1
|
Ladner LR, Tanchanco Ocampo C, Kelly C, Woodson CM, Marvin E, Pickrell AM, Kehn-Hall K, Theus MH. The weight of multiple hits: how TBI and infectious encephalitis co-modulate adverse outcomes. Brain Inj 2025:1-10. [PMID: 39840758 DOI: 10.1080/02699052.2025.2450600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/14/2024] [Accepted: 01/03/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Chronic neurologic deficits from traumatic brain injury (TBI) and subsequent infectious encephalitis are poorly characterized. METHODS Using TriNetX database we queried patients 18 years or older with a confirmed diagnosis of encephalitis between 2016 and 2024. Patient cohorts included those with a diagnosis of TBI at least one month before encephalitis (N = 1,038), those with a diagnosis of a TBI anytime before encephalitis (N = 1,886), and those with encephalitis but no TBI, (N = 45,210; N = 45,215). A murine model of controlled cortical impact (CCI) injury and Venezuelan equine encephalitis virus (VEEV) infection was used to reflect the clinical model, followed by extracting hippocampal tissue for bulk RNA sequencing and analysis. RESULTS Patients with a TBI history at least one month before infectious encephalitis have an increased risk of mortality, epilepsy, and dementia or delirium. Bulk RNA sequencing of the hippocampus from mice subjected to CCI injury and VEEV infection demonstrated that key pathways, specifically those involved in granzyme mediated cell death, were enriched compared to VEEV infection alone. CONCLUSION Our findings reveal that infectious encephalitis in patients with TBI history portends worse neurologic outcomes, and the hippocampus may be vulnerable to granzyme mediated cell death under these conditions.
Collapse
Affiliation(s)
- Liliana R Ladner
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Collin Tanchanco Ocampo
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Colin Kelly
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Caitlin M Woodson
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Eric Marvin
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Virginia Polytechnic Institute and State University, Roanoke, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Kylene Kehn-Hall
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| | - Michelle H Theus
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, USA
| |
Collapse
|
2
|
VanderGiessen M, de Jager C, Leighton J, Xie H, Theus M, Johnson E, Kehn-Hall K. Neurological manifestations of encephalitic alphaviruses, traumatic brain injuries, and organophosphorus nerve agent exposure. Front Neurosci 2024; 18:1514940. [PMID: 39734493 PMCID: PMC11671522 DOI: 10.3389/fnins.2024.1514940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Encephalitic alphaviruses (EEVs), Traumatic Brain Injuries (TBI), and organophosphorus nerve agents (NAs) are three diverse biological, physical, and chemical injuries that can lead to long-term neurological deficits in humans. EEVs include Venezuelan, eastern, and western equine encephalitis viruses. This review describes the current understanding of neurological pathology during these three conditions, provides a comparative review of case studies vs. animal models, and summarizes current therapeutics. While epidemiological data on clinical and pathological manifestations of these conditions are known in humans, much of our current mechanistic understanding relies upon animal models. Here we review the animal models findings for EEVs, TBIs, and NAs and compare these with what is known from human case studies. Additionally, research on NAs and EEVs is limited due to their classification as high-risk pathogens (BSL-3) and/or select agents; therefore, we leverage commonalities with TBI to develop a further understanding of the mechanisms of neurological damage. Furthermore, we discuss overlapping neurological damage mechanisms between TBI, NAs, and EEVs that highlight novel medical countermeasure opportunities. We describe current treatment methods for reducing neurological damage induced by individual conditions and general neuroprotective treatment options. Finally, we discuss perspectives on the future of neuroprotective drug development against long-term neurological sequelae of EEVs, TBIs, and NAs.
Collapse
Affiliation(s)
- Morgen VanderGiessen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Caroline de Jager
- Translational Biology Medicine and Health Graduate Program, Virginia Tech, Blacksburg, VA, United States
| | - Julia Leighton
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Hehuang Xie
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Michelle Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Erik Johnson
- Neuroscience Department, Medical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, United States
| | - Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
3
|
Fongsaran C, Jirakanwisal K, Peng BH, Fracassi A, Taglialatela G, Dineley KT, Paessler S, Cisneros IE. Arbovirus infection increases the risk for the development of neurodegenerative disease pathology in the murine model. Brain Behav Immun Health 2024; 38:100780. [PMID: 38706571 PMCID: PMC11067009 DOI: 10.1016/j.bbih.2024.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Alzheimer's disease is classified as a progressive disorder resulting from protein misfolding, also known as proteinopathies. Proteinopathies include synucleinopathies triggered by misfolded amyloid α-synuclein, tauopathies triggered by misfolded tau, and amyloidopathies triggered by misfolded amyloid of which Alzheimer's disease (β-amyloid) is most prevalent. Most neurodegenerative diseases (>90%) are not due to dominantly inherited genetic causes. Instead, it is thought that the risk for disease is a complicated interaction between inherited and environmental risk factors that, with age, drive pathology that ultimately results in neurodegeneration and disease onset. Since it is increasingly appreciated that encephalitic viral infections can have profoundly detrimental neurological consequences long after the acute infection has resolved, we tested the hypothesis that viral encephalitis exacerbates the pathological profile of protein-misfolding diseases. Using a robust, reproducible, and well-characterized mouse model for β-amyloidosis, Tg2576, we studied the contribution of alphavirus-induced encephalitis (TC-83 strain of VEEV to model alphavirus encephalitis viruses) on the progression of neurodegenerative pathology. We longitudinally evaluated neurological, neurobehavioral, and cognitive levels, followed by a post-mortem analysis of brain pathology focusing on neuroinflammation. We found more severe cognitive deficits and brain pathology in Tg2576 mice inoculated with TC-83 than in their mock controls. These data set the groundwork to investigate sporadic Alzheimer's disease and treatment interventions for this infectious disease risk factor.
Collapse
Affiliation(s)
- Chanida Fongsaran
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Krit Jirakanwisal
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Bi-Hung Peng
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Anna Fracassi
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelly T. Dineley
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, USA
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Irma E. Cisneros
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Neuroinfectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
- Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
4
|
Bernardette Martínez-Rizo A, Fosado-Rodríguez R, César Torres-Romero J, César Lara-Riegos J, Alberto Ramírez-Camacho M, Ly Arroyo Herrera A, Elizabeth Villa de la Torre F, Ceballos Góngora E, Ermilo Arana-Argáez V. Models in vivo and in vitro for the study of acute and chronic inflammatory activity: A comprehensive review. Int Immunopharmacol 2024; 135:112292. [PMID: 38788446 DOI: 10.1016/j.intimp.2024.112292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Inflammatory conditions are among the principal causes of morbidity worldwide, and their treatment continues to be a challenge, given the restricted availability of effective and safe drugs. Thus, the identification of new compounds with biological activity that can be used for the treatment of inflammatory disorders is an essential field in medical and health research, in order to improve the health and quality of life of patients suffering from these diseases. Evaluation of the anti-inflammatory activity of drugs requires the implementation of models that accurately depict the biochemical and/or physiological responses that characterize human inflammation; for this reason, several in vitro and in vivo models have been developed, providing a platform for discovering novel or repurposed compounds. For this reason, in the present review we have selected twelve commonly used models for the evaluation of the anti-inflammatory effect, and extensively describes the difference between in vivo and in vitro models of inflammation, highlighting their advantages and limitations. On the other hand, the inflammatory mechanisms involved in them, the methods employed for their establishment, and the different parameters assessed to determine the anti-inflammatory activity of a given compound are extensively discussed. We expect to provide a comprehensive guide for the improved selection of a suitable model for the preclinical evaluation of plausible anti-inflammatory agents.
Collapse
Affiliation(s)
- Abril Bernardette Martínez-Rizo
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México; Laboratorio de Investigación Biomédica, Unidad Académica de Medicina, Universidad Autónoma de Nayarit, Nayarit, México
| | - Ricardo Fosado-Rodríguez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Torres-Romero
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio César Lara-Riegos
- Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Mario Alberto Ramírez-Camacho
- Centro de Información de Medicamentos, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ana Ly Arroyo Herrera
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | | | - Emanuel Ceballos Góngora
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Víctor Ermilo Arana-Argáez
- Laboratorio de Farmacología, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.
| |
Collapse
|
5
|
Barrios-González DA, Philibert-Rosas S, Martínez-Juárez IE, Sotelo-Díaz F, Rivas-Alonso V, Sotelo J, Sebastián-Díaz MA. Frequency and Focus of in Vitro Studies of Microglia-Expressed Cytokines in Response to Viral Infection: A Systematic Review. Cell Mol Neurobiol 2024; 44:21. [PMID: 38349562 PMCID: PMC10864563 DOI: 10.1007/s10571-024-01454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
It is well known that as part of their response to infectious agents such as viruses, microglia transition from a quiescent state to an activated state that includes proinflammatory and anti-inflammatory phases; this behavior has been described through in vitro studies. However, recent in vivo studies on the function of microglia have questioned the two-phase paradigm; therefore, a change in the frequency of in vitro studies is expected. A systematic review was carried out to identify the microglial cytokine profile against viral infection that has been further evaluated through in vitro studies (pro-inflammatory or anti-inflammatory), along with analysis of its publication frequency over the years. For this review, 531 articles published in the English language were collected from PubMed, Web of Science, EBSCO and ResearchGate. Only 27 papers met the inclusion criteria for this systematic review. In total, 19 cytokines were evaluated in these studies, most of which are proinflammatory; the most common are IL-6, followed by TNF-α and IL-1β. It should be pointed out that half of the studies were published between 2015 and 2022 (raw data available in https://github.com/dadriba05/SystematicReview.git ). In this review, we identified that evaluation of pro-inflammatory cytokines released by microglia against viral infections has been performed more frequently than that of anti-inflammatory cytokines; additionally, a higher frequency of evaluation of the response of microglia cells to viral infection through in vitro studies from 2015 and beyond was noted.
Collapse
Affiliation(s)
| | | | | | - Fernando Sotelo-Díaz
- Epilepsy Clinic. National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Multiple Sclerosis Clinic, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Julio Sotelo
- Department of Neuroimmunology, National Institute of Neurology and Neurosurgery, Mexico City, Mexico
| | - Mario A Sebastián-Díaz
- Nephrology Department, South Central High Specialty Hospital PEMEX, Anillo Periférico 4019 Fuentes del Pedregal, Tlalpan, 1440, Mexico City, Mexico.
| |
Collapse
|
6
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
7
|
Inhibitors of Venezuelan Equine Encephalitis Virus Identified Based on Host Interaction Partners of Viral Non-Structural Protein 3. Viruses 2021; 13:v13081533. [PMID: 34452398 PMCID: PMC8402862 DOI: 10.3390/v13081533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a new world alphavirus and a category B select agent. Currently, no FDA-approved vaccines or therapeutics are available to treat VEEV exposure and resultant disease manifestations. The C-terminus of the VEEV non-structural protein 3 (nsP3) facilitates cell-specific and virus-specific host factor binding preferences among alphaviruses, thereby providing targets of interest when designing novel antiviral therapeutics. In this study, we utilized an overexpression construct encoding HA-tagged nsP3 to identify host proteins that interact with VEEV nsP3 by mass spectrometry. Bioinformatic analyses of the putative interactors identified 42 small molecules with the potential to inhibit the host interaction targets, and thus potentially inhibit VEEV. Three inhibitors, tomatidine, citalopram HBr, and Z-VEID-FMK, reduced replication of both the TC-83 strain and the Trinidad donkey (TrD) strain of VEEV by at least 10-fold in astrocytoma, astroglial, and microglial cells. Further, these inhibitors reduced replication of the related New World (NW) alphavirus Eastern equine encephalitis virus (EEEV) in multiple cell types, thus demonstrating broad-spectrum antiviral activity. Time-course assays revealed all three inhibitors reduced both infectious particle production and positive-sense RNA levels post-infection. Further evaluation of the putative host targets for the three inhibitors revealed an interaction of VEEV nsP3 with TFAP2A, but not eIF2S2. Mechanistic studies utilizing siRNA knockdowns demonstrated that eIF2S2, but not TFAP2A, supports both efficient TC-83 replication and genomic RNA synthesis, but not subgenomic RNA translation. Overall, this work reveals the composition of the VEEV nsP3 proteome and the potential to identify host-based, broad spectrum therapeutic approaches to treat new world alphavirus infections.
Collapse
|
8
|
Xu M, Wu G. The Clinical Significance of Serum IL-33 and sST2 Alterations in the Post-Stroke Depression. J Multidiscip Healthc 2021; 14:2009-2015. [PMID: 34354360 PMCID: PMC8331084 DOI: 10.2147/jmdh.s310524] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/16/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction This study was to test whether the serum levels of IL-33 and sST2 are correlated with the development of depression after acute ischemic stroke. Methods Patients diagnosed with acute ischemic stroke were selected. This study took the 24-item Hamilton Depression Rating Scale (HAMD) (score ≥20) as the diagnostic criteria for depression. On the 21st day after admission, patients who met the depression diagnostic criteria were included in the depression group, and patients who failed to meet the diagnostic criteria were included in the non-depression group. The serum levels of IL-33, sST2 and hsCRP were measured by enzyme-linked immunosorbent assay (ELISA). Results On 1st day after stroke, compared with the non-depression group, there was no significant difference in the serum IL-33, sST2 and hsCRP levels in the depression group; on 21st day after stroke, compared with the non-depression group, the serum IL-33 and hsCRP levels were significantly increased, while the sST2 level was significantly decreased in the depression group. Correlation analysis showed that IL-33 was positively correlated with the depression quantitative score and hsCRP, while sST2 was negatively correlated with the depression quantitative score and hsCRP. Regression analysis showed that IL-33 and sST2 were independent risk factors for the depression after acute ischemic stroke. Discussion The abnormal alterations of serum IL-33 and sST2 levels in the stroke patients may serve as one of the risk factors for the occurrence and exacerbation of the depression, and its mechanism may be related to the promotion of inflammatory factor production in vivo.
Collapse
Affiliation(s)
- Meirong Xu
- Department of Geriatrics, The Second Affiliated Hospital of Hubei University of Science and Technology, Xianning, 437100, Hubei Province, People's Republic of China
| | - Ganlin Wu
- Department of Medicine, School of Clinical Medicine Sciences, Hubei University of Science and Technology, Xianning, 437100, Hubei Province, People's Republic of China.,National Demonstration Center for Experimental General Medicine Education (Hubei University of Science and Technology), Xianning, 437100, Hubei Province, People's Republic of China
| |
Collapse
|
9
|
The transcriptional landscape of Venezuelan equine encephalitis virus (TC-83) infection. PLoS Negl Trop Dis 2021; 15:e0009306. [PMID: 33788849 PMCID: PMC8041203 DOI: 10.1371/journal.pntd.0009306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 04/12/2021] [Accepted: 03/12/2021] [Indexed: 01/10/2023] Open
Abstract
Venezuelan Equine Encephalitis Virus (VEEV) is a major biothreat agent that naturally causes outbreaks in humans and horses particularly in tropical areas of the western hemisphere, for which no antiviral therapy is currently available. The host response to VEEV and the cellular factors this alphavirus hijacks to support its effective replication or evade cellular immune responses are largely uncharacterized. We have previously demonstrated tremendous cell-to-cell heterogeneity in viral RNA (vRNA) and cellular transcript levels during flaviviral infection using a novel virus-inclusive single-cell RNA-Seq approach. Here, we used this unbiased, genome-wide approach to simultaneously profile the host transcriptome and vRNA in thousands of single cells during infection of human astrocytes with the live-attenuated vaccine strain of VEEV (TC-83). Host transcription was profoundly suppressed, yet “superproducer cells” with extremely high vRNA abundance emerged during the first viral life cycle and demonstrated an altered transcriptome relative to both uninfected cells and cells with high vRNA abundance harvested at later time points. Additionally, cells with increased structural-to-nonstructural transcript ratio exhibited upregulation of intracellular membrane trafficking genes at later time points. Loss- and gain-of-function experiments confirmed pro- and antiviral activities in both vaccine and virulent VEEV infections among the products of transcripts that positively or negatively correlated with vRNA abundance, respectively. Lastly, comparison with single cell transcriptomic data from other viruses highlighted common and unique pathways perturbed by infection across evolutionary scales. This study provides a high-resolution characterization of the VEEV (TC-83)-host interplay, identifies candidate targets for antivirals, and establishes a comparative single-cell approach to study the evolution of virus-host interactions. Little is known about the host response to Venezuelan Equine Encephalitis Virus (VEEV) and the cellular factors this alphavirus hijacks to support effective replication or evade cellular immune responses. Monitoring dynamics of host and viral RNA (vRNA) during viral infection at a single-cell level can provide insight into the virus-host interplay at a high resolution. Here, a single-cell RNA sequencing technology that detects host and viral RNA was used to investigate the interactions between TC-83, the vaccine strain of VEEV, and the human host during the course of infection of U-87 MG cells (human astrocytoma). Virus abundance and host transcriptome were heterogeneous across cells from the same culture. Subsets of differentially expressed genes, positively or negatively correlating with vRNA abundance, were identified and subsequently in vitro validated as candidate proviral and antiviral factors, respectively, in TC-83 and/or virulent VEEV infections. In the first replication cycle, “superproducer” cells exhibited rapid increase in vRNA abundance and unique gene expression patterns. At later time points, cells with increased structural-to-nonstructural transcript ratio demonstrated upregulation of intracellular membrane trafficking genes. Lastly, comparing the VEEV dataset with published datasets on other RNA viruses revealed unique and overlapping responses across viral clades. Overall, this study improves the understanding of VEEV-host interactions, reveals candidate targets for antiviral approaches, and establishes a comparative single-cell approach to study the evolution of virus-host interactions.
Collapse
|
10
|
Vlachou M, Siamidi A, Dedeloudi A, Konstantinidou SK, Papanastasiou IP. Pineal hormone melatonin as an adjuvant treatment for COVID‑19 (Review). Int J Mol Med 2021; 47:47. [PMID: 33576451 PMCID: PMC7891824 DOI: 10.3892/ijmm.2021.4880] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
The beneficial properties of the pineal hormone, melatonin, as a neuroprotective and cardioprotective agent, have been previously identified. Furthermore, melatonin plays essential roles in biological rhythms resynchronization, sleep initiation/maintenance and metabolic, ocular, rheumatological diseases. In addition to these functions, melatonin is known to exert immunomodulation, anti-inflammatory and anti-oxidative effects. Due to these properties, coupled with its non-toxic nature, melatonin has been suggested to limit viral infections; however, melatonin cannot be classified as a viricidal drug. In addition, the recent increase in the number of clinical trials on melatonin's role, as an adjuvant treatment for COVID-19, has resurged the interest of the scientific community in this hormone. The present short review aimed to improve the understanding of the antiviral/anti-COVID-19 profile of melatonin and the clinical trials that have recently been conducted, with respect to its co-administration in treating individuals with COVID-19.
Collapse
Affiliation(s)
- Marilena Vlachou
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Angeliki Siamidi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Aikaterini Dedeloudi
- Division of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Sofia K Konstantinidou
- First Department of Propaedeutic Internal Medicine and Diabetes Center, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis P Papanastasiou
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
11
|
Role of Melatonin on Virus-Induced Neuropathogenesis-A Concomitant Therapeutic Strategy to Understand SARS-CoV-2 Infection. Antioxidants (Basel) 2021; 10:antiox10010047. [PMID: 33401749 PMCID: PMC7823793 DOI: 10.3390/antiox10010047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Viral infections may cause neurological disorders by directly inducing oxidative stress and interrupting immune system function, both of which contribute to neuronal death. Several reports have described the neurological manifestations in Covid-19 patients where, in severe cases of the infection, brain inflammation and encephalitis are common. Recently, extensive research-based studies have revealed and acknowledged the clinical and preventive roles of melatonin in some viral diseases. Melatonin has been shown to have antiviral properties against several viral infections which are accompanied by neurological symptoms. The beneficial properties of melatonin relate to its properties as a potent antioxidant, anti-inflammatory, and immunoregulatory molecule and its neuroprotective effects. In this review, what is known about the therapeutic role of melatonin in virus-induced neuropathogenesis is summarized and discussed.
Collapse
|
12
|
Synthetic Host Defense Peptides Inhibit Venezuelan Equine Encephalitis Virus Replication and the Associated Inflammatory Response. Sci Rep 2020; 10:21491. [PMID: 33293592 PMCID: PMC7722873 DOI: 10.1038/s41598-020-77990-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV), a New World alphavirus of the Togaviridae family of viruses causes periodic outbreaks of disease in humans and equines. Disease following VEEV infection manifests as a febrile illness with flu-like symptoms, which can progress to encephalitis and cause permanent neurological sequelae in a small number of cases. VEEV is classified as a category B select agent due to ease of aerosolization and high retention of infectivity in the aerosol form. Currently, there are no FDA-approved vaccines or therapeutics available to combat VEEV infection. VEEV infection in vivo is characterized by extensive systemic inflammation that can exacerbate infection by potentially increasing the susceptibility of off-site cells to infection and dissemination of the virus. Hence, a therapeutic targeting both the infection and associated inflammation represents an unmet need. We have previously demonstrated that host defense peptides (HDPs), short peptides that are key components of the innate immune response, exhibit antiviral activity against a multitude of viruses including VEEV. In this study, we designed synthetic peptides derived from indolicidin, a naturally occurring HDP, and tested their efficacy against VEEV. Two candidate synthetic peptides inhibited VEEV replication by approximately 1000-fold and decreased the expression of inflammatory mediators such as IL1α, IL1β, IFNγ, and TNFα at both the gene and protein expression levels. Furthermore, an increase in expression levels of genes involved in chemotaxis of leukocytes and anti-inflammatory genes such as IL1RN was also observed. Overall, we conclude that our synthetic peptides inhibit VEEV replication and the inflammatory burden associated with VEEV infection.
Collapse
|
13
|
Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Res 2020; 287:198108. [PMID: 32768490 PMCID: PMC7405774 DOI: 10.1016/j.virusres.2020.198108] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Abstract
Viral infections are dangerous diseases for human health worldwide, which lead to significant morbidity and mortality each year. Because of their importance and the lack of effective therapeutic approaches, further attempts should be made to discover appropriate alternative or complementary treatments. Melatonin, a multifunctional neurohormone mainly synthesized and secreted by the pineal gland, plays some roles in the treatment of viral infections. Regarding a deadly outbreak of COVID-19 across the world, we decided to discuss melatonin functions against various viral infections including COVID-19. Therefore, in this review, we summarize current evidence on melatonin therapy for viral infections with focus on possible underlying mechanisms of melatonin actions.
Collapse
|
14
|
Wu Y, Wang Y, Wu Y, Li T, Wang W. Salidroside shows anticonvulsant and neuroprotective effects by activating the Nrf2-ARE pathway in a pentylenetetrazol-kindling epileptic model. Brain Res Bull 2020; 164:14-20. [PMID: 32800786 DOI: 10.1016/j.brainresbull.2020.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/12/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022]
Abstract
Evidence points towards oxidative stress and neuroinflammation being major processes associated with brain dysfunction in epilepsy. Salidroside reportedly possesses anti-oxidative activity and neuroprotective potential, in addition to exerting an anti-neuroinflammatory response. This study was designed to evaluate the anticonvulsant and neuroprotective role of salidroside in rats with pentylenetetrazole (PTZ) kindling and to explore the underlying mechanism. Male Wistar rats were administered a sub-convulsive dose of PTZ (35 mg/kg) every other day for 15 injections, and salidroside (50 mg/kg) was injected intraperitoneally along with alternate-day PTZ. The seizure degree, cognitive function, and number of hippocampal neurons were investigated. The expression of nuclear factor erythroid 2-related factor- antioxidant response element (Nrf2-ARE) signaling pathways, oxidative stress parameters and inflammatory cytokines were also observed. Our study showed that salidroside treatment suppressed the kindling acquisition process, ameliorated cognitive impairment, and rescued the number of pyramidal neurons in the CA3 regions. Salidroside treatment could activate the Nrf2-ARE signal pathway, and suppressed oxidative stress and neuroinflammation. Our findings demonstrated that salidroside exerted anticonvulsant and neuroprotective effects in epileptic rats by activating the Nrf2-ARE signal pathway.
Collapse
Affiliation(s)
- Yanfen Wu
- Health management department, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, China
| | - Yong Wang
- Department of Anesthesiology, Pain Medicine and Critical Care Medicine, Aviation General Hospital of China Medical University & Beijing Institute of Translational Medicine, Chinese Academy of Sciences, Beijing, China
| | - Yarui Wu
- Health management department, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, China
| | - Tingting Li
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Inovation Center for Neurological Disorders, Department of Neurology, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
15
|
Efficacy of FDA-Approved Anti-Inflammatory Drugs Against Venezuelan Equine Encephalitis Virus Infection. Viruses 2019; 11:v11121151. [PMID: 31842327 PMCID: PMC6950191 DOI: 10.3390/v11121151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 11/16/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a category B select agent pathogen that can be aerosolized. Infections in murine models and humans can advance to an encephalitic phenotype which may result in long-term neurological complications or death. No specific FDA-approved treatments or vaccines are available for the treatment or prevention of VEEV infection. Neurotropic viral infections have two damaging components: neuronal death caused by viral replication, and damage from the subsequent inflammatory response. Reducing the level of inflammation may lessen neurological tissue damage that often arises following VEEV infection. In this study, three commercially available anti-inflammatory drugs, Celecoxib, Rolipram, and Tofacitinib, were evaluated for antiviral activity in an astrocyte and a microglial model of VEEV infection. The inhibitors were tested against the vaccine strain VEEV TC-83, as well as the wild-type VEEV Trinidad donkey strain. Celecoxib, Tofacitinib, and Rolipram significantly decreased viral titers both after pre-treatment and post-treatment of infected cells. VEEV Trinidad Donkey (TrD) titers were reduced 6.45-fold in cells treated with 50 µM of Celecoxib, 2.45-fold when treated with 50 µM of Tofacitinib, and 1.81-fold when treated with 50 µM of Rolipram. Celecoxib was also shown to decrease inflammatory gene expression in the context of TC-83 infection. Overall, Celecoxib demonstrated potency as a countermeasure strategy that slowed VEEV infection and infection-induced inflammation in an in vitro model.
Collapse
|
16
|
Keck F, Khan D, Roberts B, Agrawal N, Bhalla N, Narayanan A. Mitochondrial-Directed Antioxidant Reduces Microglial-Induced Inflammation in Murine In Vitro Model of TC-83 Infection. Viruses 2018; 10:v10110606. [PMID: 30400156 PMCID: PMC6266753 DOI: 10.3390/v10110606] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is an arbovirus that is associated with robust inflammation that contributes to neurodegenerative phenotypes. In addition to triggering central nervous system (CNS) inflammation, VEEV will also induce mitochondrial dysfunction, resulting in increased cellular apoptosis. In this study, we utilize the TC-83 strain of VEEV to determine the role of mitochondrial oxidative stress in mediating inflammation elicited by murine brain microglial cells. Using an in vitro model, we show that murine microglia are susceptible to TC-83 infection, and that these cells undergo mitochondrial stress as the result of infection. We also indicate that bystander microglia contribute more significantly to the overall inflammatory load than directly infected microglia. Use of a mitochondrial targeted antioxidant, mitoquinone mesylate, greatly reduced the pro-inflammatory cytokines released by both direct infected and bystander microglia. Our data suggest that release of interleukin-1β, a key instigator of neuroinflammation during VEEV infection, may be the direct result of accumulating mitochondrial stress. This data improves our understanding inflammation elicited by murine microglia and will aid in the development of more accurate in vitro and in vivo murine model of VEEV-induced neuroinflammation.
Collapse
Affiliation(s)
- Forrest Keck
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA.
| | - Daud Khan
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.
| | - Brian Roberts
- Leidos Health Sciences, 5202 Presidents Court, Suite 110, Frederick, MD 21704, USA.
| | - Nitin Agrawal
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA.
| | - Nishank Bhalla
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA.
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|