introduction Infection with strongly β-hemolytic strains of Brachyspira hyodysenteriae leads to swine dysentery (SD), a production-limiting disease that causes mucohemorrhagic diarrhea and typhlocolitis in pigs. This pathogen has strong chemotactic activity toward mucin, and infected pigs often have a disorganized mucus layer and marked de novo expression of MUC5AC, which is not constitutively expressed in the colon. It has been shown that fucose is chemoattractant for B. hyodysenteriae, and a highly fermentable fiber diet can mitigate and delay the onset of SD. Methods We used lectins targeting sialic acids in α-2,6 or α-2,3 linkages, N-acetylglucosamine (GlcNAc), α-linked L-fucose, and an immunohistochemical stain targeting N-glycolylneuraminic acid (NeuGc) to investigate the local expression of these mucin glycans in colonic tissues of pigs with acute SD. We used a commercial enzyme-linked immunosorbent assay (ELISA) to quantify fecal MUC5AC in infected pigs and assess its potential as a diagnostic monitoring tool and RNA in situ hybridization to detect IL-17A in the colonic mucosa. Results Colonic mucin glycosylation during SD has an overall increase in fucose, a spatially different distribution of GlcNAc with more expression within the crypt lumens of the upper colonic mucosa, and decreased expression or a decreased trend of sialic acids in α-2,6 or α-2,3 linkages, and NeuGc compared to the controls. The degree of increased fucosylation was less in the colonic mucosa of pigs with SD and fed the highly fermentable fiber diet. There was a significant increase in MUC5AC in fecal and colonic samples of pigs with SD at the endpoint compared to the controls, but the predictive value for disease progression was limited. Discussion Fucosylation and the impact of dietary fiber may play important roles in the pathogenesis of SD. The lack of predictive value for fecal MUC5AC quantification by ELISA is possibly due to the presence of other non-colonic sources of MUC5AC in the feces. The moderate correlation between IL-17A, neutrophils and MUC5AC confirms its immunoregulatory and mucin stimulatory role. Our study characterizes local alteration of mucin glycosylation in the colonic mucosa of pigs with SD after B. hyodysenteriae infection and may provide insight into host-pathogen interaction.
Collapse
Affiliation(s)
- Susanne Je-Han Lin
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Emma T Helm
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Eric R Burrough
- Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
24
|
Paone P, Suriano F, Jian C, Korpela K, Delzenne NM, Van Hul M, Salonen A, Cani PD. Prebiotic oligofructose protects against high-fat diet-induced obesity by changing the gut microbiota, intestinal mucus production, glycosylation and secretion. Gut Microbes 2022; 14:2152307. [PMID: 36448728 PMCID: PMC9715274 DOI: 10.1080/19490976.2022.2152307] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Obesity is a major risk factor for the development of type 2 diabetes and cardiovascular diseases, and gut microbiota plays a key role in influencing the host energy homeostasis. Moreover, obese mice have a different gut microbiota composition, associated with an alteration of the intestinal mucus layer, which represents the interface between the bacteria and the host. We previously demonstrated that prebiotic treatment with oligofructose (FOS) counteracted the effects of diet-induced obesity, together with changes in the gut microbiota composition, but it is not known if the intestinal mucus layer could be involved. In this study, we found that, in addition to preventing high-fat diet (HFD) induced obesity in mice, the treatment with FOS increased the expression of numerous genes involved in mucus production, glycosylation and secretion, the expression of both secreted and transmembrane mucins, and the differentiation and number of goblet cells. These results were associated with significant changes in the gut microbiota composition, with FOS significantly increasing the relative and absolute abundance of the bacterial genera Odoribacter, Akkermansia, two unknown Muribaculaceae and an unknown Ruminococcaceae. Interestingly, all these bacterial genera had a negative association with metabolic parameters and a positive association with markers of the mucus layer. Our study shows that FOS treatment is able to prevent HFD-induced metabolic disorders, at least in part, by acting on all the processes of the mucus production. These data suggest that targeting the mucus and the gut microbiota by using prebiotics could help to prevent or mitigate obesity and related disorders.
Collapse
Affiliation(s)
- Paola Paone
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Francesco Suriano
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Ching Jian
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Katri Korpela
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nathalie M. Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium
| | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Patrice D. Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Brussels, Belgium,Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO Department, WEL Research Institute, Wavre, Belgium,CONTACT Patrice D. Cani Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
25
|
Schwabkey ZI, Wiesnoski DH, Chang CC, Tsai WB, Pham D, Ahmed SS, Hayase T, Turrubiates MRO, El-Himri RK, Sanchez CA, Hayase E, Oquendo ACF, Miyama T, Halsey TM, Heckel BE, Brown AN, Jin Y, Raybaud M, Prasad R, Flores I, McDaniel L, Chapa V, Lorenzi PL, Warmoes MO, Tan L, Swennes AG, Fowler S, Conner M, McHugh K, Graf T, Jensen VB, Peterson CB, Do KA, Zhang L, Shi Y, Wang Y, Galloway-Pena JR, Okhuysen PC, Daniel-MacDougall CR, Shono Y, da Silva MB, Peled JU, van den Brink MR, Ajami N, Wargo JA, Reddy P, Valdivia RH, Davey L, Rondon G, Srour SA, Mehta RS, Alousi AM, Shpall EJ, Champlin RE, Shelburne SA, Molldrem JJ, Jamal MA, Karmouch JL, Jenq RR. Diet-derived metabolites and mucus link the gut microbiome to fever after cytotoxic cancer treatment. Sci Transl Med 2022; 14:eabo3445. [PMID: 36383683 PMCID: PMC10028729 DOI: 10.1126/scitranslmed.abo3445] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Not all patients with cancer and severe neutropenia develop fever, and the fecal microbiome may play a role. In a single-center study of patients undergoing hematopoietic cell transplant (n = 119), the fecal microbiome was characterized at onset of severe neutropenia. A total of 63 patients (53%) developed a subsequent fever, and their fecal microbiome displayed increased relative abundances of Akkermansia muciniphila, a species of mucin-degrading bacteria (P = 0.006, corrected for multiple comparisons). Two therapies that induce neutropenia, irradiation and melphalan, similarly expanded A. muciniphila and additionally thinned the colonic mucus layer in mice. Caloric restriction of unirradiated mice also expanded A. muciniphila and thinned the colonic mucus layer. Antibiotic treatment to eradicate A. muciniphila before caloric restriction preserved colonic mucus, whereas A. muciniphila reintroduction restored mucus thinning. Caloric restriction of unirradiated mice raised colonic luminal pH and reduced acetate, propionate, and butyrate. Culturing A. muciniphila in vitro with propionate reduced utilization of mucin as well as of fucose. Treating irradiated mice with an antibiotic targeting A. muciniphila or propionate preserved the mucus layer, suppressed translocation of flagellin, reduced inflammatory cytokines in the colon, and improved thermoregulation. These results suggest that diet, metabolites, and colonic mucus link the microbiome to neutropenic fever and may guide future microbiome-based preventive strategies.
Collapse
Affiliation(s)
- Zaker I. Schwabkey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Diana H. Wiesnoski
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wen-Bin Tsai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Saira S. Ahmed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Rawan K. El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christopher A. Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Annette C. Frenk Oquendo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Takahiko Miyama
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taylor M. Halsey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Brooke E. Heckel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alexandria N. Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yimei Jin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mathilde Raybaud
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ivonne Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lauren McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Valerie Chapa
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Marc O. Warmoes
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alton G. Swennes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie Fowler
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret Conner
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin McHugh
- CPRIT Scholar in Cancer Research, Austin, TX 78701, USA
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Tyler Graf
- Department of Bioengineering, Rice University, Houston, TX 77251, USA
| | - Vanessa B. Jensen
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Christine B. Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Liangliang Zhang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yushu Shi
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yinghong Wang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jessica R. Galloway-Pena
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, College Station, TX 77843, USA
| | - Pablo C. Okhuysen
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | - Yusuke Shono
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Burgos da Silva
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan U. Peled
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10021, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marcel R.M. van den Brink
- Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medical College, New York, NY 10021, USA
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nadim Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer A. Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pavan Reddy
- Department of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Raphael H. Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Lauren Davey
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710 USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samer A. Srour
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rohtesh S. Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amin M. Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J. Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard E. Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Samuel A. Shelburne
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Infectious Diseases, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey J. Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohamed A. Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jennifer L. Karmouch
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert R. Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- CPRIT Scholar in Cancer Research, Austin, TX 78701, USA
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
26
|
Zhang Y, Hu J, Tan H, Zhong Y, Nie S. Akkermansia muciniphila, an important link between dietary fiber and host health. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Pan L, Fu T, Cheng H, Mi J, Shang Q, Yu G. Polysaccharide from edible alga Gloiopeltis furcata attenuates intestinal mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans. Carbohydr Polym 2022; 278:118921. [PMID: 34973740 DOI: 10.1016/j.carbpol.2021.118921] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Gloiopeltis furcata is an edible alga that has long been consumed in China. However, the bioactive polysaccharides from G. furcata have been largely unexplored. Here, we show for the first time that a sulfated polysaccharide from G. furcata (SAO) could improve the integrity of the colonic epithelial layer and protect against dextran sulfate sodium-induced intestinal mucosal damage. Mechanistically, SAO attenuated colonic mucosal damage by therapeutically remodeling the interactions between gut microbiota and mucin O-glycans. Specifically, SAO increased the proportions of complex long-chain mucin O-glycans in the epithelial layer with two terminal N-acetylneuraminic acid residues and promoted the growth of probiotic bacteria including Roseburia spp. and Muribaculaceae. Altogether, our study demonstrates a novel application of SAO for the treatment of inflammatory bowel disease-associated mucosal damage and forms the basis to understand the therapeutic effects of natural polysaccharides from the perspective of symbiotic interactions between host mucin O-glycome and gut microbiome.
Collapse
Affiliation(s)
- Lin Pan
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianyu Fu
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Hao Cheng
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianchen Mi
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Qingdao Marine Biomedical Research Institute, Qingdao 266071, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, and Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, China.
| |
Collapse
|
28
|
Deng F, Zhang LQ, Wu H, Chen Y, Yu WQ, Han RH, Han Y, Zhang XQ, Sun QS, Lin ZB, Wang Y, Liu YP, Chen JY, Liu KX, Hu JJ. Propionate alleviates myocardial ischemia-reperfusion injury aggravated by Angiotensin II dependent on caveolin-1/ACE2 axis through GPR41. Int J Biol Sci 2022; 18:858-872. [PMID: 35002530 PMCID: PMC8741842 DOI: 10.7150/ijbs.67724] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/27/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is still a lack of effective therapeutic drugs, and its molecular mechanism is urgently needed. Studies have shown that the intestinal flora plays an important regulatory role in cardiovascular injury, but the specific mechanism has not been fully elucidated. In this study, we found that an increase in Ang II in plasma was accompanied by an increase in the levels of myocardial injury during myocardial reperfusion in patients with cardiopulmonary bypass. Furthermore, Ang II treatment enhanced mice myocardial I/R injury, which was reversed by caveolin-1 (CAV-1)-shRNA or strengthened by angiotensin-converting enzyme 2 (ACE2)-shRNA. The results showed that CAV-1 and ACE2 have protein interactions and inhibit each other's expression. In addition, propionate, a bacterial metabolite, inhibited the elevation of Ang II and myocardial injury, while GPR41-shRNA abolished the protective effects of propionate on myocardial I/R injury. Clinically, the propionate content in the patient's preoperative stool was related to Ang II levels and myocardial I/R injury levels during myocardial reperfusion. Taken together, propionate alleviates myocardial I/R injury aggravated by Ang II dependent on CAV-1/ACE2 axis through GPR41, which provides a new direction that diet to regulate the intestinal flora for treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China.,Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Liang-Qing Zhang
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Han Wu
- Department of Dermatology, Shunde Hospital, Southern Medical University, Foshan, China
| | - Yu Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wen-Qian Yu
- The First Ward of Pain Department, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan 430000, China
| | - Rong-Hui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Yuan Han
- Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Qi Zhang
- Major of Clinical Medicine, Nanshan College, Guangzhou Medical University, Guangzhou 510515, China
| | - Qi-Shun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ze-Bin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wang
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Yong-Pan Liu
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Jing-Yi Chen
- Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
MUC2 and related bacterial factors: Therapeutic targets for ulcerative colitis. EBioMedicine 2021; 74:103751. [PMID: 34902790 PMCID: PMC8671112 DOI: 10.1016/j.ebiom.2021.103751] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
The mucin2 (MUC2) mucus barrier acts as the first barrier that prevents direct contact between intestinal bacteria and colonic epithelial cells. Bacterial factors related to the MUC2 mucus barrier play important roles in the response to changes in dietary patterns, MUC2 mucus barrier dysfunction, contact stimulation with colonic epithelial cells, and mucosal and submucosal inflammation during the occurrence and development of ulcerative colitis (UC). In this review, these underlying mechanisms are summarized and updated, and related interventions for treating UC, such as dietary adjustment, exogenous repair of the mucus barrier, microbiota transplantation and targeted elimination of pathogenic bacteria, are suggested. Such interventions are likely to induce and maintain a long and stable remission period and reduce or even avoid the recurrence of UC. A better mechanistic understanding of the MUC2 mucus barrier and its related bacterial factors may help researchers and clinicians to develop novel approaches for treating UC.
Collapse
|
30
|
Kumar V, Kumar V, Mahajan N, Kaur J, Devi K, Dharavath RN, Singh RP, Kondepudi KK, Bishnoi M. Mucin secretory action of capsaicin prevents high fat diet-induced gut barrier dysfunction in C57BL/6 mice colon. Biomed Pharmacother 2021; 145:112452. [PMID: 34808551 DOI: 10.1016/j.biopha.2021.112452] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
The gut barrier - including tight junction proteins (TJPs) and mucus layers, is the first line of defense against physical, chemical or pathogenic incursions. This barrier is compromised in various health disorders. Capsaicin, a dietary agonist of Transient receptor potential vanilloid 1 (TRPV1) channel, is reported to alleviate the complications of obesity. While it is well known to improve energy expenditure and metabolism, and prevent dysbiosis, the more local effects on the host gut - particularly the gut barrier and mucus system remain elusive. To investigate the effect of capsaicin on the gut barrier and mucus production and to understand the involvement of mucus, bacteria, and TRPV1 in these phenomena, we employed a diet-induced obesity model in C57BL/6 mice, and capsaicin (2 mg/kg/day p.o.) or mucin (1 g/kg/day p.o.) as interventions, for 12 weeks. Parameters like weight gain, glucose homeostasis, TJPs expression, mucus staining, intestinal permeability etc were studied. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments were performed to explore the role of microbiota in the beneficial effects. Mucin feeding reflected several anti-obesity effects produced by capsaicin, suggesting that mucus modulation might play a crucial role in capsaicin-induced anti-obesity effects. 16 S rDNA sequencing and in vitro Ca2+ measurement experiments pointed to TRPV1 modulation by bacteria besides capsaicin. Capsaicin, bacteria and the host mucus system seem to act in a cyclic cascade involving TRPV1, which can be activated by capsaicin and various bacteria. These findings provide new insight into the role of TRPV1 in maintaining a healthy gut environment.
Collapse
Affiliation(s)
- Vijay Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Vibhu Kumar
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Neha Mahajan
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Regional Centre for Biotechnology, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Jasleen Kaur
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Kirti Devi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Department of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Ravinder Naik Dharavath
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Ravindra Pal Singh
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanthi Kiran Kondepudi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India.
| | - Mahendra Bishnoi
- Centre for Excellence in Functional Foods, Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India; Humboldt Fellow (Experienced Researcher), Klinik für Anästhesiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Krankanstrasse, 91054 Erlangen, Germany.
| |
Collapse
|
31
|
Wang Z, Bai Y, Pi Y, Gerrits WJJ, de Vries S, Shang L, Tao S, Zhang S, Han D, Zhu Z, Wang J. Xylan alleviates dietary fiber deprivation-induced dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum in pigs. MICROBIOME 2021; 9:227. [PMID: 34802456 PMCID: PMC8606072 DOI: 10.1186/s40168-021-01175-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/27/2021] [Indexed: 06/08/2023]
Abstract
BACKGROUND Low dietary fiber intake has been shown to disturb the gut microbiome community, damage the mucus barrier, and promote pathogen susceptibility. However, little is known about the temporal response of the gut microbiome to dietary fiber deprivation and the recovery induced by dietary fiber inclusion in pigs. OBJECTIVE In the present study, temporal responses of ileal and fecal microbiota to dietary fiber deprivation were profiled using an ileum cannulated growing pig model. In addition, the potential of dietary-resistant starch, β-glucan, and xylan to alleviate gut dysbiosis throughout the gastrointestinal tract, as well as its possible mechanisms were investigated. METHODS Six cannulated growing pigs were fed a fiber deprivation diet for 35 days. Ileal digesta and feces were collected at days 0, 7, 21, and 35 for 16S rRNA sequencing and short-chain fatty acid (SCFA) determination. Another twenty-four healthy growing pigs were assigned to one of four dietary treatments including (1) fiber-free diet, (2) resistant starch diet, (3) β-glucan diet, and (4) xylan diet. These twenty-four pigs were fed a corresponding diet for 35 days and slaughtered. Gut microbiome and SCFA concentration were profiled along the gastrointestinal tract. RESULTS Dietary fiber deprivation-induced consistent microbiota extinction, mainly Bifidobacterium and Lactobacillus, and decreased SCFA concentrations in both ileum and feces. The community structure partially recovered at day 35 compared with baseline while SCFA concentrations remained low. Xylan supplementation alleviated gut dysbiosis by selectively promoting Bifidobacterium pseudocatenulatum within the large intestine. SCFA concentration increased significantly after xylan supplementation and exhibited a positive association with B. pseudocatenulatum abundance. An elevated abundance of xylan degradation-related enzyme genes was also observed in the gut microbiome after xylan supplementation. In vitro growth assay further verified the xylan utilization capacity of B. pseudocatenulatum. CONCLUSIONS Dietary fiber deprivation could induce probiotic extinction and loss of the SCFA production while potential pathogen was promoted. Xylan intervention could partially restore dietary fiber deprivation-induced gut dysbiosis through selectively promoting B. pseudocatenulatum and therefore normalizing the gut environment. These findings collectively provide evidence that dietary fiber-driven microbiota metabolism bridges the interplay between microbiome and gut health. Video abstract.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yu Bai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Walter J J Gerrits
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700, AH, Wageningen, The Netherlands
| | - Sonja de Vries
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700, AH, Wageningen, The Netherlands
| | - Lijun Shang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shiyu Tao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shiyi Zhang
- Animal Nutrition Group, Wageningen University & Research, PO Box 338, 6700, AH, Wageningen, The Netherlands
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Zhengpeng Zhu
- Tequ Group Co., Ltd., Chengdu, 611400, Sichuan, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
32
|
Chen Y, Cui W, Li X, Yang H. Interaction Between Commensal Bacteria, Immune Response and the Intestinal Barrier in Inflammatory Bowel Disease. Front Immunol 2021; 12:761981. [PMID: 34858414 PMCID: PMC8632219 DOI: 10.3389/fimmu.2021.761981] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
In inflammatory bowel disease (IBD), intestinal mucosa cell and intestinal epithelial cell are severely damaged, and then their susceptibility to bacteria increases, so many commensal bacteria become pathogenic. The pathogenic commensal bacteria can stimulate a series of compensatory immune responses in the intestine. However, the immune response prevents the intestinal tract from restoring homeostasis, which in turn produces an indispensable inflammatory response. On the contrary, in IBD, the fierce inflammatory response contributes to the development of IBD. However, the effect of commensal bacteria on inflammation in IBD has not been clearly studied. Therefore, we further summarize the changes brought about by the changes of commensal bacteria to the inflammation of the intestines and their mutual influence. This article reviews the protective mechanism of commensal bacteria in healthy people and the mechanism of commensal bacteria and immune response to the destruction of the intestinal barrier when IBD occurs. The treatment and prevention of IBD are also briefly summarized.
Collapse
Affiliation(s)
| | | | - Xiao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
33
|
Matos J, Matos I, Calha M, Santos P, Duarte I, Cardoso Y, Faleiro ML. Insights from Bacteroides Species in Children with Type 1 Diabetes. Microorganisms 2021; 9:1436. [PMID: 34361871 PMCID: PMC8306409 DOI: 10.3390/microorganisms9071436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022] Open
Abstract
In our previous study the enrichment of the intestinal proteome of type 1 diabetes (T1D) children with Bacteroides proteins was observed, which led us to our current study that aimed to isolate and characterize Bacteroides species from fecal samples of T1D and control children. Repetitive sequence-based PCR (rep-PCR) was used for typing the isolated Bacteroides species. The antibiotic susceptibility and mucinolytic activity of the isolates was determined. The quantification of specific bacterial groups in the fecal samples was determined by qPCR. The ability to adhere and invade the human colonic cell line HT29-MTX-E12 of strains of P. dorei, B. uniformis and P. distasonis was determined and their whole genome sequencing was performed. The results showed similar numbers of Bacteroides species in T1D and control samples, but unique Bacteroides species and a higher recovery of P. distasonis from T1D samples was observed. Rep-PCR grouped the different Bacteroides species, but no discrimination by origin was achieved. T1D children showed a significant increase in Proteobacteria and a depletion in Lactobacillus sp. All tested P. dorei, B. uniformis and P. distasonis were able to adhere to HT29-MTX-E12 cells but significant differences (p < 0.05) in the ability to invade was observed. The highest ability to invade was exhibited by P. distasonis PtF D14MH1 and P. dorei PtFD16P1, while B. uniformis strains were unable to invade. The damage to tight junctions was also observed. The presence of Lactobacillus sp. inhibited the invasion ability of P. distasonis PtF D14MH1 but not P. dorei PtFD16P1. Sequences of agonist peptides of the human natural preproinsulin and the insulin B chain insB:9-23 peptide mimics were identified. The results reported in our study stresses the continued efforts required to clarify the link between T1D and gut microbiota.
Collapse
Affiliation(s)
- José Matos
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (J.M.); (I.M.); (P.S.); (Y.C.)
- Algarve Biomedical Center, Research Institute, 8005-139 Faro, Portugal
| | - Isabel Matos
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (J.M.); (I.M.); (P.S.); (Y.C.)
- Algarve Biomedical Center, Research Institute, 8005-139 Faro, Portugal
| | - Manuela Calha
- Unidade de Diabetologia, Centro Hospitalar Universitário do Algarve, 8000-386 Faro, Portugal;
| | - Pedro Santos
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (J.M.); (I.M.); (P.S.); (Y.C.)
- Algarve Biomedical Center, Research Institute, 8005-139 Faro, Portugal
| | - Isabel Duarte
- CINTESIS—Center for Health Technology and Services Research, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Yameric Cardoso
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (J.M.); (I.M.); (P.S.); (Y.C.)
| | - Maria Leonor Faleiro
- Faculdade de Ciências e Tecnologia, C8, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal; (J.M.); (I.M.); (P.S.); (Y.C.)
- Algarve Biomedical Center, Research Institute, 8005-139 Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| |
Collapse
|