1
|
Mateos H, Mallardi A, Serrano-Pertierra E, Blanco-López MC, Liguori M, Antonacci Y, Casiello M, Palazzo G. Hetero Sandwich Immunoassay as Tool to Probe the Composition of the Extracellular Vesicles Membranes: The Case Study of L1CAM Localization. ACS OMEGA 2025; 10:12983-12992. [PMID: 40224478 PMCID: PMC11983164 DOI: 10.1021/acsomega.4c09363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/15/2025]
Abstract
Lateral flow immunoassays (LFIAs) are widely used for point-of-care diagnostic devices due to their simplicity, low cost, and rapid results. In this work, we demonstrate that a heterosandwich design LFIA can be an effective tool for verifying the presence of different proteins on the same particles. As a case study, we address a recent controversy regarding the presence of the protein L1CAM on the extracellular vesicles (EVs). EVs are crucial for cell communication and may serve as valuable disease biomarkers, including for neurodegenerative disorders. EVs from neuronal cells can cross the blood-brain barrier and be selectively isolated from plasma. Although L1CAM has been suggested as a marker for neuron-derived EVs, recent studies report that L1CAM exists as a cleaved soluble protein in plasma, not associated with EVs. We propose a heterosandwich LFIA to detect and quantify L1CAM and a confirmed EV marker, tetraspanin CD63 or CD9, on the same EV. This assay, together with several control experiments on EVs isolated from plasma by size exclusion chromatography (SEC), demonstrates that although most L1CAM in plasma is present as soluble cleaved proteins, 13% of the EVs are strongly associated with this protein. This evidence is confirmed by dynamic light scattering measurements, showing a significant size increase of gold nanoparticles conjugated with L1CAM antibodies when exposed to EVs but not to cleaved soluble L1CAM. Our results validate the selective immune-isolation of L1CAM-EVs, resolving the controversy by confirming that L1CAM is indeed associated with a significant fraction of EVs despite the presence of its soluble form in plasma.
Collapse
Affiliation(s)
- Helena Mateos
- Dipartimento
di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari “Aldo
Moro”, Via Orabona n. 4 70125 Bari, Italy
| | - Antonia Mallardi
- CNR-IPCF,
Institute for Physical and Chemical Processes—Bari Division,
National Research Council (CNR), 00185 Rome, Italy
| | - Esther Serrano-Pertierra
- Departamento
de Bioquímica y Biología Molecular & Instituto Universitario
de Biotecnología de Asturias, Universidad
de Oviedo, 33006 Oviedo, Spain
| | - Maria Carmen Blanco-López
- Departamento
de Química Física y Analítica & Instituto
Universitario de Biotecnología de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Maria Liguori
- CNR-ITB,
Institute of Biomedical Technologies—Bari Unit, National Research
Council (CNR), Via Amendola
n. 122, 70125 Bari, Italy
| | - Ylenia Antonacci
- CNR-ITB,
Institute of Biomedical Technologies—Bari Unit, National Research
Council (CNR), Via Amendola
n. 122, 70125 Bari, Italy
| | - Michele Casiello
- Dipartimento
di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari “Aldo
Moro”, Via Orabona n. 4 70125 Bari, Italy
| | - Gerardo Palazzo
- Dipartimento
di Chimica and CSGI (Center for Colloid and Surface Science), Università degli Studi di Bari “Aldo
Moro”, Via Orabona n. 4 70125 Bari, Italy
| |
Collapse
|
2
|
Todhunter-Brown A, Campbell P, Broderick C, Cowie J, Davis B, Fenton C, Markham S, Sellers C, Thomson K. Recent research in myalgic encephalomyelitis/chronic fatigue syndrome: an evidence map. Health Technol Assess 2025:1-78. [PMID: 40162526 PMCID: PMC11973615 DOI: 10.3310/btbd8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Background Myalgic encephalomyelitis/chronic fatigue syndrome is a chronic condition, classified by the World Health Organization as a nervous system disease, impacting around 17 million people worldwide. Presentation involves persistent fatigue and postexertional malaise (a worsening of symptoms after minimal exertion) and a wide range of other symptoms. Case definitions have historically varied; postexertional malaise is a core diagnostic criterion in current definitions. In 2022, a James Lind Alliance Priority Setting Partnership established research priorities relating to myalgic encephalomyelitis/chronic fatigue syndrome. Objective(s) We created a map of myalgic encephalomyelitis/chronic fatigue syndrome evidence (2018-23), showing the volume and key characteristics of recent research in this field. We considered diagnostic criteria and how current research maps against the James Lind Alliance Priority Setting Partnership research priorities. Methods Using a predefined protocol, we conducted a comprehensive search of Cochrane, MEDLINE, EMBASE and Cumulative Index to Nursing and Allied Health Literature. We included all English-language research studies published between January 2018 and May 2023. Two reviewers independently applied inclusion criteria with consensus involving additional reviewers. Studies including people diagnosed with myalgic encephalomyelitis/chronic fatigue syndrome using any criteria (including self-report), of any age and in any setting were eligible. Studies with < 10 myalgic encephalomyelitis/chronic fatigue syndrome participants were excluded. Data extraction, coding of topics (involving stakeholder consultation) and methodological quality assessment of systematic reviews (using A MeaSurement Tool to Assess systematic Reviews 2) was conducted independently by two reviewers, with disagreements resolved by a third reviewer. Studies were presented in an evidence map. Results Of the 11,278 identified studies, 742 met the selection criteria, but only 639 provided sufficient data for inclusion in the evidence map. These reported data from approximately 610,000 people with myalgic encephalomyelitis/chronic fatigue syndrome. There were 81 systematic reviews, 72 experimental studies, 423 observational studies and 63 studies with other designs. Most studies (94%) were from high-income countries. Reporting of participant details was poor; 16% did not report gender, 74% did not report ethnicity and 81% did not report the severity of myalgic encephalomyelitis/chronic fatigue syndrome. Forty-four per cent of studies used multiple diagnostic criteria, 16% did not specify criteria, 24% used a single criterion not requiring postexertional malaise and 10% used a single criterion requiring postexertional malaise. Most (89%) systematic reviews had a low methodological quality. Five main topics (37 subtopics) were included in the evidence map. Of the 639 studies; 53% addressed the topic 'what is the cause?'; 38% 'what is the problem?'; 26% 'what can we do about it?'; 15% 'diagnosis and assessment'; and 13% other topics, including 'living with myalgic encephalomyelitis/chronic fatigue syndrome'. Discussion Studies have been presented in an interactive evidence map according to topic, study design, diagnostic criteria and age. This evidence map should inform decisions about future myalgic encephalomyelitis/chronic fatigue syndrome research. Limitations An evidence map does not summarise what the evidence says. Our evidence map only includes studies published in 2018 or later and in English language. Inconsistent reporting and use of diagnostic criteria limit the interpretation of evidence. We assessed the methodological quality of systematic reviews, but not of primary studies. Conclusions We have produced an interactive evidence map, summarising myalgic encephalomyelitis/chronic fatigue syndrome research from 2018 to 2023. This evidence map can inform strategic plans for future research. We found some, often limited, evidence addressing every James Lind Alliance Priority Setting Partnership priority; high-quality systematic reviews should inform future studies. Funding This article presents independent research funded by the National Institute for Health and Care Research (NIHR) Evidence Synthesis programme as award number NIHR159926.
Collapse
Affiliation(s)
| | | | | | - Julie Cowie
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | | - Candida Fenton
- NESSIE, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Sarah Markham
- NESSIE Patient and public involvement member, UK
- Department of Biostatistics and Health Informatics, King's College London, London, UK
| | - Ceri Sellers
- NESSIE, Glasgow Caledonian University, Glasgow, UK
| | | |
Collapse
|
3
|
Gu X, He L, Zhang J, Xu H, Shen H, Huang R, Li Z. Recent Advances in Wash-Free Detection Methods of Extracellular Vesicles: A Mini Review. ACS Sens 2024; 9:5626-5641. [PMID: 39446112 DOI: 10.1021/acssensors.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Extracellular vesicles (EVs) are emerging biomarkers in liquid biopsy that have gained increasing attention in disease diagnosis and prognosis monitoring. Most reported detection methods require the isolation of EVs from complex body liquids, often involving multiple washing steps to remove excess reagents and eliminate background interference. Nonetheless, these methods not only cause the loss of EVs but also result in poor repeatability and prolonged detection duration. The focus on wash-free detection methods is increasing due to the specific ability to avoid the removal of surplus reagents and, in some cases, even the isolation and purification of EVs. Viewing from different methodological perspectives, this review summarizes the recent advances in wash-free detection of EVs, containing aggregation induction, proximity sensing, allosteric probes, phase separation, Roman spectroscopy, field-effect transistor and microcantilever. The pros and cons of each detection strategy are impartially evaluated and this review concludes the prospects for future developments in this field.
Collapse
Affiliation(s)
- Xinrui Gu
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Lei He
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Jinsong Zhang
- Clinical Laboratory, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Hongpan Xu
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Han Shen
- Clinical Laboratory, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| | - Rongrong Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, South Puzhu Road 30, Nanjing, Jiangsu Province 211816, China
| | - Zhiyang Li
- Clinical Laboratory, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321, Nanjing, Jiangsu Province 210008, China
| |
Collapse
|
4
|
Yasamineh S, Nikben N, Hamed Ahmed M, Abdul Kareem R, Kadhim Al-Aridhy A, Hosseini Hooshiar M. Increasing the sensitivity and accuracy of detecting exosomes as biomarkers for cancer monitoring using optical nanobiosensors. Cancer Cell Int 2024; 24:189. [PMID: 38816782 PMCID: PMC11138050 DOI: 10.1186/s12935-024-03379-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 06/01/2024] Open
Abstract
The advancement of nanoscience and material design in recent times has facilitated the creation of point-of-care devices for cancer diagnosis and biomolecule sensing. Exosomes (EXOs) facilitate the transfer of bioactive molecules between cancer cells and diverse cells in the local and distant microenvironments, thereby contributing to cancer progression and metastasis. Specifically, EXOs derived from cancer are likely to function as biomarkers for early cancer detection due to the genetic or signaling alterations they transport as payload within the cancer cells of origin. It has been verified that EXOs circulate steadily in bodily secretions and contain a variety of information that indicates the progression of the tumor. However, acquiring molecular information and interactions regarding EXOs has presented significant technical challenges due to their nanoscale nature and high heterogeneity. Colorimetry, surface plasmon resonance (SPR), fluorescence, and Raman scattering are examples of optical techniques utilized to quantify cancer exosomal biomarkers, including lipids, proteins, RNA, and DNA. Many optically active nanoparticles (NPs), predominantly carbon-based, inorganic, organic, and composite-based nanomaterials, have been employed in biosensing technology. The exceptional physical properties exhibited by nanomaterials, including carbon NPs, noble metal NPs, and magnetic NPs, have facilitated significant progress in the development of optical nanobiosensors intended for the detection of EXOs originating from tumors. Following a summary of the biogenesis, biological functions, and biomarker value of known EXOs, this article provides an update on the detection methodologies currently under investigation. In conclusion, we propose some potential enhancements to optical biosensors utilized in detecting EXO, utilizing various NP materials such as silicon NPs, graphene oxide (GO), metal NPs, and quantum dots (QDs).
Collapse
Affiliation(s)
- Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | | | | - Ameer Kadhim Al-Aridhy
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | |
Collapse
|
5
|
Gorgzadeh A, Nazari A, Ali Ehsan Ismaeel A, Safarzadeh D, Hassan JAK, Mohammadzadehsaliani S, Kheradjoo H, Yasamineh P, Yasamineh S. A state-of-the-art review of the recent advances in exosome isolation and detection methods in viral infection. Virol J 2024; 21:34. [PMID: 38291452 PMCID: PMC10829349 DOI: 10.1186/s12985-024-02301-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
Proteins, RNA, DNA, lipids, and carbohydrates are only some of the molecular components found in exosomes released by tumor cells. They play an essential role in healthy and diseased cells as messengers of short- and long-distance intercellular communication. However, since exosomes are released by every kind of cell and may be found in blood and other bodily fluids, they may one day serve as biomarkers for a wide range of disorders. In many pathological conditions, including cancer, inflammation, and infection, they play a role. It has been shown that the biogenesis of exosomes is analogous to that of viruses and that the exosomal cargo plays an essential role in the propagation, dissemination, and infection of several viruses. Bidirectional modulation of the immune response is achieved by the ability of exosomes associated with viruses to facilitate immunological escape and stimulate the body's antiviral immune response. Recently, exosomes have received a lot of interest due to their potential therapeutic use as biomarkers for viral infections such as human immunodeficiency virus (HIV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Epstein-Barr virus (EBV), and SARS-CoV-2. This article discusses the purification procedures and detection techniques for exosomes and examines the research on exosomes as a biomarker of viral infection.
Collapse
Affiliation(s)
| | - Ahmad Nazari
- Tehran University of Medical Sciences, Tehran, Iran
| | | | - Diba Safarzadeh
- Vocational School of Health Service, Near East University, Nicosia, Cyprus
| | - Jawad A K Hassan
- National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | | | | | - Pooneh Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
6
|
Giloteaux L, Glass KA, Germain A, Franconi CJ, Zhang S, Hanson MR. Dysregulation of extracellular vesicle protein cargo in female myalgic encephalomyelitis/chronic fatigue syndrome cases and sedentary controls in response to maximal exercise. J Extracell Vesicles 2024; 13:e12403. [PMID: 38173127 PMCID: PMC10764978 DOI: 10.1002/jev2.12403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/27/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue and reduces the risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signalling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 min, and 24 h after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients versus controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system and brain signalling.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Katherine A. Glass
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Arnaud Germain
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Carl J. Franconi
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of BiotechnologyCornell UniversityIthacaNew YorkUSA
| | - Maureen R. Hanson
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
7
|
Giloteaux L, Glass KA, Germain A, Zhang S, Hanson MR. Dysregulation of extracellular vesicle protein cargo in female ME/CFS cases and sedentary controls in response to maximal exercise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555033. [PMID: 37693468 PMCID: PMC10491093 DOI: 10.1101/2023.08.28.555033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
In healthy individuals, physical exercise improves cardiovascular health and muscle strength, alleviates fatigue, and reduces risk of chronic diseases. Although exercise is suggested as a lifestyle intervention to manage various chronic illnesses, it negatively affects people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), who suffer from exercise intolerance. We hypothesized that altered extracellular vesicle (EV) signaling in ME/CFS patients after an exercise challenge may contribute to their prolonged and exacerbated negative response to exertion (post-exertional malaise). EVs were isolated by size exclusion chromatography from the plasma of 18 female ME/CFS patients and 17 age- and BMI-matched female sedentary controls at three time points: before, 15 minutes, and 24 hours after a maximal cardiopulmonary exercise test. EVs were characterized using nanoparticle tracking analysis and their protein cargo was quantified using Tandem Mass Tag-based (TMT) proteomics. The results show that exercise affects the EV proteome in ME/CFS patients differently than in healthy individuals and that changes in EV proteins after exercise are strongly correlated with symptom severity in ME/CFS. Differentially abundant proteins in ME/CFS patients vs. controls were involved in many pathways and systems, including coagulation processes, muscle contraction (both smooth and skeletal muscle), cytoskeletal proteins, the immune system, and brain signaling.
Collapse
|
8
|
Maksoud R, Magawa C, Eaton-Fitch N, Thapaliya K, Marshall-Gradisnik S. Biomarkers for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a systematic review. BMC Med 2023; 21:189. [PMID: 37226227 DOI: 10.1186/s12916-023-02893-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multifaceted condition that affects most body systems. There is currently no known diagnostic biomarker; instead, diagnosis is dependent on application of symptom-based case criteria following exclusion of any other potential medical conditions. While there are some studies that report potential biomarkers for ME/CFS, their efficacy has not been validated. The aim of this systematic review is to collate and appraise literature pertaining to a potential biomarker(s) which may effectively differentiate ME/CFS patients from healthy controls. METHODS This systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and Cochrane review guidelines. PubMed, Embase and Scopus were systematically searched for articles containing "biomarker" and "ME/CFS" keywords in the abstract or title and if they included the following criteria: (1) were observational studies published between December 1994 and April 2022; (2) involved adult human participants; (3) full text is available in English (4) original research; (5) diagnosis of ME/CFS patients made according to the Fukuda criteria (1994), Canadian Consensus Criteria (2003), International Consensus Criteria (2011) or Institute of Medicine Criteria (2015); (6) study investigated potential biomarkers of ME/CFS compared to healthy controls. Quality and Bias were assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Case Control Studies. RESULTS A total of 101 publications were included in this systematic review. Potential biomarkers ranged from genetic/epigenetic (19.8%), immunological (29.7%), metabolomics/mitochondrial/microbiome (14.85%), endovascular/circulatory (17.82%), neurological (7.92%), ion channel (8.91%) and physical dysfunction biomarkers (8.91%). Most of the potential biomarkers reported were blood-based (79.2%). Use of lymphocytes as a model to investigate ME/CFS pathology was prominent among immune-based biomarkers. Most biomarkers had secondary (43.56%) or tertiary (54.47%) selectivity, which is the ability for the biomarker to identify a disease-causing agent, and a moderate (59.40%) to complex (39.60%) ease-of-detection, including the requirement of specialised equipment. CONCLUSIONS All potential ME/CFS biomarkers differed in efficiency, quality, and translatability as a diagnostic marker. Reproducibility of findings between the included publications were limited, however, several studies validated the involvement of immune dysfunction in the pathology of ME/CFS and the use of lymphocytes as a model to investigate the pathomechanism of illness. The heterogeneity shown across many of the included studies highlights the need for multidisciplinary research and uniform protocols in ME/CFS biomarker research.
Collapse
Affiliation(s)
- Rebekah Maksoud
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia.
| | - Chandi Magawa
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases (NCNED), Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
9
|
Giloteaux L, Li J, Hornig M, Lipkin WI, Ruppert D, Hanson MR. Proteomics and cytokine analyses distinguish myalgic encephalomyelitis/chronic fatigue syndrome cases from controls. J Transl Med 2023; 21:322. [PMID: 37179299 PMCID: PMC10182359 DOI: 10.1186/s12967-023-04179-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, heterogenous disease characterized by unexplained persistent fatigue and other features including cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Cytokines are present in plasma and encapsulated in extracellular vesicles (EVs), but there have been only a few reports of EV characteristics and cargo in ME/CFS. Several small studies have previously described plasma proteins or protein pathways that are associated with ME/CFS. METHODS We prepared extracellular vesicles (EVs) from frozen plasma samples from a cohort of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) cases and controls with prior published plasma cytokine and plasma proteomics data. The cytokine content of the plasma-derived extracellular vesicles was determined by a multiplex assay and differences between patients and controls were assessed. We then performed multi-omic statistical analyses that considered not only this new data, but extensive clinical data describing the health of the subjects. RESULTS ME/CFS cases exhibited greater size and concentration of EVs in plasma. Assays of cytokine content in EVs revealed IL2 was significantly higher in cases. We observed numerous correlations among EV cytokines, among plasma cytokines, and among plasma proteins from mass spectrometry proteomics. Significant correlations between clinical data and protein levels suggest roles of particular proteins and pathways in the disease. For example, higher levels of the pro-inflammatory cytokines Granulocyte-Monocyte Colony-Stimulating Factor (CSF2) and Tumor Necrosis Factor (TNFα) were correlated with greater physical and fatigue symptoms in ME/CFS cases. Higher serine protease SERPINA5, which is involved in hemostasis, was correlated with higher SF-36 general health scores in ME/CFS. Machine learning classifiers were able to identify a list of 20 proteins that could discriminate between cases and controls, with XGBoost providing the best classification with 86.1% accuracy and a cross-validated AUROC value of 0.947. Random Forest distinguished cases from controls with 79.1% accuracy and an AUROC value of 0.891 using only 7 proteins. CONCLUSIONS These findings add to the substantial number of objective differences in biomolecules that have been identified in individuals with ME/CFS. The observed correlations of proteins important in immune responses and hemostasis with clinical data further implicates a disturbance of these functions in ME/CFS.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Jiayin Li
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Mady Hornig
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - W Ian Lipkin
- Center for Infection and Immunity, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
- Departments of Neurology and Pathology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - David Ruppert
- Department of Statistics and Data Science, Cornell University, Ithaca, NY, USA
- School of Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA
| | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
10
|
Tsilioni I, Natelson B, Theoharides TC. Exosome-associated mitochondrial DNA from patients with myalgic encephalomyelitis/chronic fatigue syndrome stimulates human microglia to release IL-1β. Eur J Neurosci 2022; 56:5784-5794. [PMID: 36153118 DOI: 10.1111/ejn.15828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/10/2022] [Accepted: 06/19/2022] [Indexed: 12/29/2022]
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease that presents with fatigue, sleep disturbances, malaise, and cognitive problems. The pathogenesis of ME/CFS is presently unknown, and serum levels of potential biomarkers have been inconsistent. Here, we show that mitochondrial DNA (mtDNA) associated with serum exosomes, is increased in ME/CFS patients only after exercise. Moreover, exosomes isolated from patients with ME/CFS stimulate significant release of IL-1β from cultured human microglia. These results provide evidence that activation of microglia by serum-derived exosomes may serve as a potential novel pathogenetic factor and target for treatment of ME/CFS.
Collapse
Affiliation(s)
- Irene Tsilioni
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Benjamin Natelson
- Pain and Fatigue Study Center, Department of Neurology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA.,School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, Massachusetts, USA.,Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA.,Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Jahanbani F, Maynard RD, Sing JC, Jahanbani S, Perrino JJ, Spacek DV, Davis RW, Snyder MP. Phenotypic characteristics of peripheral immune cells of Myalgic encephalomyelitis/chronic fatigue syndrome via transmission electron microscopy: A pilot study. PLoS One 2022; 17:e0272703. [PMID: 35943990 PMCID: PMC9362953 DOI: 10.1371/journal.pone.0272703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/25/2022] [Indexed: 01/06/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex chronic multi-systemic disease characterized by extreme fatigue that is not improved by rest, and worsens after exertion, whether physical or mental. Previous studies have shown ME/CFS-associated alterations in the immune system and mitochondria. We used transmission electron microscopy (TEM) to investigate the morphology and ultrastructure of unstimulated and stimulated ME/CFS immune cells and their intracellular organelles, including mitochondria. PBMCs from four participants were studied: a pair of identical twins discordant for moderate ME/CFS, as well as two age- and gender- matched unrelated subjects-one with an extremely severe form of ME/CFS and the other healthy. TEM analysis of CD3/CD28-stimulated T cells suggested a significant increase in the levels of apoptotic and necrotic cell death in T cells from ME/CFS patients (over 2-fold). Stimulated Tcells of ME/CFS patients also had higher numbers of swollen mitochondria. We also found a large increase in intracellular giant lipid droplet-like organelles in the stimulated PBMCs from the extremely severe ME/CFS patient potentially indicative of a lipid storage disorder. Lastly, we observed a slight increase in platelet aggregation in stimulated cells, suggestive of a possible role of platelet activity in ME/CFS pathophysiology and disease severity. These results indicate extensive morphological alterations in the cellular and mitochondrial phenotypes of ME/CFS patients' immune cells and suggest new insights into ME/CFS biology.
Collapse
Affiliation(s)
- Fereshteh Jahanbani
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rajan D. Maynard
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Justin Cyril Sing
- Department of Molecular Genetics, Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Shaghayegh Jahanbani
- Division of Immunology and Rheumatology, Stanford University School of Medicine, and VA Palo Alto Health Care System, Palo Alto, California, United States of America
| | - John J. Perrino
- Stanford Cell Sciences Imaging Facility (CSIF), Stanford University School of Medicine Stanford, Stanford, California, United States of America
| | - Damek V. Spacek
- Karius Incorporated, Redwood City, California, United States of America
| | - Ronald W. Davis
- ME/CFS Collaborative Research Center at Stanford, Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
12
|
Wang B, Moyano A, Duque JM, Sánchez L, García-Santos G, Flórez LJG, Serrano-Pertierra E, Blanco-López MDC. Nanozyme-Based Lateral Flow Immunoassay (LFIA) for Extracellular Vesicle Detection. BIOSENSORS 2022; 12:bios12070490. [PMID: 35884293 PMCID: PMC9313400 DOI: 10.3390/bios12070490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Extracellular vesicles (EVs) are biological nanoparticles of great interest as novel sources of biomarkers and as drug delivery systems for personalized therapies. The research in the field and clinical applications require rapid quantification. In this study, we have developed a novel lateral flow immunoassay (LFIA) system based on Fe3O4 nanozymes for extracellular vesicle (EV) detection. Iron oxide superparamagnetic nanoparticles (Fe3O4 MNPs) have been reported as peroxidase-like mimetic systems and competent colorimetric labels. The peroxidase-like capabilities of MNPs coated with fatty acids of different chain lengths (oleic acid, myristic acid, and lauric acid) were evaluated in solution with H2O2 and 3,3,5,5-tetramethylbenzidine (TMB) as well as on strips by biotin–neutravidin affinity assay. As a result, MNPs coated with oleic acid were applied as colorimetric labels and applied to detect plasma-derived EVs in LFIAs via their nanozyme effects. The visual signals of test lines were significantly enhanced, and the limit of detection (LOD) was reduced from 5.73 × 107 EVs/μL to 2.49 × 107 EVs/μL. Our work demonstrated the potential of these MNPs as reporter labels and as nanozyme probes for the development of a simple tool to detect EVs, which have proven to be useful biomarkers in a wide variety of diseases.
Collapse
Affiliation(s)
- Baihui Wang
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
| | - Amanda Moyano
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
| | - José María Duque
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (L.S.)
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis Sánchez
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (L.S.)
| | - Guillermo García-Santos
- Department of General and Digestive Surgery, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (G.G.-S.); (L.J.G.F.)
| | - Luis J. García Flórez
- Department of General and Digestive Surgery, Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain; (G.G.-S.); (L.J.G.F.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Surgery, University of Oviedo, 33006 Oviedo, Spain
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
- Correspondence: (E.S.-P.); (M.d.C.B.-L.)
| | - María del Carmen Blanco-López
- Department of Physical and Analytical Chemistry, Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (B.W.); (A.M.)
- Correspondence: (E.S.-P.); (M.d.C.B.-L.)
| |
Collapse
|
13
|
Park S, Moon HY. Urinary extracellular vesicle as a potential biomarker of exercise-induced fatigue in young adult males. Eur J Appl Physiol 2022; 122:2175-2188. [PMID: 35781843 PMCID: PMC9463341 DOI: 10.1007/s00421-022-04995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose Previous studies have suggested that circulating extracellular vesicles (EVs) arise after high intensity exercise and urine could reflect the plasma proteome. Herein, we investigated the characteristic of urinary EVs from healthy young adult males who had completed a maximal effort exercise test. Methods Thirteen healthy men completed a 20 m shuttle run test (20 m SRT). Fresh urine samples were collected at first morning, right after, and 1 h rest after 20 m SRT. Also, blood lactate, heart rate, rating of perceived exertion, and blood pressure were measured before, right after, and 1 h rest after 20 m SRT. Urinary EVs were analyzed using Exoview instrument and microRNAs (miRNAs) sequencing on urinary EVs were performed. Results Urinary EVs increased significantly after exercise and returned to baseline value after 1 h of rest. miRNA sequencing on urinary EV revealed alterations in four miRNAs (1 up and 3 down) and nine miRNAs (2 up and 7 down) in pre- vs. post- and post- vs. post-1 h samples, respectively. Lastly, bioinformatic analysis of urinary EV miRNA suggests that predicted target genes could affect PI3K-Akt, mitogen-activated protein kinase, and insulin pathways by exercise. Conclusions Exercise to voluntary exhaustion increased the number of EVs in urine. Also, miRNAs in urinary EVs were altered after exercise. These findings could indicate the possibility of using the urinary EVs as a novel biomarker of acute exercise-induced fatigue.
Collapse
Affiliation(s)
- Suhong Park
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea. .,Institute of Sport Science, Seoul National University, 71-1, 407, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Ali NB, Abdull Razis AF, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic Applications of Mammal and Plant-Derived Extracellular Vesicles: Latest Findings, Current Technologies, and Prospects. Molecules 2022; 27:3941. [PMID: 35745063 PMCID: PMC9228370 DOI: 10.3390/molecules27123941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The way cells communicate is not fully understood. However, it is well-known that extracellular vesicles (EVs) are involved. Researchers initially thought that EVs were used by cells to remove cellular waste. It is now clear that EVs function as signaling molecules released by cells to communicate with one another, carrying a cargo representing the mother cell. Furthermore, these EVs can be found in all biological fluids, making them the perfect non-invasive diagnostic tool, as their cargo causes functional changes in the cells upon receiving, unlike synthetic drug carriers. EVs last longer in circulation and instigate minor immune responses, making them the perfect drug carrier. This review sheds light on the latest development in EVs isolation, characterization and, application as therapeutic cargo, novel drug loading techniques, and diagnostic tools. We also address the advancement in plant-derived EVs, their characteristics, and applications; since plant-derived EVs only recently gained focus, we listed the latest findings. Although there is much more to learn about, EV is a wide field of research; what scientists have discovered so far is fascinating. This paper is suitable for those new to the field seeking to understand EVs and those already familiar with it but wanting to review the latest findings.
Collapse
Affiliation(s)
- Nada Basheir Ali
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Der Jiun Ooi
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Selangor, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Norsharina Ismail
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (K.W.C.); (N.I.)
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya 47500, Selangor, Malaysia;
| |
Collapse
|
15
|
Yuan HX, Liang KF, Chen C, Li YQ, Liu XJ, Chen YT, Jian YP, Liu JS, Xu YQ, Ou ZJ, Li Y, Ou JS. Size Distribution of Microparticles: A New Parameter to Predict Acute Lung Injury After Cardiac Surgery With Cardiopulmonary Bypass. Front Cardiovasc Med 2022; 9:893609. [PMID: 35571221 PMCID: PMC9098995 DOI: 10.3389/fcvm.2022.893609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute lung injury (ALI) is a common complication after cardiac surgery with cardiopulmonary bypass (CPB). No precise way, however, is currently available to predict its occurrence. We and others have demonstrated that microparticles (MPs) can induce ALI and were increased in patients with ALI. However, whether MPs can be used to predict ALI after cardiac surgery with CPB remains unknown. Methods In this prospective study, 103 patients undergoing cardiac surgery with CPB and 53 healthy subjects were enrolled. MPs were isolated from the plasma before, 12 h after, and 3 d after surgery. The size distributions of MPs were measured by the LitesizerTM 500 Particle Analyzer. The patients were divided into two subgroups (ALI and non-ALI) according to the diagnosis of ALI. Descriptive and correlational analyzes were conducted between the size distribution of MPs and clinical data. Results Compared to the non-ALI group, the size at peak and interquartile range (IQR) of MPs in patients with ALI were smaller, but the peak intensity of MPs is higher. Multivariate logistic regression analysis indicated that the size at peak of MPs at postoperative 12 h was an independent risk factor for ALI. The area under the curve (AUC) of peak diameter at postoperative 12 h was 0.803. The best cutoff value of peak diameter to diagnose ALI was 223.05 nm with a sensitivity of 88.0% and a negative predictive value of 94.5%. The AUC of IQR at postoperative 12 h was 0.717. The best cutoff value of IQR to diagnose ALI was 132.65 nm with a sensitivity of 88.0% and a negative predictive value of 92.5%. Combining these two parameters, the sensitivity reached 92% and the negative predictive value was 96%. Conclusions Our findings suggested that the size distribution of MPs could be a novel biomarker to predict and exclude ALI after cardiac surgery with CPB.
Collapse
Affiliation(s)
- Hao-Xiang Yuan
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Kai-Feng Liang
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Chao Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Quan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Xiao-Jun Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Yu-Peng Jian
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Jia-Sheng Liu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Ying-Qi Xu
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Division of Hypertension and Vascular Diseases, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhi-Jun Ou
| | - Yan Li
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Yan Li
| | - Jing-Song Ou
- Division of Cardiac Surgery, Heart Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- NHC key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Guangzhou, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
- Jing-Song Ou ;
| |
Collapse
|
16
|
González-Cebrián A, Almenar-Pérez E, Xu J, Yu T, Huang WE, Giménez-Orenga K, Hutchinson S, Lodge T, Nathanson L, Morten KJ, Ferrer A, Oltra E. Diagnosis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome With Partial Least Squares Discriminant Analysis: Relevance of Blood Extracellular Vesicles. Front Med (Lausanne) 2022; 9:842991. [PMID: 35433768 PMCID: PMC9011062 DOI: 10.3389/fmed.2022.842991] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/21/2022] [Indexed: 12/25/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic disease characterized by long-lasting persistent debilitating widespread fatigue and post-exertional malaise, remains diagnosed by clinical criteria. Our group and others have identified differentially expressed miRNA profiles in the blood of patients. However, their diagnostic power individually or in combinations seems limited. A Partial Least Squares-Discriminant Analysis (PLS-DA) model initially based on 817 variables: two demographic, 34 blood analytic, 136 PBMC miRNAs, 639 Extracellular Vesicle (EV) miRNAs, and six EV features, selected an optimal number of five components, and a subset of 32 regressors showing statistically significant discriminant power. The presence of four EV-features (size and z-values of EVs prepared with or without proteinase K treatment) among the 32 regressors, suggested that blood vesicles carry relevant disease information. To further explore the features of ME/CFS EVs, we subjected them to Raman micro-spectroscopic analysis, identifying carotenoid peaks as ME/CFS fingerprints, possibly due to erythrocyte deficiencies. Although PLS-DA analysis showed limited capacity of Raman fingerprints for diagnosis (AUC = 0.7067), Raman data served to refine the number of PBMC miRNAs from our previous model still ensuring a perfect classification of subjects (AUC=1). Further investigations to evaluate model performance in extended cohorts of patients, to identify the precise ME/CFS EV components detected by Raman and to reveal their functional significance in the disease are warranted.
Collapse
Affiliation(s)
- Alba González-Cebrián
- Grupo de Ingeniería Estadística Multivariante, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Eloy Almenar-Pérez
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Jiabao Xu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Tong Yu
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Karen Giménez-Orenga
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Sarah Hutchinson
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Tiffany Lodge
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Lubov Nathanson
- Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
- Institute for Neuro Immune Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States
| | - Karl J. Morten
- Nuffield Department of Women's and Reproductive Health, The Women Centre, University of Oxford, Oxford, United Kingdom
| | - Alberto Ferrer
- Grupo de Ingeniería Estadística Multivariante, Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Elisa Oltra
- Department of Pathology, School of Health Sciences, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
17
|
Bonilla H, Hampton D, Marques de Menezes EG, Deng X, Montoya JG, Anderson J, Norris PJ. Comparative Analysis of Extracellular Vesicles in Patients with Severe and Mild Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Front Immunol 2022; 13:841910. [PMID: 35309313 PMCID: PMC8931328 DOI: 10.3389/fimmu.2022.841910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Myalgic encephalomyelitis, or chronic fatigue syndrome (ME/CFS) is a serious disease whose cause has yet to be identified. Objective markers of the disease are also not well understood and would serve as important tools in diagnosis and management. One potential biomarker or transmitter of immune signals in ME/CFS is the extracellular vesicle (EV) compartment. These small, membrane bound particles have been shown to play a key role in intercellular signaling. Our laboratory has focused on methods of detection of EVS in clinical samples. In this study we explored whether the prevalence of EVs in the plasma of participants with mild or severe ME/CFS differed from the plasma of healthy control participants. By staining for multiple cell surface molecules, plasma EVs could be fingerprinted as to their cell of origin. Our study revealed a significant correlation between severe ME/CSF and levels of EVs bearing the B cell marker CD19 and the platelet marker CD41a, though these changes were not significant after correction for multiple comparisons. These findings point to potential dysregulation of B cell and platelet activation or homeostasis in ME/CFS, which warrants validation in a replication cohort and further exploration of potential mechanisms underlying the association.
Collapse
Affiliation(s)
- Hector Bonilla
- Department of Medicine, Stanford University, Palo Alto, CA, United States
- *Correspondence: Hector Bonilla,
| | - Dylan Hampton
- Vitalant Research Institute, San Francisco, CA, United States
| | | | - Xutao Deng
- Vitalant Research Institute, San Francisco, CA, United States
| | - José G. Montoya
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| | - Jill Anderson
- Department of Medicine, Stanford University, Palo Alto, CA, United States
| | - Philip J. Norris
- Vitalant Research Institute, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
18
|
Moyano A, Serrano-Pertierra E, Duque JM, Ramos V, Teruel-Barandiarán E, Fernández-Sánchez MT, Salvador M, Martínez-García JC, Sánchez L, García-Flórez L, Rivas M, Blanco-López MDC. Magnetic Lateral Flow Immunoassay for Small Extracellular Vesicles Quantification: Application to Colorectal Cancer Biomarker Detection. SENSORS 2021; 21:s21113756. [PMID: 34071520 PMCID: PMC8199047 DOI: 10.3390/s21113756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 01/29/2023]
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer death and the fourth most common cancer in the world. Colonoscopy is the most sensitive test used for detection of CRC; however, their procedure is invasive and expensive for population mass screening. Currently, the fecal occult blood test has been widely used as a screening tool for CRC but displays low specificity. The lack of rapid and simple methods for mass screening makes the early diagnosis and therapy monitoring difficult. Extracellular vesicles (EVs) have emerged as a novel source of biomarkers due to their contents in proteins and miRNAs. Their detection would not require invasive techniques and could be considered as a liquid biopsy. Specifically, it has been demonstrated that the amount of CD147 expressed in circulating EVs is significant higher for CRC cell lines than for normal colon fibroblast cell lines. Moreover, CD147-containing EVs have been used as a biomarker to monitor response to therapy in patients with CRC. Therefore, this antigen could be used as a non-invasive biomarker for the detection and monitoring of CRC in combination with a Point-of-Care platform as, for example, Lateral Flow Immunoassays (LFIAs). Here, we propose the development of a quantitative lateral flow immunoassay test based on the use of magnetic nanoparticles as labels coupled to inductive sensor for the non-invasive detection of CRC by CD147-positive EVs. The results obtained for quantification of CD147 antigen embedded in EVs isolated from plasma sample have demonstrated that this device could be used as a Point-of-Care tool for CRC screening or therapy monitoring thanks to its rapid response and easy operation.
Collapse
Affiliation(s)
- Amanda Moyano
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - José María Duque
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
- Department of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Virginia Ramos
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
| | - Estefanía Teruel-Barandiarán
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
| | - María Teresa Fernández-Sánchez
- Department of Biochemistry and Molecular Biology & Institute of Biotechnology of Asturias, University of Oviedo, 33006 Oviedo, Spain;
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - José Carlos Martínez-García
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - Luis Sánchez
- Hospital Universitario San Agustín, 33401 Avilés, Spain; (J.M.D.); (V.R.); (L.S.)
| | - Luis García-Flórez
- Hospital Universitario Central de Asturias (HUCA), 33011 Oviedo, Spain;
- Department of Surgery and medical-surgical specialties, University of Oviedo, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (J.C.M.-G.); (M.R.)
| | - María del Carmen Blanco-López
- Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006 Oviedo, Spain; (A.M.); (E.S.-P.); (E.T.-B.)
- Correspondence:
| |
Collapse
|
19
|
Sun D, Zhao Z, Spiegel S, Liu Y, Fan J, Amrollahi P, Hu J, Lyon CJ, Wan M, Hu TY. Dye-free spectrophotometric measurement of nucleic acid-to-protein ratio for cell-selective extracellular vesicle discrimination. Biosens Bioelectron 2021; 179:113058. [PMID: 33592557 PMCID: PMC7995647 DOI: 10.1016/j.bios.2021.113058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 02/05/2023]
Abstract
Extracellular vesicles (EVs) can represent a novel source of disease biomarkers, and are under intensive study for their clinical potential. Most EV-based cancer diagnostic studies have focused on establishing EV assays that detect increased expression of a single cancer-associated marker or marker signatures based on multiplex detection of these biomarkers. EV biomarker readouts can be obscured by high background signal leading to false positives, and may markedly differ between analyses due to variation in sample purity during EV isolation. This can obstruct the comparisons among studies and lead to conflicting conclusions. This work reports that the nucleic acid to protein UV absorption ratio of an EV is a cell-specific EV characteristic. This EV collective attribute can be measured at low-cost to discriminate EVs derived from malignant and non-malignant cells rather than employing single markers that may be cancer- or subtype-specific. Our work also highlighted the application for accessing purity in EV preparations irrelevant to EV yield. It can be employed to distinguish from patients with and without malignant disease upon analysis of EVs isolated from their serum samples.
Collapse
Affiliation(s)
- Dali Sun
- Department of Electrical and Computer Engineering, North Dakota State University, 1411 Centennial Blvd., 101M, Fargo, ND, 58102, USA.
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sarah Spiegel
- School of Biological and Health Systems Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave. B 140D, Tempe, AZ, 85287-5001, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, LA, 70112, USA
| | - Jia Fan
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, LA, 70112, USA
| | - Pouya Amrollahi
- School of Biological and Health Systems Engineering, The Biodesign Institute, Arizona State University, 1001 S. McAllister Ave. B 140D, Tempe, AZ, 85287-5001, USA
| | - Jing Hu
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Shichuan, 610041, China
| | - Christopher J Lyon
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, LA, 70112, USA
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital of Sichuan University, Shichuan, 610041, China
| | - Tony Y Hu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, LA, 70112, USA.
| |
Collapse
|
20
|
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Human Herpesviruses Are Back! Biomolecules 2021; 11:biom11020185. [PMID: 33572802 PMCID: PMC7912523 DOI: 10.3390/biom11020185] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) or Systemic Exertion Intolerance Disease (SEID) is a chronic multisystem illness of unconfirmed etiology. There are currently no biomarkers and/or signatures available to assist in the diagnosis of the syndrome and while numerous mechanisms have been hypothesized to explain the pathology of ME/CFS, the triggers and/or drivers remain unknown. Initial studies suggested a potential role of the human herpesviruses especially Epstein-Barr virus (EBV) in the disease process but inconsistent and conflicting data led to the erroneous suggestion that these viruses had no role in the syndrome. New studies using more advanced approaches have now demonstrated that specific proteins encoded by EBV could contribute to the immune and neurological abnormalities exhibited by a subgroup of patients with ME/CFS. Elucidating the role of these herpesvirus proteins in ME/CFS may lead to the identification of specific biomarkers and the development of novel therapeutics.
Collapse
|
21
|
Giloteaux L, O'Neal A, Castro-Marrero J, Levine SM, Hanson MR. Cytokine profiling of extracellular vesicles isolated from plasma in myalgic encephalomyelitis/chronic fatigue syndrome: a pilot study. J Transl Med 2020; 18:387. [PMID: 33046133 PMCID: PMC7552484 DOI: 10.1186/s12967-020-02560-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 10/03/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating disease of unknown etiology lasting for a minimum of 6 months but usually for many years, with features including fatigue, cognitive impairment, myalgias, post-exertional malaise, and immune system dysfunction. Dysregulation of cytokine signaling could give rise to many of these symptoms. Cytokines are present in both plasma and extracellular vesicles, but little investigation of EVs in ME/CFS has been reported. Therefore, we aimed to characterize the content of extracellular vesicles (EVs) isolated from plasma (including circulating cytokine/chemokine profiling) from individuals with ME/CFS and healthy controls. METHODS We included 35 ME/CFS patients and 35 controls matched for age, sex and BMI. EVs were enriched from plasma by using a polymer-based precipitation method and characterized by Nanoparticle Tracking Analysis (NTA), Transmission Electron Microscopy (TEM) and immunoblotting. A 45-plex immunoassay was used to determine cytokine levels in both plasma and isolated EVs from a subset of 19 patients and controls. Linear regression, principal component analysis and inter-cytokine correlations were analyzed. RESULTS ME/CFS individuals had significantly higher levels of EVs that ranged from 30 to 130 nm in size as compared to controls, but the mean size for total extracellular vesicles did not differ between groups. The enrichment of typical EV markers CD63, CD81, TSG101 and HSP70 was confirmed by Western blot analysis and the morphology assessed by TEM showed a homogeneous population of vesicles in both groups. Comparison of cytokine concentrations in plasma and isolated EVs of cases and controls yielded no significant differences. Cytokine-cytokine correlations in plasma revealed a significant higher number of interactions in ME/CFS cases along with 13 inverse correlations that were mainly driven by the Interferon gamma-induced protein 10 (IP-10), whereas in the plasma of controls, no inverse relationships were found across any of the cytokines. Network analysis in EVs from controls showed 2.5 times more significant inter-cytokine interactions than in the ME/CFS group, and both groups presented a unique negative association. CONCLUSIONS Elevated levels of 30-130 nm EVs were found in plasma from ME/CFS patients and inter-cytokine correlations revealed unusual regulatory relationships among cytokines in the ME/CFS group that were different from the control group in both plasma and EVs. These disturbances in cytokine networks are further evidence of immune dysregulation in ME/CFS.
Collapse
Affiliation(s)
- Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Adam O'Neal
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
| | - Jesús Castro-Marrero
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA
- CFS/ME Unit, Division of Rheumatology, Vall d'Hebron University Hospital Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, 323 Biotechnology Building, 526 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Serrano-Pertierra E, Oliveira-Rodríguez M, Matos M, Gutiérrez G, Moyano A, Salvador M, Rivas M, Blanco-López MC. Extracellular Vesicles: Current Analytical Techniques for Detection and Quantification. Biomolecules 2020; 10:E824. [PMID: 32481493 PMCID: PMC7357140 DOI: 10.3390/biom10060824] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Since their first observation, understanding the biology of extracellular vesicles (EV) has been an important and challenging field of study. They play a key role in the intercellular communication and are involved in important physiological and pathological functions. Therefore, EV are considered as potential biomarkers for diagnosis, prognosis, and monitoring the response to treatment in some diseases. In addition, due to their properties, EV may be used for therapeutic purposes. In the study of EV, three major points have to be addressed: 1. How to isolate EV from cell culture supernatant/biological fluids, 2. how to detect them, and 3. how to characterize and quantify. In this review, we focus on the last two questions and provide the main analytical techniques up-to-date for detection and profiling of EV. We critically analyze the advantages and disadvantages of each one, aimed to be of relevance for all researchers working on EV biology and their potential applications.
Collapse
Affiliation(s)
- Esther Serrano-Pertierra
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (E.S.-P.); (M.O.-R.); (A.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
| | - Myriam Oliveira-Rodríguez
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (E.S.-P.); (M.O.-R.); (A.M.)
| | - María Matos
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
- Department of Chemical and Enviromental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
- Department of Chemical and Enviromental Engineering, University of Oviedo, 33006 Oviedo, Spain
| | - Amanda Moyano
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (E.S.-P.); (M.O.-R.); (A.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
| | - María Salvador
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (M.R.)
| | - Montserrat Rivas
- Department of Physics & IUTA, University of Oviedo, Campus de Viesques, 33204 Gijón, Spain; (M.S.); (M.R.)
| | - María Carmen Blanco-López
- Department of Physical and Analytical Chemistry, University of Oviedo, 33006 Oviedo, Spain; (E.S.-P.); (M.O.-R.); (A.M.)
- Instituto Universitario de Biotecnología de Asturias, University of Oviedo, 33006 Oviedo, Spain; (M.M.); (G.G.)
| |
Collapse
|
23
|
Decoeur F, Benmamar-Badel A, Leyrolle Q, Persillet M, Layé S, Nadjar A. Dietary N-3 PUFA deficiency affects sleep-wake activity in basal condition and in response to an inflammatory challenge in mice. Brain Behav Immun 2020; 85:162-169. [PMID: 31100369 DOI: 10.1016/j.bbi.2019.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/12/2019] [Accepted: 05/11/2019] [Indexed: 12/22/2022] Open
Abstract
Essential polyunsaturated fatty acids (PUFA) from the n-3 and n-6 series constitute the building blocks of brain cell membranes where they regulate most aspects of cell physiology. They are either biosynthesized from their dietary precursors or can be directly sourced from the diet. An overall increase in the dietary n-6/n-3 PUFA ratio, as observed in the Western diet, leads to reduced n-3 PUFAs in tissues that include the brain. Some clinical studies have shown a positive correlation between dietary n-3 PUFA intake and sleep quantity, yet evidence is still sparse. We here used a preclinical model of dietary n-3 PUFA deficiency to assess the precise relationship between dietary PUFA intake and sleep/wake activity. Using electroencephalography (EEG)/electromyography (EMG) recordings on n-3 PUFA deficient or sufficient mice, we showed that dietary PUFA deficiency affects the architecture of sleep-wake activity and the oscillatory activity of cortical neurons during sleep. In a second part of the study, and since PUFAs are a potent modulator of inflammation, we assessed the effect of dietary n-3 PUFA deficiency on the sleep response to an inflammatory stimulus known to modulate sleep/wake activity. We injected mice with the endotoxin lipopolysaccharide (LPS) and quantified the sleep response across the following 12 h. Our results revealed that n-3 PUFA deficiency affects the sleep response in basal condition and after a peripheral immune challenge. More studies are now required aimed at deciphering the molecular mechanisms underlying the intimate relationship between n-3 PUFAs and sleep/wake activity.
Collapse
Affiliation(s)
- F Decoeur
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A Benmamar-Badel
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Q Leyrolle
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - M Persillet
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - S Layé
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - A Nadjar
- Univ. Bordeaux, INRA, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France.
| |
Collapse
|
24
|
Almenar-Pérez E, Sarría L, Nathanson L, Oltra E. Assessing diagnostic value of microRNAs from peripheral blood mononuclear cells and extracellular vesicles in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. Sci Rep 2020; 10:2064. [PMID: 32034172 PMCID: PMC7005890 DOI: 10.1038/s41598-020-58506-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 02/08/2023] Open
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating multisystemic disease of unknown etiology, affecting thousands of individuals worldwide. Its diagnosis still relies on ruling out medical problems leading to unexplained fatigue due to a complete lack of disease-specific biomarkers. Our group and others have explored the potential value of microRNA profiles (miRNomes) as diagnostic tools for this disease. However, heterogeneity of participants, low numbers, the variety of samples assayed, and other pre-analytical variables, have hampered the identification of disease-associated miRNomes. In this study, our team has evaluated, for the first time, ME/CFS miRNomes in peripheral blood mononuclear cells (PBMCs) and extracellular vesicles (EVs) from severely ill patients recruited at the monographic UK ME biobank to assess, using standard operating procedures (SOPs), blood fractions with optimal diagnostic power for a rapid translation of a miR-based diagnostic method into the clinic. Our results show that routine creatine kinase (CK) blood values, plasma EVs physical characteristics (including counts, size and zeta-potential), and a limited number of differentially expressed PBMC and EV miRNAs appear significantly associated with severe ME/CFS (p < 0.05). Gene enrichment analysis points to epigenetic and neuroimmune dysregulated pathways, in agreement with previous reports. Population validation by a cost-effective approach limited to these few potentially discriminating variables is granted.
Collapse
Affiliation(s)
- Eloy Almenar-Pérez
- Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Leonor Sarría
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA
| | - Elisa Oltra
- School of Medicine, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| |
Collapse
|
25
|
Eguchi A, Fukuda S, Kuratsune H, Nojima J, Nakatomi Y, Watanabe Y, Feldstein AE. Identification of actin network proteins, talin-1 and filamin-A, in circulating extracellular vesicles as blood biomarkers for human myalgic encephalomyelitis/chronic fatigue syndrome. Brain Behav Immun 2020; 84:106-114. [PMID: 31759091 PMCID: PMC7010541 DOI: 10.1016/j.bbi.2019.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/24/2019] [Accepted: 11/18/2019] [Indexed: 01/14/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a serious, debilitating disorder with a wide spectrum of symptoms, including pain, depression, and neurocognitive deterioration. Over 17 million people around the world have ME/CFS, predominantly women with peak onset at 30-50 years. Given the wide spectrum of symptoms and unclear etiology, specific biomarkers for diagnosis and stratification of ME/CFS are lacking. Here we show that actin network proteins in circulating extracellular vesicles (EVs) offer specific non-invasive biomarkers for ME/CFS. We found that circulating EVs were significantly increased in ME/CFS patients correlating to C-reactive protein, as well as biological antioxidant potential. Area under the receiver operating characteristic curve for circulating EVs was 0.80, allowing correct diagnosis in 90-94% of ME/CFS cases. From two independent proteomic analyses using circulating EVs from ME/CFS, healthy controls, idiopathic chronic fatigue, and depression, proteins identified from ME/CFS patients are involved in focal adhesion, actin skeletal regulation, PI3K-Akt signaling pathway, and Epstein-Barr virus infection. In particular, talin-1, filamin-A, and 14-3-3 family proteins were the most abundant proteins, representing highly specific ME/CFS biomarkers. Our results identified circulating EV number and EV-specific proteins as novel biomarkers for diagnosing ME/CFS, providing important information on the pathogenic mechanisms of ME/CFS.
Collapse
Affiliation(s)
- Akiko Eguchi
- Department of Gastroenterology and Hepatology, School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; JST, PRETO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Pediatrics, University of California San Diego (UCSD), La Jolla, CA 92093, USA.
| | - Sanae Fukuda
- Department of Health Welfare Sciences, Kansai University of Welfare Sciences, Kashiwara, 582-0026, JAPAN.,Department of Endocrinology, Metabolism and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, 545-8586, JAPAN.,RIKEN, Center for Biosystems Dynamics Research, Kobe, 650-0047, JAPAN
| | - Hirohiko Kuratsune
- Department of Health Welfare Sciences, Kansai University of Welfare Sciences, Kashiwara, 582-0026, JAPAN.,Department of Endocrinology, Metabolism and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, 545-8586, JAPAN
| | - Junzo Nojima
- Department of Laboratory Science, Yamaguchi University Graduate School of Medicine, Yamaguchi, 755-8505, JAPAN
| | | | - Yasuyoshi Watanabe
- Department of Endocrinology, Metabolism and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, 545-8586, JAPAN.,RIKEN, Center for Biosystems Dynamics Research, Kobe, 650-0047, JAPAN.,RIKEN Compass to Healthy Life Research Complex Program, Kobe, 650-0047, JAPAN
| | - Ariel E. Feldstein
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| |
Collapse
|
26
|
Strategies for the use of Extracellular Vesicles for the Delivery of Therapeutics. J Neuroimmune Pharmacol 2019; 15:422-442. [PMID: 31456107 DOI: 10.1007/s11481-019-09873-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/13/2019] [Indexed: 12/17/2022]
Abstract
Extracellular vesicles (EVs) are nanosized, membrane-bound vesicles released from eukaryotic and prokaryotic cells that can transport cargo containing DNA, RNA, lipids and proteins, between cells as a means of intercellular communication. Although EVs were initially considered to be cellular debris deprived of any essential biological functions, emerging literature highlights the critical roles of EVs in the context of intercellular signaling, maintenance of tissue homeostasis, modulation of immune responses, inflammation, cancer progression, angiogenesis, and coagulation under both physiological and pathological states. Based on the ability of EVs to shuttle proteins, lipids, carbohydrates, mRNAs, long non-coding RNAs (lncRNAs), microRNAs, chromosomal DNA, and mitochondrial DNA into target cells, the presence and content of EVs in biofluids have been exploited for biomarker research in the context of diagnosis, prognosis and treatment strategies. Additionally, owing to the characteristics of EVs such as stability in circulation, biocompatibility as well as low immunogenicity and toxicity, these vesicles have become attractive systems for the delivery of therapeutics. More recently, EVs are increasingly being exploited as conduits for delivery of therapeutics for anticancer strategies, immunomodulation, targeted drug delivery, tissue regeneration, and vaccination. In this review, we highlight and discuss the multiple strategies that are employed for the use of EVs as delivery vehicles for therapeutic agents, including the potential advantages and challenges involved. Graphical abstract.
Collapse
|
27
|
Serrano-Pertierra E, Oliveira-Rodríguez M, Rivas M, Oliva P, Villafani J, Navarro A, Blanco-López MC, Cernuda-Morollón E. Characterization of Plasma-Derived Extracellular Vesicles Isolated by Different Methods: A Comparison Study. Bioengineering (Basel) 2019; 6:bioengineering6010008. [PMID: 30658418 PMCID: PMC6466225 DOI: 10.3390/bioengineering6010008] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EV) are small membrane structures released by cells that act as potent mediators of intercellular communication. The study of EV biology is important, not only to strengthen our knowledge of their physiological roles, but also to better understand their involvement in several diseases. In the field of biomedicine they have been studied as a novel source of biomarkers and drug delivery vehicles. The most commonly used method for EV enrichment in crude pellet involves serial centrifugation and ultracentrifugation. Recently, different protocols and techniques have been developed to isolate EV that imply less time and greater purification. Here we carry out a comparative analysis of three methods to enrich EV from plasma of healthy controls: ultracentrifugation, ExoQuickTM precipitation solution (System Biosciences), and Total Exosome Isolation kit (Invitrogen). Our results show that commercial precipitation reagents are more efficient and enable higher EV enrichment factors compared with traditional ultracentrifugation, although subsequent imaging analysis is not possible with some of them. We hope that this work will contribute to the current research on isolation techniques to assist the progress of clinical applications with diagnostic or therapeutic objectives.
Collapse
Affiliation(s)
- Esther Serrano-Pertierra
- Department of Chemical and Enviromental Engineering, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| | - Myriam Oliveira-Rodríguez
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| | - Montserrat Rivas
- Department of Physics, Gijón Polytechnic School of Engineering, University of Oviedo, 33006 Oviedo, Spain.
| | - Pedro Oliva
- Neurology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.
| | - Javier Villafani
- Neurology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.
| | - Ana Navarro
- Department of Morphology and Cellular Biology, Instituto de Neurociencias del Principado de Asturias (INEUROPA), University of Oviedo, 33006 Oviedo, Spain.
| | - M Carmen Blanco-López
- Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain.
| | - Eva Cernuda-Morollón
- Neurology Department, Hospital Universitario Central de Asturias, 33011 Oviedo, Spain.
| |
Collapse
|
28
|
Shao C, Song J, Zhao S, Jiang H, Wang B, Chi A. Therapeutic Effect and Metabolic Mechanism of A Selenium-Polysaccharide from Ziyang Green Tea on Chronic Fatigue Syndrome. Polymers (Basel) 2018; 10:polym10111269. [PMID: 30961194 PMCID: PMC6401680 DOI: 10.3390/polym10111269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
Ziyang green tea was considered a medicine food homology plant to improve chronic fatigue Ssyndrome (CFS) in China. The aim of this research was to study the therapeutic effect of selenium-polysaccharides (Se-TP) from Ziyang green tea on CFS and explore its metabolic mechanism. A CFS-rats model was established in the present research and Se-TP was administrated to evaluate the therapeutic effect on CFS. Some serum metabolites including blood urea nitrogen (BUN), blood lactate acid (BLA), corticosterone (CORT), and aldosterone (ALD) were checked. Urine metabolites were analyzed via gas chromatography-mass spectrometry (GC-MS). Multivariate statistical analysis was also used to check the data. The results selected biomarkers that were entered into the MetPA database to analyze their corresponding metabolic pathways. The results demonstrated that Se-TP markedly improved the level of BUN and CORT in CFS rats. A total of eight differential metabolites were detected in GC-MS analysis, which were benzoic acid, itaconic acid, glutaric acid, 4-acetamidobutyric acid, creatine, 2-hydroxy-3-isopropylbutanedioic acid, l-dopa, and 21-hydroxypregnenolone. These differential metabolites were entered into the MetPA database to search for the corresponding metabolic pathways and three related metabolic pathways were screened out. The first pathway was steroid hormone biosynthesis. The second was tyrosine metabolism, and the third was arginine-proline metabolism. The 21-hydroxypregnenolone level of rats in the CFS group markedly increased after the Se-TP administration. In conclusion, Se-TP treatments on CFS rats improved their condition. Its metabolic mechanism was closely related to that which regulates the steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Changzhuan Shao
- College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China.
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Jing Song
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Shanguang Zhao
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongke Jiang
- College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China.
| | - Baoping Wang
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| | - Aiping Chi
- Laboratory of Nutrition and Hygiene, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
29
|
Noda M, Ifuku M, Hossain MS, Katafuchi T. Glial Activation and Expression of the Serotonin Transporter in Chronic Fatigue Syndrome. Front Psychiatry 2018; 9:589. [PMID: 30505285 PMCID: PMC6250825 DOI: 10.3389/fpsyt.2018.00589] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022] Open
Abstract
Fatigue is commonly reported in a variety of illnesses and has major impact on quality of life. Chronic fatigue syndrome (CFS) is a debilitating syndrome of unknown etiology. The clinical symptoms include problems in neuroendocrine, autonomic, and immune systems. It is becoming clear that the brain is the central regulator of CFS. For example, neuroinflammation, especially induced by activation of microglia and astrocytes, may play a prominent role in the development of CFS, though little is known about molecular mechanisms. Many possible causes of CFS have been proposed. However, in this mini-review, we summarize evidence for a role for microglia and astrocytes in the onset and the maintenance of immunologically induced CFS. In a model using virus mimicking synthetic double-stranded RNA, infection causes sequential signaling such as increased blood brain barrier (BBB) permeability, microglia/macrophage activation through Toll-like receptor 3 (TLR3) signaling, secretion of IL-1β, upregulation of the serotonin transporter (5-HTT) in astrocytes, reducing extracellular serotonin (5-HT) levels and hence reduced activation of 5-HT1A receptor subtype. Hopefully, drug discovery targeting these pathways may be effective for CFS therapy.
Collapse
Affiliation(s)
- Mami Noda
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Masataka Ifuku
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Md Shamim Hossain
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshihiko Katafuchi
- Department of Neuroinflammation and Brain Fatigue Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|