1
|
Su J, Wu Y, Wang Z, Zhang D, Yang X, Zhao Y, Yu A. Probiotic biofilm modified scaffolds for facilitating osteomyelitis treatment through sustained release of bacteriophage and regulated macrophage polarization. Mater Today Bio 2025; 30:101444. [PMID: 39866782 PMCID: PMC11764121 DOI: 10.1016/j.mtbio.2025.101444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 12/09/2024] [Accepted: 01/02/2025] [Indexed: 01/28/2025] Open
Abstract
Osteomyelitis has gradually become a catastrophic complication in orthopedic surgery due to the formation of bacterial biofilms on the implant surface and surrounding tissue. The therapeutic challenges of antibiotic resistance and poor postoperative osseointegration provide inspiration for the development of bioactive implants. We have strategically designed bioceramic scaffolds modified with Lactobacillus reuteri (LR) and bacteriophages (phages) to achieve both antibacterial and osteogenic effects. Leveraging the tendency of bacteria to adhere to the surface of implants, bioceramics have been modified with LR biofilm to promote bone repair. The LR biofilm, sterilized by pasteurization, prevents sepsis caused by live bacteria and is biocompatible with phages. Phages, being natural enemies of bacteria, not only effectively kill bacteria and inhibit biofilm formation but also readily adsorb onto the surface of bioceramics. Hence, this scaffold, loaded with a phage cocktail, lysates specific bacterial populations, namely Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). More importantly, the inactivated LR biofilm stimulates macrophages RAW264.7 to polarize towards an anti-inflammatory M2 phenotype, creating an immune microenvironment favorable for inducing osteogenic differentiation of rat mesenchymal stem cells in vitro. In a rat model of infectious cranial defects, the scaffold not only effectively eliminated S. aureus and alleviated associated inflammation but also mediated macrophage-mediated immunoregulation, thus resulting in effective osteogenesis. Collectively, these multifunctional modified scaffolds offer an integrated approach to both bacterium elimination and bone repair, presenting a new strategy for bioactive implants in the clinical management of osteomyelitis.
Collapse
Affiliation(s)
- Junwei Su
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yifan Wu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Zheng Wang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Dong Zhang
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xianquan Yang
- Department of Orthopaedics, Gucheng County People's Hospital, Xiangyang, 441799, Hubei, China
| | - Yong Zhao
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Aixi Yu
- Department of Orthopedic Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| |
Collapse
|
2
|
Zhao N, Liu Z, Chen X, Yu T, Yan F. Microbial biofilms: a comprehensive review of their properties, beneficial roles and applications. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39579053 DOI: 10.1080/10408398.2024.2432474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Biofilms are microbial communities nested in self-secreted extracellular polymeric substances that can provide microorganisms with strong tolerance and a favorable living environment. Deepening the understanding and research on positive effects of microbial biofilms is consequently necessary, since most researches focuses on how to control biofilms formation to reduce food safety issues. This paper highlights beneficial roles of biofilms including the formation mechanism, influencing factors, health benefits, strategies to improve its film-forming efficiency, as well as applications especially in fields of food industry, agriculture and husbandry, and environmental management. Beneficial biofilms can be affected by multiple factors such as strain characteristics, media composition, signal molecules, and carrier materials. The biofilm barrier composed of beneficial bacteria provides a more favorable microecological environment, keeping bacteria survival longer, and its derived metabolites are better conducive to health. However, in the practical application of biofilms, there are still significant challenges, especially in terms of film-forming efficiency, stability, and safety assessment. Continuous research is needed to discover innovative methods of utilizing biofilms for sustainable food development in the future, in order to fully unleash its potential and promote its application in the food industry.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongyang Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xinyi Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Ting Yu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Fujie Yan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Yang H, Wu X, Li X, Zang W, Zhou Z, Zhou Y, Cui W, Kou Y, Wang L, Hu A, Wu L, Yin Z, Chen Q, Chen Y, Huang Z, Wang Y, Gu B. A commensal protozoan attenuates Clostridioides difficile pathogenesis in mice via arginine-ornithine metabolism and host intestinal immune response. Nat Commun 2024; 15:2842. [PMID: 38565558 PMCID: PMC10987486 DOI: 10.1038/s41467-024-47075-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Antibiotic-induced dysbiosis is a major risk factor for Clostridioides difficile infection (CDI), and fecal microbiota transplantation (FMT) is recommended for treating CDI. However, the underlying mechanisms remain unclear. Here, we show that Tritrichomonas musculis (T.mu), an integral member of the mouse gut commensal microbiota, reduces CDI-induced intestinal damage by inhibiting neutrophil recruitment and IL-1β secretion, while promoting Th1 cell differentiation and IFN-γ secretion, which in turn enhances goblet cell production and mucin secretion to protect the intestinal mucosa. T.mu can actively metabolize arginine, not only influencing the host's arginine-ornithine metabolic pathway, but also shaping the metabolic environment for the microbial community in the host's intestinal lumen. This leads to a relatively low ornithine state in the intestinal lumen in C. difficile-infected mice. These changes modulate C. difficile's virulence and the host intestinal immune response, and thus collectively alleviating CDI. These findings strongly suggest interactions between an intestinal commensal eukaryote, a pathogenic bacterium, and the host immune system via inter-related arginine-ornithine metabolism in the regulation of pathogenesis and provide further insights for treating CDI.
Collapse
Affiliation(s)
- Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxiao Wu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanqing Zang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhou Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wenwen Cui
- Xuzhou Center for Disease Control and Prevention, Xuzhou, Jiangsu, China
| | - Yanbo Kou
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liang Wang
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ankang Hu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lianlian Wu
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou, Guangdong, China
| | - Quangang Chen
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ying Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhutao Huang
- Center of Animal Laboratory, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yugang Wang
- Laboratory of Infection and Immunity, Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Bing Gu
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Han M, Lei W, Liang J, Li H, Hou M, Gao Z. The single-cell modification strategies for probiotics delivery in inflammatory bowel disease: A review. Carbohydr Polym 2024; 324:121472. [PMID: 37985038 DOI: 10.1016/j.carbpol.2023.121472] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/22/2023]
Abstract
Oral probiotic therapy has become an increasingly attractive method for treating various diseases, including intestinal barrier dysfunction, inflammatory bowel disease (IBD), and colorectal cancer due to its safety and convenience. However, only a few probiotics after oral gavage can survive the acidic and bile salt conditions of the gastrointestinal tract and colonize the colon to have a nutritional effect on the host. To address these challenges, encapsulation technology has been applied to protect probiotics from harsh gastrointestinal conditions, improve gut adhesion, and reduce immunogenicity. In addition, some of the functional polysaccharides are used to endow probiotics with exogenous functions as prebiotics. In this review, we systematically introduced the advancements of emerging single-cell modification strategies for probiotics in IBD applications. Additionally, we discussed the limitations and perspectives of single-cell modification strategies for probiotics. This review contributed to the development of probiotic delivery systems with higher therapeutic efficacy against colitis.
Collapse
Affiliation(s)
- Mengzhen Han
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Wenzhi Lei
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Jingjing Liang
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Hongcai Li
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Mengxin Hou
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Zhenpeng Gao
- College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China.
| |
Collapse
|
5
|
Mi J, He T, Hu X, Wang Z, Wang T, Qi X, Li K, Gao L, Liu C, Zhang Y, Wang S, Qiu Y, Liu Z, Song J, Wang X, Gao Y, Cui H. Enterococcus faecium C171: Modulating the Immune Response to Acute Lethal Viral Challenge. Int J Antimicrob Agents 2023; 62:106969. [PMID: 37758064 DOI: 10.1016/j.ijantimicag.2023.106969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/08/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Commensal bacteria modulate acute immune responses to infection in hosts. In this study, Enterococcus faecium C171 was screened and isolated. This strain has similar basic characteristics to the reference probiotic, including strong anti-inflammatory and anti-infective effects. E. faecium C171 inhibits the production of pro-Caspase-1 and significantly reduces the production of interleukin-1β (IL-1β) in vitro. These reactions were confirmed using the Transwell system. Live E. faecium C171 mainly exerted an inhibitory effect on acute inflammation, whereas the anti-infective and immune-activating effects were primarily mediated by the E. faecium C171-produced bacterial extracellular vesicles (Efm-C171-BEVs). Furthermore, in the specific pathogen-free (SPF) chicken model, oral administration of E. faecium C171 increased the relative abundance of beneficial microbiota (Enterococcus and Lactobacillus), particularly Enterococcus, the most important functional bacteria of the gut microbiota. E. faecium C171 significantly inhibited the acute inflammatory response induced by a highly virulent infectious disease, and reduced mortality in SPF chickens by 75%. In addition, E. faecium C171 induced high levels of CD3+, CD4-, and CD8- immunoregulatory cells and CD8+ killer T cells, and significantly improved the proliferative activity of T cells in peripheral blood mononuclear cells, and the secretion of interferon-γ. These findings indicate that E. faecium C171 and Efm-C171-BEVs are promising candidates for adjuvant treatment of acute inflammatory diseases and acute viral infections.
Collapse
Affiliation(s)
- Jielan Mi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Tana He
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xinyun Hu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zhihao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Tingting Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xiaole Qi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Kai Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Li Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Changjun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yanping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Suyan Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yu Qiu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Zengqi Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Jie Song
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xiaomei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yulong Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Hongyu Cui
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| |
Collapse
|
6
|
Liu L, Chen X, Zhang C, Deng J, Xiao H, Rao Y. Lactiplantibacillus biofilm and planktonic cells ameliorate ulcerative colitis in mice via immunoregulatory activity, gut metabolism and microbiota modulation. Food Funct 2023; 14:9181-9193. [PMID: 37772319 DOI: 10.1039/d3fo02733c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Since ulcerative colitis (UC) has become a global concern, Lactiplantibacillus is considered an effective, safe strategy for alleviating intestinal inflammation in UC patients. The most advanced fourth-generation probiotics involve beneficial bacteria enclosed in biofilms with multiple advantages. However, the difference between the effect of probiotic biofilm and planktonic cells on UC remains unclear. This study indicated that the biofilm cells of Lactiplantibacillus LR-1 were more successful in increasing the colon length, relieving intestinal inflammation, and repairing colon damage, regulating the host immunity than the planktonic cells. Furthermore, the LR-1 biofilm cells helped prevent a decline in the Eubacterium hallii and Salinimicrobium levels and increased Kocuria and Candidatus Bacilloplasma abundance. Untargeted metabolomics analysis results suggested that the LR-1 biofilm was more successful in promoting the intestinal metabolism recovery of the UC mice than the planktonic cells. Finally, the phenotype-microbiota-metabolism network was conducted to reveal the relationship between these factors.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China.
| | - Xing Chen
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China.
| | - Chengyi Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China.
| | - Jia Deng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, 01003, USA.
| | - Yu Rao
- School of Food Science and Bioengineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
7
|
Schmitt LM, Smith EG, Pedapati EV, Horn PS, Will M, Lamy M, Barber L, Trebley J, Meyer K, Heiman M, West KHJ, Hughes P, Ahuja S, Erickson CA. Results of a phase Ib study of SB-121, an investigational probiotic formulation, a randomized controlled trial in participants with autism spectrum disorder. Sci Rep 2023; 13:5192. [PMID: 36997569 PMCID: PMC10061375 DOI: 10.1038/s41598-023-30909-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by core impairments in social communication as well as restricted, repetitive patterns of behavior and/or interests. Individuals with ASD, which includes about 2% of the US population, have challenges with activities of daily living and suffer from comorbid medical and mental health concerns. There are no drugs indicated for the core impairments of ASD. As such, there is a significant need for the development of new medication strategies for individuals with ASD. This first-in-human placebo-controlled, double-blind, crossover study investigated the safety (primary objective) and efficacy of oral SB-121, a combination of L. reuteri, Sephadex® (dextran microparticles), and maltose administered once daily for 28 days in 15 autistic participants. SB-121 was safe and well tolerated. SB-121-associated directional improvements in adaptive behavior measured by Vineland-3 and social preference as measured with eye tracking were noted. These results provide support for further clinical evaluation of SB-121 as a treatment in autistic patients. To evaluate the safety and tolerability of multiple doses of SB-121 in subjects with autism spectrum disorder. Single-center, randomized, placebo-controlled, double-blind, crossover trial. 15 patients with autism spectrum disorder were randomized and analyzed. Daily dosing of SB-121 or placebo for 28 days, followed by approximately a 14 day washout, then 28 days of dosing with other treatment. Incidence and severity of adverse events, presence of Limosilactobacillus reuteri and Sephadex® in stool, and incidence of bacteremia with positive L. reuteri identification. Additional outcomes include changes from baseline on cognitive and behavior tests as well as biomarker levels. Adverse event rates were similar between SB-121 and placebo, with most reported as mild. There were no severe or serious adverse events. No participants had features of suspected bacteremia or notable changes in vital signs, safety laboratory, or ECG parameters from baseline. There was a statistically significant increase from baseline in the Vineland-3 Adaptive Behavior Composite score (p = 0.03) during SB-121 treatment. There was a trend for increased social/geometric viewing ratio following SB-121 treatment compared to placebo. SB-121 was safe and well tolerated. SB-121-associated directional improvements in adaptive behavior measured by Vineland-3 and social preference as measured with eye tracking were noted.Trial registration: clinicaltrials.gov Identifier: NCT04944901.
Collapse
Affiliation(s)
- Lauren M Schmitt
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Elizabeth G Smith
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ernest V Pedapati
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul S Horn
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Meredith Will
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Martine Lamy
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lillian Barber
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Joe Trebley
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | - Kevin Meyer
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | - Mark Heiman
- Scioto Biosciences, Inc., Indianapolis, IN, USA
| | | | | | | | - Craig A Erickson
- Division of Child and Adolescent Psychiatry, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Psychiatry, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
8
|
Li K, Yang J, Zhou X, Wang H, Ren Y, Huang Y, Liu H, Zhong Z, Peng G, Zheng C, Zhou Z. The Mechanism of Important Components in Canine Fecal Microbiota Transplantation. Vet Sci 2022; 9:vetsci9120695. [PMID: 36548856 PMCID: PMC9786814 DOI: 10.3390/vetsci9120695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Fecal microbiota transplantation (FMT) is a potential treatment for many intestinal diseases. In dogs, FMT has been shown to have positive regulation effects in treating Clostridioides difficile infection (CDI), inflammatory bowel disease (IBD), canine parvovirus (CPV) enteritis, acute diarrhea (AD), and acute hemorrhagic diarrhea syndrome (AHDS). FMT involves transplanting the functional components of a donor's feces into the gastrointestinal tract of the recipient. The effective components of FMT not only include commensal bacteria, but also include viruses, fungi, bacterial metabolites, and immunoglobulin A (IgA) from the donor feces. By affecting microbiota and regulating host immunity, these components can help the recipient to restore their microbial community, improve their intestinal barrier, and induce anti-inflammation in their intestines, thereby affecting the development of diseases. In addition to the above components, mucin proteins and intestinal epithelial cells (IECs) may be functional ingredients in FMT as well. In addition to the abovementioned indications, FMT is also thought to be useful in treating some other diseases in dogs. Consequently, when preparing FMT fecal material, it is important to preserve the functional components involved. Meanwhile, appropriate fecal material delivery methods should be chosen according to the mechanisms these components act by in FMT.
Collapse
Affiliation(s)
- Kerong Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Jie Yang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Xiaoxiao Zhou
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Huan Wang
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
| | - Yuxin Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Yunchuan Huang
- Chengdu Center for Animal Disease Prevention and Control, Chengdu 610041, China
| | - Haifeng Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhijun Zhong
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangneng Peng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Chengli Zheng
- Sichuan Institute of Musk Deer Breeding, Chengdu 610016, China
- Correspondence: (C.Z.); (Z.Z.)
| | - Ziyao Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (C.Z.); (Z.Z.)
| |
Collapse
|
9
|
Koduru L, Lakshmanan M, Lee YQ, Ho PL, Lim PY, Ler WX, Ng SK, Kim D, Park DS, Banu M, Ow DSW, Lee DY. Systematic evaluation of genome-wide metabolic landscapes in lactic acid bacteria reveals diet- and strain-specific probiotic idiosyncrasies. Cell Rep 2022; 41:111735. [PMID: 36476869 DOI: 10.1016/j.celrep.2022.111735] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 11/07/2022] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are well known to elicit health benefits in humans, but their functional metabolic landscapes remain unexplored. Here, we analyze differences in growth, intestinal persistence, and postbiotic biosynthesis of six representative LAB and their interactions with 15 gut bacteria under 11 dietary regimes by combining multi-omics and in silico modeling. We confirmed predictions on short-term persistence of LAB and their interactions with commensals using cecal microbiome abundance and spent-medium experiments. Our analyses indicate that probiotic attributes are both diet and species specific and cannot be solely explained using genomics. For example, although both Lacticaseibacillus casei and Lactiplantibacillus plantarum encode similarly sized genomes with diverse capabilities, L. casei exhibits a more desirable phenotype. In addition, "high-fat/low-carb" diets more likely lead to detrimental outcomes for most LAB. Collectively, our results highlight that probiotics are not "one size fits all" health supplements and lay the foundation for personalized probiotic design.
Collapse
Affiliation(s)
- Lokanand Koduru
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Yi Qing Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Pooi-Leng Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Pei-Yu Lim
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Wei Xuan Ler
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Say Kong Ng
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Dongseok Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Doo-Sang Park
- Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 181 Ipsin-gil, Jeongeup 56212, Republic of Korea
| | - Mazlina Banu
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore
| | - Dave Siak Wei Ow
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A(∗)STAR), 20 Biopolis Way, #06-01, Centros, Singapore 138668, Singapore.
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
10
|
Hu MX, He F, Zhao ZS, Guo YX, Ma XK, Tu CK, Teng H, Chen ZX, Yan H, Shao X. Electrospun Nanofibrous Membranes Accelerate Biofilm Formation and Probiotic Enrichment: Enhanced Tolerances to pH and Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31601-31612. [PMID: 35793165 DOI: 10.1021/acsami.2c04540] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biofilms are the oldest, most successful, and most widely distributed form of microorganism life on earth, existing even in extreme environments. Presently, probiotics in biofilm phenotype are thought as the most advanced fourth-generation probiotics. However, high-efficiency and large-scale biofilm enrichment in an artificial way is difficult. Here, fibrous membranes as probiotic biofilm-enriching materials are studied. Electrospun cellulose acetate nanofibrous membranes with nano-sized fibers show outstanding superiority over fibrous membranes with micron-sized fibers in Lactobacillus paracasei biofilm enrichment. The special 3D structure of electrospun nanofibrous membranes makes other facilitating biofilm formation factors insignificant. With a suitable scaffold/culture medium ratio, nearly 100% of L. paracasei cells exist as biofilm phenotype on the membrane from the very beginning, not planktonic state. L. paracasei biofilms possess a potential for long-term survival and high tolerances toward strong acidic and alkali conditions and antibiotics. RNA sequencing results explain why L. paracasei biofilms possess high tolerances toward harsh environments as compared to planktonic L. paracasei. Electrospun nanofibrous membranes can serve as powerful biofilm-enriching scaffolds for probiotics and other valuable microbes.
Collapse
Affiliation(s)
- Meng-Xin Hu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fei He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zi-Shu Zhao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ya-Xin Guo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xue-Ke Ma
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Cheng-Kai Tu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hui Teng
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Zhe-Xin Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hong Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xin Shao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
11
|
Ragan MV, Wala SJ, Goodman SD, Bailey MT, Besner GE. Next-Generation Probiotic Therapy to Protect the Intestines From Injury. Front Cell Infect Microbiol 2022; 12:863949. [PMID: 35837474 PMCID: PMC9273849 DOI: 10.3389/fcimb.2022.863949] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 12/20/2022] Open
Abstract
Probiotics are live microorganisms that, when administered in adequate amounts, provide health benefits to the host. Some strains of the probiotic Lactobacillus reuteri (L. reuteri) have both antimicrobial and anti-inflammatory properties that may be exploited for the treatment and prevention of different gastrointestinal diseases, including necrotizing enterocolitis (NEC) and Clostridioides difficile (C. difficile) infection. Our laboratory has developed a new delivery system for L. reuteri in which the probiotic is incubated with biocompatible, semipermeable, porous dextranomer microspheres (DM) that can be loaded with beneficial and diffusible cargo. L. reuteri can be induced to form a biofilm by incubating the bacteria on the surface of these microspheres, which enhances the efficacy of the probiotic. Loading the DM with sucrose or maltose induces L. reuteri to produce more biofilm, further increasing the efficacy of the probiotic. Using a rat model of NEC, L. reuteri administered in its biofilm state significantly increases animal survival, reduces the incidence of NEC, preserves gut barrier function, and decreases intestinal inflammation. In a murine model of Clostridiodes difficile infection, L. reuteri administered in its biofilm state decreases colitis when administered either before or after C. difficile induction, demonstrating both prophylactic and therapeutic efficacy. There are currently no FDA-approved probiotic preparations for human use. An FDA-approved phase I clinical trial of L. reuteri in its biofilm state in healthy adults is currently underway. The results of this trial will be used to support a phase 1 clinical trial in neonates, with the goal of utilizing L. reuteri in its biofilm state to prevent NEC in premature neonates in the future.
Collapse
Affiliation(s)
- Mecklin V. Ragan
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
| | - Samantha J. Wala
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
| | - Steven D. Goodman
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, United States
| | - Michael T. Bailey
- Nationwide Children’s Hospital, The Ohio State University, Columbus, OH, United States
| | - Gail E. Besner
- Center for Perinatal Research, Department of Pediatric Surgery, Columbus, OH, United States
- *Correspondence: Gail E. Besner,
| |
Collapse
|
12
|
Limosilactobacillus reuteri SLZX19-12 Protects the Colon from Infection by Enhancing Stability of the Gut Microbiota and Barrier Integrity and Reducing Inflammation. Microbiol Spectr 2022; 10:e0212421. [PMID: 35658572 PMCID: PMC9241593 DOI: 10.1128/spectrum.02124-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Limosilactobacillus reuteri plays an important role in regulating intestinal functions and maintaining barrier integrity in animals. In this study, Limosilactobacillus reuteri strain SLZX19-12 was isolated from the fecal microbiota of Tibetan pigs, and it was found that this strain is sensitive to common antibiotics and has strong resistance to stress. Upon being administered by gavage at different doses, including low, medium, and high doses, for 14 days, Limosilactobacillus reuteri SLZX19-12 may enhance the intestinal barrier. After administration of a high dose of SLZX19-12, mice were challenged with Salmonella enterica serovar Typhimurium SL1344. Infection with Salmonella Typhimurium SL1344 led to disordered colonic microbiotas, colonic inflammation through the S100A8/S100A9-NF-κB pathway and potential apoptosis, and translocation of pathogens to parenteral visceral organs in mice. However, the mice pretreated with Limosilactobacillus reuteri SLZX19-12 showed lower loads of Salmonella in visceral organs, less colonic inflammation, and higher barrier integrity. More importantly, the administration of strain SLZX19-12 resulted in a more stable microbiota structure of the colon, in which the abundance of Alloprevotella was greatly enhanced. Therefore, this study suggests that Limosilactobacillus reuteri SLZX19-12 can protect the colon from infection by enhancing the stability of gut microbiota and barrier integrity and reducing inflammation. IMPORTANCE The use of antibiotics to treat bacterial infections leads to a series of side effects. As an alternative method, the biocontrol strategy, which uses probiotics to suppress pathogens, is considered a potential way to deal with bacterial infections in gut. However, there are few probiotics that are currently safe and can protect against infection. In this study, Limosilactobacillus reuteri strain SLZX19-12 was obtained from Tibetan pigs, which have higher resistance to infection. This strain is sensitive to conventional antibiotics, secretes a wide spectrum of enzymes, and also promotes the intestinal barrier function in mice. In addition, Limosilactobacillus reuteri SLZX19-12 can promote the stability of the gut microbiota to avoid or alleviate the occurrence or development of foodborne infections.
Collapse
|
13
|
Meng F, Zhao M, Lu Z. The LuxS/AI-2 system regulates the probiotic activities of lactic acid bacteria. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Milner E, Stevens B, An M, Lam V, Ainsworth M, Dihle P, Stearns J, Dombrowski A, Rego D, Segars K. Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Front Microbiol 2021; 12:689958. [PMID: 34434175 PMCID: PMC8381467 DOI: 10.3389/fmicb.2021.689958] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are heavily advertised to promote a healthy gastrointestinal tract and boost the immune system. This review article summarizes the history and diversity of probiotics, outlines conventional in vitro assays and in vivo models, assesses the pharmacologic effects of probiotic and pharmaceutical co-administration, and the broad impact of clinical probiotic utilization for gastrointestinal disease indications.
Collapse
Affiliation(s)
- Erin Milner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Benjamin Stevens
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Martino An
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Victoria Lam
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Michael Ainsworth
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Preston Dihle
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jocelyn Stearns
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Andrew Dombrowski
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Daniel Rego
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Katharine Segars
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| |
Collapse
|
15
|
Al-Hadidi A, Navarro J, Goodman SD, Bailey MT, Besner GE. Lactobacillus reuteri in Its Biofilm State Improves Protection from Experimental Necrotizing Enterocolitis. Nutrients 2021; 13:nu13030918. [PMID: 33809097 PMCID: PMC8000340 DOI: 10.3390/nu13030918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a devastating disease predominately found in premature infants that is associated with significant morbidity and mortality. Despite decades of research, medical management with broad spectrum antibiotics and bowel rest has remained relatively unchanged, with no significant improvement in patient outcomes. The etiology of NEC is multi-factorial; however, gastrointestinal dysbiosis plays a prominent role in a neonate's vulnerability to and development of NEC. Probiotics have recently emerged as a new avenue for NEC therapy. However, current delivery methods are associated with potential limitations, including the need for at least daily administration in order to obtain any improvement in outcomes. We present a novel formulation of enterally delivered probiotics that addresses the current limitations. A single enteral dose of Lactobacillus reuteri delivered in a biofilm formulation increases probiotic survival in acidic gastric conditions, increases probiotic adherence to gastrointestinal epithelial cells, and reduces the incidence, severity, and neurocognitive sequelae of NEC in experimental models.
Collapse
Affiliation(s)
- Ameer Al-Hadidi
- Department of Pediatric Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA;
| | - Jason Navarro
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Steven D. Goodman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Michael T. Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA; (J.N.); (S.D.G.); (M.T.B.)
| | - Gail E. Besner
- Department of Pediatric Surgery, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Center for Perinatal Research, The Research Institute at Nationwide Children’s Hospital, Nationwide Children’s Hospital, 700 Children’s Drive, Columbus, OH 43205, USA;
- Correspondence: ; Tel.: +1-614-722-3914
| |
Collapse
|
16
|
Michael H, Paim FC, Miyazaki A, Langel SN, Fischer DD, Chepngeno J, Goodman SD, Rajashekara G, Saif LJ, Vlasova AN. Escherichia coli Nissle 1917 administered as a dextranomar microsphere biofilm enhances immune responses against human rotavirus in a neonatal malnourished pig model colonized with human infant fecal microbiota. PLoS One 2021; 16:e0246193. [PMID: 33592026 PMCID: PMC7886176 DOI: 10.1371/journal.pone.0246193] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/14/2021] [Indexed: 12/30/2022] Open
Abstract
Human rotavirus (HRV) is a leading cause of diarrhea in children. It causes significant morbidity and mortality, especially in low- and middle-income countries (LMICs), where HRV vaccine efficacy is low. The probiotic Escherichia coli Nissle (EcN) 1917 has been widely used in the treatment of enteric diseases in humans. However, repeated doses of EcN are required to achieve maximum beneficial effects. Administration of EcN on a microsphere biofilm could increase probiotic stability and persistence, thus maximizing health benefits without repeated administrations. Our aim was to investigate immune enhancement by the probiotic EcN adhered to a dextranomar microsphere biofilm (EcN biofilm) in a neonatal, malnourished piglet model transplanted with human infant fecal microbiota (HIFM) and infected with rotavirus. To create malnourishment, pigs were fed a reduced amount of bovine milk. Decreased HRV fecal shedding and protection from diarrhea were evident in the EcN biofilm treated piglets compared with EcN suspension and control groups. Moreover, EcN biofilm treatment enhanced natural killer cell activity in blood mononuclear cells (MNCs). Increased frequencies of activated plasmacytoid dendritic cells (pDC) in systemic and intestinal tissues and activated conventional dendritic cells (cDC) in blood and duodenum were also observed in EcN biofilm as compared with EcN suspension treated pigs. Furthermore, EcN biofilm treated pigs had increased frequencies of systemic activated and resting/memory antibody forming B cells and IgA+ B cells in the systemic tissues. Similarly, the mean numbers of systemic and intestinal HRV-specific IgA antibody secreting cells (ASCs), as well as HRV-specific IgA antibody titers in serum and small intestinal contents, were increased in the EcN biofilm treated group. In summary EcN biofilm enhanced innate and B cell immune responses after HRV infection and ameliorated diarrhea following HRV challenge in a malnourished, HIFM pig model.
Collapse
Affiliation(s)
- Husheem Michael
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Francine C. Paim
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Ayako Miyazaki
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- Division of Viral Disease and Epidemiology, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Stephanie N. Langel
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - David D. Fischer
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Juliet Chepngeno
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Steven D. Goodman
- Centre for Microbial Pathogenesis, The Nationwide Children’s Hospital, Columbus, Ohio, United States of America
| | - Gireesh Rajashekara
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Linda J. Saif
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (ANV); (LJS)
| | - Anastasia Nickolaevna Vlasova
- Food Animal Health Research Program, Department of Veterinary Preventive Medicine, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail: (ANV); (LJS)
| |
Collapse
|