1
|
Beall B, Chochua S, Metcalf B, Lin W, Tran T, Li Z, Li Y, Bentz ML, Sheth M, Osis G, McGee L. Increased Proportions of Invasive Pneumococcal Disease Cases Among Adults Experiencing Homelessness Sets the Stage for New Serotype 4 Capsular-Switch Recombinants. J Infect Dis 2025; 231:871-882. [PMID: 39259351 PMCID: PMC11893508 DOI: 10.1093/infdis/jiae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The Centers for Disease Control and Prevention's Active Bacterial Core surveillance (ABCs) identified increased serotype 4 invasive pneumococcal disease (IPD), particularly among adults experiencing homelessness (AEH). METHODS We quantified increased proportions of IPD cases in AEH during 2016-2022. Employing genomic-based characterization of IPD isolates, we identified serotype-switch variants. Recombinational analyses were used to identify the genetic donor and recipient strain that generated a serotype 4 progeny strain. We performed phylogenetic analyses of the serotype 4 progeny and of the serotype 12F genetic recipient to determine genetic distances. RESULTS We identified a cluster of 30 highly related (0-21 nucleotide differences) IPD isolates recovered during 2022-2023, corresponding to a serotype 4 capsular-switch variant. This strain arose through a multifragment recombination event between serotype 4/ST10172 and serotype 12F/ST220 parental strains. Twenty-five of the 30 cases occurred in Oregon. Of 29 cases with known residence status, 16 occurred in AEH. Variant emergence coincided with a 2.6-fold increase (57 to 148) of cases caused by the serotype 4/ST10172 donor lineage in 2022 compared to 2019 and its first appearance in Oregon. Most serotypes showed sequential increases of AEH IPD/all IPD ratios during 2016-2022 (eg, for all serotypes combined, 247/2198, 11.2% during 2022 compared to 405/5317, 7.6% for 2018-2019, P < .001). Serotypes 4 and 12F each caused more IPD than any other serotype in AEH during 2020-2022 (207 combined case isolates accounting for 38% of all IPD in AEH). CONCLUSIONS Expansion and increased transmission of serotypes 4 and 12F among adults potentially led to recent genesis of an impactful hybrid serotype-switch variant.
Collapse
Affiliation(s)
- Bernard Beall
- Contractor to Division of Bacterial Diseases, Centers for Disease Control and Prevention, Eagle Global Scientific, LLC, Atlanta, Georgia, USA
| | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ben Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Wuling Lin
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Theresa Tran
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Zhongya Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Meghan L. Bentz
- Biotechnology Core Facility Branch, Division of Core Laboratory Services and Response, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mili Sheth
- Biotechnology Core Facility Branch, Division of Core Laboratory Services and Response, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Gunars Osis
- Contractor to National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Wei Y, Chen GH, Yaqub M, Kim E, Tillett LE, Joyce LR, Dillon N, Palmer KL, Guan Z. Biosynthesis of mitis group streptococcal glycolipids and their roles in physiology and antibiotic susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.621112. [PMID: 39554182 PMCID: PMC11565941 DOI: 10.1101/2024.10.30.621112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Bacterial cell surface components such as lipoteichoic acids (LTAs) play critical roles in host-microbe interactions and alter host responses based on their chemical structures. Mitis group streptococci have commensal and pathogenic interactions with the human host and produce Type IV LTAs that are slightly different in chemical structures between species. To reveal the molecular bases for the intricate interactions between MGS and human hosts, a detailed understanding of the structure and biosynthetic process of MGS LTAs is needed. In this study, we used genomic and lipidomic techniques to elucidate the biosynthetic processes of Type IV LTA and its associated glycolipid anchors, monohexosyl-diacylglycerol and dihexosyl-diacyglycerol, in the infectious endocarditis isolate Streptococcus sp. strain 1643. Through establishing a murine sepsis model, we validated the essentiality of these glycolipids in the full virulence of S. mitis. Additionally, we found that these glycolipids play an important role in protecting the bacteria from antimicrobials. Overall, results obtained through this study both confirm and dispute aspects of the existing model of glycolipids biosynthesis, provide insights into the fundamental roles of bacterial glycolipids, as well as suggest the potential of targeting glycolipids for developing antimicrobial therapeutics.
Collapse
Affiliation(s)
- Yahan Wei
- School of Podiatric Medicine, The University of Texas Rio Grande Valley, Harlingen, Texas, USA
| | - Guan H. Chen
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Muneer Yaqub
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Elice Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Lily E Tillett
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Luke R. Joyce
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas Dillon
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Kelli L. Palmer
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
3
|
Hirose Y, Kolesinski P, Hiraoka M, Uchiyama S, Zurich RH, Kumaraswamy M, Bjanes E, Ghosh P, Kawabata S, Nizet V. Contribution of Streptococcus pyogenes M87 protein to innate immune resistance and virulence. Microb Pathog 2022; 169:105636. [PMID: 35724830 PMCID: PMC9878354 DOI: 10.1016/j.micpath.2022.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 01/29/2023]
Abstract
Streptococcus pyogenes is a pre-eminent human pathogen, and classified by the hypervariable sequence of the emm gene encoding the cell surface M protein. Among a diversity of M/emm types, the prevalence of the M/emm87 strain has been steadily increasing in invasive S. pyogenes infections. Although M protein is the major virulence factor for globally disseminated M/emm1 strain, it is unclear if or how the corresponding M protein of M/emm87 strain (M87 protein) functions as a virulence factor. Here, we use targeted mutagenesis to show that the M87 protein contributes to bacterial resistance to neutrophil and whole blood killing and promotes the release of mature IL-1β from macrophages. While deletion of emm87 did not influence epithelial cell adherence and nasal colonization, it significantly reduced S. pyogenes-induced mortality and bacterial loads in a murine systemic infection model. Our data suggest that emm87 is involved in pathogenesis by modulating the interaction between S. pyogenes and innate immune cells.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 5650871, Japan,Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Piotr Kolesinski
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Masanobu Hiraoka
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA,Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Satoshi Uchiyama
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Raymond H. Zurich
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Monika Kumaraswamy
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA,Infectious Diseases Section, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Elisabet Bjanes
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 5650871, Japan,Correspondence: Victor Nizet, , TEL: +18585347408, Shigetada Kawabata, , TEL: +81668792896
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA,Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA,Correspondence: Victor Nizet, , TEL: +18585347408, Shigetada Kawabata, , TEL: +81668792896
| |
Collapse
|
4
|
Takemura M, Yamaguchi M, Kobayashi M, Sumitomo T, Hirose Y, Okuzaki D, Ono M, Motooka D, Goto K, Nakata M, Uzawa N, Kawabata S. Pneumococcal BgaA Promotes Host Organ Bleeding and Coagulation in a Mouse Sepsis Model. Front Cell Infect Microbiol 2022; 12:844000. [PMID: 35846740 PMCID: PMC9284207 DOI: 10.3389/fcimb.2022.844000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/01/2022] [Indexed: 12/15/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of invasive diseases such as pneumonia, meningitis, and sepsis, with high associated mortality. Our previous molecular evolutionary analysis revealed that the S. pneumoniae gene bgaA, encoding the enzyme β-galactosidase (BgaA), had a high proportion of codons under negative selection among the examined pneumococcal genes and that deletion of bgaA significantly reduced host mortality in a mouse intravenous infection assay. BgaA is a multifunctional protein that plays a role in cleaving terminal galactose in N-linked glycans, resistance to human neutrophil-mediated opsonophagocytic killing, and bacterial adherence to human epithelial cells. In this study, we performed in vitro and in vivo assays to evaluate the precise role of bgaA as a virulence factor in sepsis. Our in vitro assays showed that the deletion of bgaA significantly reduced the bacterial association with human lung epithelial and vascular endothelial cells. The deletion of bgaA also reduced pneumococcal survival in human blood by promoting neutrophil-mediated killing, but did not affect pneumococcal survival in mouse blood. In a mouse sepsis model, mice infected with an S. pneumoniae bgaA-deleted mutant strain exhibited upregulated host innate immunity pathways, suppressed tissue damage, and blood coagulation compared with mice infected with the wild-type strain. These results suggest that BgaA functions as a multifunctional virulence factor whereby it induces host tissue damage and blood coagulation. Taken together, our results suggest that BgaA could be an attractive target for drug design and vaccine development to control pneumococcal infection.
Collapse
Affiliation(s)
- Moe Takemura
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- *Correspondence: Masaya Yamaguchi,
| | - Momoko Kobayashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Masayuki Ono
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Kana Goto
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
5
|
Jiménez-Munguía I, Tomečková Z, Mochnáčová E, Bhide K, Majerová P, Bhide M. Transcriptomic analysis of human brain microvascular endothelial cells exposed to laminin binding protein (adhesion lipoprotein) and Streptococcus pneumoniae. Sci Rep 2021; 11:7970. [PMID: 33846455 PMCID: PMC8041795 DOI: 10.1038/s41598-021-87021-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/23/2021] [Indexed: 01/28/2023] Open
Abstract
Streptococcus pneumoniae invades the CNS and triggers a strong cellular response. To date, signaling events that occur in the human brain microvascular endothelial cells (hBMECs), in response to pneumococci or its surface adhesins are not mapped comprehensively. We evaluated the response of hBMECs to the adhesion lipoprotein (a laminin binding protein—Lbp) or live pneumococci. Lbp is a surface adhesin recently identified as a potential ligand, which binds to the hBMECs. Transcriptomic analysis was performed by RNA-seq of three independent biological replicates and validated with qRT-PCR using 11 genes. In total 350 differentially expressed genes (DEGs) were identified after infection with S. pneumoniae, whereas 443 DEGs when challenged with Lbp. Total 231 DEGs were common in both treatments. Integrative functional analysis revealed participation of DEGs in cytokine, chemokine, TNF signaling pathways and phagosome formation. Moreover, Lbp induced cell senescence and breakdown, and remodeling of ECM. This is the first report which maps complete picture of cell signaling events in the hBMECs triggered against S. pneumoniae and Lbp. The data obtained here could contribute in a better understanding of the invasion of pneumococci across BBB and underscores role of Lbp adhesin in evoking the gene expression in neurovascular unit.
Collapse
Affiliation(s)
- Irene Jiménez-Munguía
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Zuzana Tomečková
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic
| | - Petra Majerová
- Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, Kosice, 04181, Slovak Republic. .,Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
6
|
Anil A, Banerjee A. Pneumococcal Encounter With the Blood-Brain Barrier Endothelium. Front Cell Infect Microbiol 2020; 10:590682. [PMID: 33224900 PMCID: PMC7669544 DOI: 10.3389/fcimb.2020.590682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/22/2020] [Indexed: 12/27/2022] Open
Abstract
Meningitis, the inflammation of the protective membrane surrounding the brain and spinal cord (known as meninges), is a condition associated with high mortality rates and permanent neurological sequelae in a significant proportion of survivors. The opportunistic pathogen Streptococcus pneumoniae (SPN/pneumococcus) is the leading cause of bacterial meningitis in adults and older children. Following infection of the lower respiratory tract and subsequent bloodstream invasion, SPN breaches the blood-brain barrier endothelium for invasion of the central nervous system. Transcytosis, a mode of passage through the endothelial cells has been identified as the predominant route of pneumococcal blood-brain barrier trafficking. Herein, we review the interactions enabling SPN invasion into the brain endothelial cells, events involved in the tug-of-war between pneumococcal virulence factors and host intracellular defense machineries and pneumococcal strategies for evasion of host defenses and successful transendothelial trafficking.
Collapse
Affiliation(s)
| | - Anirban Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
7
|
Yamaguchi M, Takemura M, Higashi K, Goto K, Hirose Y, Sumitomo T, Nakata M, Uzawa N, Kawabata S. Role of BgaA as a Pneumococcal Virulence Factor Elucidated by Molecular Evolutionary Analysis. Front Microbiol 2020; 11:582437. [PMID: 33072054 PMCID: PMC7541833 DOI: 10.3389/fmicb.2020.582437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/01/2020] [Indexed: 01/17/2023] Open
Abstract
Streptococcus pneumoniae is a major cause of pneumonia, sepsis, and meningitis. Previously, we identified a novel virulence factor by investigating evolutionary selective pressure exerted on pneumococcal choline-binding cell surface proteins. Herein, we focus on another pneumococcal cell surface protein. Cell wall-anchoring proteins containing the LPXTG motif are conserved in Gram-positive bacteria. Our evolutionary analysis showed that among the examined genes, nanA and bgaA had high proportions of codon that were under significant negative selection. Both nanA and bgaA encode a multi-functional glycosidase that aids nutrient acquisition in a glucose-poor environment, pneumococcal adherence to host cells, and evasion from host immunity. However, several studies have shown that the role of BgaA is limited in a mouse pneumonia model, and it remains unclear if BgaA affects pneumococcal pathogenesis in a mouse sepsis model. To evaluate the distribution and pathogenicity of bgaA, we performed phylogenetic analysis and intravenous infection assay. In both Bayesian and maximum likelihood phylogenetic trees, the genetic distances between pneumococcal bgaA was small, and the cluster of pneumococcal bgaA did not contain other bacterial orthologs except for a Streptococcus gwangjuense gene. Evolutionary analysis and BgaA structure indicated BgaA active site was not allowed to change. The mouse infection assay showed that the deletion of bgaA significantly reduced host mortality. These results indicated that both nanA and bgaA encode evolutionally conserved pneumococcal virulence factors and that molecular evolutionary analysis could be a useful alternative strategy for identification of virulence factors.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Moe Takemura
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan.,Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kotaro Higashi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Kana Goto
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Narikazu Uzawa
- Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
8
|
Okahashi N, Nakata M, Hirose Y, Morisaki H, Kataoka H, Kuwata H, Kawabata S. Streptococcal H2O2 inhibits IgE-triggered degranulation of RBL-2H3 mast cell/basophil cell line by inducing cell death. PLoS One 2020; 15:e0231101. [PMID: 32302339 PMCID: PMC7164662 DOI: 10.1371/journal.pone.0231101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/04/2022] Open
Abstract
Mast cells and basophils are central players in allergic reactions triggered by immunoglobulin E (IgE). They have intracellular granules containing allergic mediators (e.g., histamine, serotonin, inflammatory cytokines, proteases and β-hexosaminidase), and stimulation by IgE-allergen complex leads to the release of such allergic mediators from the granules, that is, degranulation. Mast cells are residents of mucosal surfaces, including those of nasal and oral cavities, and play an important role in the innate defense system. Members of the mitis group streptococci such as Streptococcus oralis, are primary colonizers of the human oral cavity. They produce hydrogen peroxide (H2O2) as a by-product of sugar metabolism. In this study, we investigated the effects of streptococcal infection on RBL-2H3 mast cell/basophil cell line. Infection by oral streptococci did not induce degranulation of the cells. Stimulation of the RBL-2H3 cells with anti-dinitrophenol (DNP) IgE and DNP-conjugated human serum albumin triggers degranulation with the release of β-hexosaminidase. We found that S. oralis and other mitis group streptococci inhibited the IgE-triggered degranulation of RBL-2H3 cells. Since mitis group streptococci produce H2O2, we examined the effect of S. oralis mutant strain deficient in producing H2O2, and found that they lost the ability to suppress the degranulation. Moreover, H2O2 alone inhibited the IgE-induced degranulation. Subsequent analysis suggested that the inhibition of degranulation was related to the cytotoxicity of streptococcal H2O2. Activated RBL-2H3 cells produce interleukin-4 (IL-4); however, IL-4 production was not induced by streptococcal H2O2. Furthermore, an in vivo study using the murine pollen-induced allergic rhinitis model suggested that the streptococcal H2O2 reduces nasal allergic reaction. These findings reveal that H2O2 produced by oral mitis group streptococci inhibits IgE-stimulated degranulation by inducing cell death. Consequently, streptococcal H2O2 can be considered to modulate the allergic reaction in mucosal surfaces.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hirobumi Morisaki
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Hideo Kataoka
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
9
|
Yamaguchi M, Hirose Y, Takemura M, Ono M, Sumitomo T, Nakata M, Terao Y, Kawabata S. Streptococcus pneumoniae Evades Host Cell Phagocytosis and Limits Host Mortality Through Its Cell Wall Anchoring Protein PfbA. Front Cell Infect Microbiol 2019; 9:301. [PMID: 31482074 PMCID: PMC6710382 DOI: 10.3389/fcimb.2019.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/05/2019] [Indexed: 12/20/2022] Open
Abstract
Streptococcus pneumoniae is a Gram-positive bacterium belonging to the oral streptococcus species, mitis group. This pathogen is a leading cause of community-acquired pneumonia, which often evades host immunity and causes systemic diseases, such as sepsis and meningitis. Previously, we reported that PfbA is a β-helical cell surface protein contributing to pneumococcal adhesion to and invasion of human epithelial cells in addition to its survival in blood. In the present study, we investigated the role of PfbA in pneumococcal pathogenesis. Phylogenetic analysis indicated that the pfbA gene is highly conserved in S. pneumoniae and Streptococcus pseudopneumoniae within the mitis group. Our in vitro assays showed that PfbA inhibits neutrophil phagocytosis, leading to pneumococcal survival. We found that PfbA activates NF-κB through TLR2, but not TLR4. In addition, TLR2/4 inhibitor peptide treatment of neutrophils enhanced the survival of the S. pneumoniae ΔpfbA strain as compared to a control peptide treatment, whereas the treatment did not affect survival of a wild-type strain. In a mouse pneumonia model, the host mortality and level of TNF-α in bronchoalveolar lavage fluid were comparable between wild-type and ΔpfbA-infected mice, while deletion of pfbA decreased the bacterial burden in bronchoalveolar lavage fluid. In a mouse sepsis model, the ΔpfbA strain demonstrated significantly increased host mortality and TNF-α levels in plasma, but showed reduced bacterial burden in lung and liver. These results indicate that PfbA may contribute to the success of S. pneumoniae species by inhibiting host cell phagocytosis, excess inflammation, and mortality by interacting with TLR2.
Collapse
Affiliation(s)
- Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Moe Takemura
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Oral and Maxillofacial Surgery II, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masayuki Ono
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan.,Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
10
|
Identification of evolutionarily conserved virulence factor by selective pressure analysis of Streptococcus pneumoniae. Commun Biol 2019; 2:96. [PMID: 30886906 PMCID: PMC6408437 DOI: 10.1038/s42003-019-0340-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/06/2019] [Indexed: 01/09/2023] Open
Abstract
Evolutionarily conserved virulence factors can be candidate therapeutic targets or vaccine antigens. Here, we investigated the evolutionary selective pressures on 16 pneumococcal choline-binding cell-surface proteins since Streptococcus pneumoniae is one of the pathogens posing the greatest threats to human health. Phylogenetic and molecular analyses revealed that cbpJ had the highest codon rates to total numbers of codons under considerable negative selection among those examined. Our in vitro and in vivo assays indicated that CbpJ functions as a virulence factor in pneumococcal pneumonia by contributing to evasion of neutrophil killing. Deficiency of cbpL under relaxed selective pressure also caused a similar tendency but showed no significant difference in mouse intranasal infection. Thus, molecular evolutionary analysis is a powerful tool that reveals the importance of virulence factors in real-world infection and transmission, since calculations are performed based on bacterial genome diversity following transmission of infection in an uncontrolled population.
Collapse
|