1
|
Yoon H, Unthank J, Pallikkuth S, Chen P, Randazzo PA. Actin Binding to the BAR Domain and Arf GAP Activity of ASAP1 Coordinately Control Actin Stress Fibers and Focal Adhesions. Biol Cell 2025; 117:e70005. [PMID: 40194952 PMCID: PMC11975550 DOI: 10.1111/boc.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND Actin stress fibers (SFs) and focal adhesions (FAs) are dynamic structures crucial to a range of cell behaviors including cell morphology, cell migration, proliferation, survival, and differentiation. The Arf GAP ASAP1 affects both SFs and FAs. Here, we test the hypothesis that two domains with distinct biochemical activities in ASAP1, the BAR domain that binds actin and nonmuscle myosin 2 (NM2) and the Arf GAP domain, which is necessary for inducing hydrolysis of GTP bound to Arf, coordinately regulate the structures. RESULTS We found that ASAP1 associated with bundled actin, including SFs, colocalizing with α-actinin and nonmuscle myosin 2A (NM2A), and with paxillin in FAs. Reducing ASAP1 expression altered both SFs and FAs in four cell lines that we examined. The effects of reducing ASAP1 expression could be reversed by ectopic expression of ASAP1. Reduced expression of Arf5, a substrate for ASAP1, or expression of either dominant negative or GTPase deficient mutants of Arf5, affected SFs and FAs similarly to ASAP1 knockdown. Both an active GAP domain and a BAR domain contained in the same ASAP1 polypeptide were necessary to maintain FAs and SFs. CONCLUSIONS AND SIGNIFICANCE Taken together, the results support the idea that ASAP1 coordinates the maintenance of FAs and SFs through integrated function of the BAR and GAP domains. We speculate that ASAP1 regulates SFs and their interaction with FAs through direct binding to components of the actin cytoskeleton. We discuss hypotheses related to this Arf-dependent activity of ASAP1 and propose the function of ASAP1 is not control of Arf•GTP levels.
Collapse
Affiliation(s)
- Hye‐Young Yoon
- Center for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Jonah Unthank
- Center for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Sandeep Pallikkuth
- Center for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| | - Pei‐Wen Chen
- Department of BiologyWilliams CollegeWilliamstownMassachusettsUSA
| | - Paul A. Randazzo
- Center for Cancer Research, National Cancer InstituteBethesdaMarylandUSA
| |
Collapse
|
2
|
Hebron KE, Perkins OL, Kim A, Jian X, Girald-Berlingeri SA, Lei H, Shern JF, Conner EA, Randazzo PA, Yohe ME. ASAP1 and ARF1 Regulate Myogenic Differentiation in Rhabdomyosarcoma by Modulating TAZ Activity. Mol Cancer Res 2025; 23:95-106. [PMID: 39495123 PMCID: PMC11799837 DOI: 10.1158/1541-7786.mcr-24-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Despite aggressive, multimodal therapies, the prognosis of patients with refractory or recurrent rhabdomyosarcoma (RMS) has not improved in four decades. Because RMS resembles skeletal muscle precursor cells, differentiation-inducing therapy has been proposed for patients with advanced disease. In RAS-mutant PAX fusion-negative RMS (FN-RMS) preclinical models, MEK1/2 inhibition (MEKi) induces differentiation, slows tumor growth, and extends survival. However, the response is short-lived. A better understanding of the molecular mechanisms regulating FN-RMS differentiation could improve differentiation therapy. In this study, we identified a role in FN-RMS differentiation for ASAP1, an ADP ribosylation factor (ARF) GTPase-activating protein (GAP) with both proinvasive and tumor-suppressor functions. We found that ASAP1 knockdown inhibited differentiation in FN-RMS cells. Interestingly, knockdown of the GTPases ARF1 or ARF5, targets of ASAP1 GAP activity, also blocked differentiation of FN-RMS. We discovered that loss of ARF pathway components blocked myogenic transcription factor expression. Therefore, we examined the effects on transcriptional regulators. MEKi led to the phosphorylation and inactivation of WW domain-containing transcriptional regulator 1 (WWTR1; TAZ), a homolog of the pro-proliferative transcriptional co-activator YAP1, regulated by the Hippo pathway. However, loss of ASAP1 or ARF1 blocked this inactivation, which inhibits MEKi-induced differentiation. Finally, MEKi-induced differentiation was rescued by dual knockdown of ASAP1 and WWTR1. This study shows that ASAP1 and ARF1 are necessary for myogenic differentiation, providing a deeper understanding of differentiation in FN-RMS and illuminating an opportunity to advance differentiation therapy. Implications: ASAP1 and ARF1 regulate MEKi-induced differentiation of FN-RMS cells by modulating WWTR1 (TAZ) activity, supporting YAP1/TAZ inhibition as a FN-RMS differentiation therapy strategy.
Collapse
Affiliation(s)
- Katie E. Hebron
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Olivia L. Perkins
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
| | - Angela Kim
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Xiaoying Jian
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sofia A. Girald-Berlingeri
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haiyan Lei
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jack F. Shern
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth A. Conner
- Center for Cancer Research Genomics Core, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul A. Randazzo
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, National Cancer Institute, National Institutes of Health, Frederick, Maryland
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
- Laboratory of Cell and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
3
|
Herrera JA, Dingle L, Montero MA, Venkateswaran RV, Blaikley JF, Lawless C, Schwartz MA. The UIP/IPF fibroblastic focus is a collagen biosynthesis factory embedded in a distinct extracellular matrix. JCI Insight 2022; 7:e156115. [PMID: 35852874 PMCID: PMC9462507 DOI: 10.1172/jci.insight.156115] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Usual interstitial pneumonia (UIP) is a histological pattern characteristic of idiopathic pulmonary fibrosis (IPF). The UIP pattern is patchy with histologically normal lung adjacent to dense fibrotic tissue. At this interface, fibroblastic foci (FF) are present and are sites where myofibroblasts and extracellular matrix (ECM) accumulate. Utilizing laser capture microdissection-coupled mass spectrometry, we interrogated the FF, adjacent mature scar, and adjacent alveoli in 6 fibrotic (UIP/IPF) specimens plus 6 nonfibrotic alveolar specimens as controls. The data were subjected to qualitative and quantitative analysis and histologically validated. We found that the fibrotic alveoli protein signature is defined by immune deregulation as the strongest category. The fibrotic mature scar classified as end-stage fibrosis whereas the FF contained an overabundance of a distinctive ECM compared with the nonfibrotic control. Furthermore, FF were positive for both TGFB1 and TGFB3, whereas the aberrant basaloid cell lining of FF was predominantly positive for TGFB2. In conclusion, spatial proteomics demonstrated distinct protein compositions in the histologically defined regions of UIP/IPF tissue. These data revealed that FF are the main site of collagen biosynthesis and that the adjacent alveoli are abnormal. This essential information will inform future mechanistic studies on fibrosis progression.
Collapse
Affiliation(s)
| | - Lewis Dingle
- Blond McIndoe Laboratories, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - M. Angeles Montero
- Department of Histopathology, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | - Rajamiyer V. Venkateswaran
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Transplant, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | - John F. Blaikley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Transplant, Manchester University National Health Service Foundation Trust, Manchester, United Kingdom
| | | | - Martin A. Schwartz
- The Wellcome Centre for Cell-Matrix Research and
- Yale Cardiovascular Research Center and
- Departments of Internal Medicine (Cardiology) and Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Schreiber C, Gruber A, Roßwag S, Saraswati S, Harkins S, Thiele W, Foroushani ZH, Munding N, Schmaus A, Rothley M, Dimmler A, Tanaka M, Garvalov BK, Sleeman JP. Loss of ASAP1 in the MMTV-PyMT model of luminal breast cancer activates AKT, accelerates tumorigenesis, and promotes metastasis. Cancer Lett 2022; 533:215600. [PMID: 35181478 DOI: 10.1016/j.canlet.2022.215600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/31/2022]
Abstract
ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis in a variety of cancers, and can promote cell migration, invasion and metastasis. Although amplification and expression of ASAP1 has been associated with poor survival in breast cancer, we found that in the autochthonous MMTV-PyMT model of luminal breast cancer, ablation of ASAP1 resulted in an earlier onset of tumor initiation and increased metastasis. This was due to tumor cell-intrinsic effects of ASAP1 deletion, as ASAP1 deficiency in tumor, but not in stromal cells was sufficient to replicate the enhanced tumorigenicity and metastasis observed in the ASAP1-null MMTV-PyMT mice. Loss of ASAP1 in MMTV-PyMT mice had no effect on proliferation, apoptosis, angiogenesis or immune cell infiltration, but enhanced mammary gland hyperplasia and tumor cell invasion, indicating that ASAP1 can accelerate tumor initiation and promote dissemination. Mechanistically, these effects were associated with a potent activation of AKT. Importantly, lower ASAP1 levels correlated with poor prognosis and enhanced AKT activation in human ER+/luminal breast tumors, validating our findings in the MMTV-PyMT mouse model for this subtype of breast cancer. Taken together, our findings reveal that ASAP1 can have distinct functions in different tumor types and demonstrate a tumor suppressive activity for ASAP1 in luminal breast cancer.
Collapse
Affiliation(s)
- Caroline Schreiber
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Annette Gruber
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Sven Roßwag
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Supriya Saraswati
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Shannon Harkins
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Wilko Thiele
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Zahra Hajian Foroushani
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Natalie Munding
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Melanie Rothley
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany
| | - Arno Dimmler
- Vincentius-Diakonissen-Kliniken, 76135, Karlsruhe, Germany
| | - Motomu Tanaka
- Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, 69120, Heidelberg, Germany; Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, 606-8501, Kyoto, Japan
| | - Boyan K Garvalov
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.
| | - Jonathan P Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany; Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus North, D-76344 Karlsruhe, Germany.
| |
Collapse
|
5
|
Giridharan SSP, Luo G, Rivero-Rios P, Steinfeld N, Tronchere H, Singla A, Burstein E, Billadeau DD, Sutton MA, Weisman LS. Lipid kinases VPS34 and PIKfyve coordinate a phosphoinositide cascade to regulate Retriever-mediated recycling on endosomes. eLife 2022; 11:69709. [PMID: 35040777 PMCID: PMC8816382 DOI: 10.7554/elife.69709] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-surface receptors control how cells respond to their environment. Many cell-surface receptors recycle from endosomes to the plasma membrane via a recently discovered pathway, which includes sorting-nexin SNX17, Retriever, WASH and CCC complexes. Here, using mammalian cells, we discover that PIKfyve and its upstream PI3-kinase VPS34 positively regulate this pathway. VPS34 produces PI3P, which is the substrate for PIKfyve to generate PI3,5P2. We show that PIKfyve controls recycling of cargoes including integrins, receptors that control cell migration. Furthermore, endogenous PIKfyve colocalizes with SNX17, Retriever, WASH and CCC complexes on endosomes. Importantly, PIKfyve inhibition results displacement of Retriever and CCC from endosomes. In addition, we show that recruitment of SNX17 is an early step and requires VPS34. These discoveries suggest that VPS34 and PIKfyve coordinate an ordered pathway to regulate recycling from endosomes and suggest how PIKfyve functions in cell migration.
Collapse
Affiliation(s)
| | - Guangming Luo
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | - Pilar Rivero-Rios
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | - Noah Steinfeld
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| | | | - Amika Singla
- Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | - Ezra Burstein
- Department of Internal Medicine, The University of Texas Southwestern Medical Center
| | | | - Michael A Sutton
- Molecular and Integrative Physiology, University of Michigan-Ann Arbor
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan-Ann Arbor
| |
Collapse
|
6
|
Chen PW, Gasilina A, Yadav MP, Randazzo PA. Control of cell signaling by Arf GTPases and their regulators: Focus on links to cancer and other GTPase families. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1869:119171. [PMID: 34774605 DOI: 10.1016/j.bbamcr.2021.119171] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/23/2021] [Accepted: 11/04/2021] [Indexed: 12/31/2022]
Abstract
The ADP-ribosylation factors (Arfs) comprise a family of regulatory GTP binding proteins. The Arfs regulate membrane trafficking and cytoskeleton remodeling, processes critical for eukaryotes and which have been the focus of most studies on Arfs. A more limited literature describes a role in signaling and in integrating several signaling pathways to bring about specific cell behaviors. Here, we will highlight work describing function of Arf1, Arf6 and several effectors and regulators of Arfs in signaling.
Collapse
Affiliation(s)
- Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA, United States of America
| | - Anjelika Gasilina
- National Heart, Lung and Blood Institute, NIH, Bethesda, MD, United States of America(1); Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Mukesh P Yadav
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America
| | - Paul A Randazzo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, United States of America.
| |
Collapse
|
7
|
Turn RE, Linnert J, Gigante ED, Wolfrum U, Caspary T, Kahn RA. Roles for ELMOD2 and Rootletin in ciliogenesis. Mol Biol Cell 2021; 32:800-822. [PMID: 33596093 PMCID: PMC8108518 DOI: 10.1091/mbc.e20-10-0635] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
ELMOD2 is a GTPase-activating protein with uniquely broad specificity for ARF family GTPases. We previously showed that it acts with ARL2 in mitochondrial fusion and microtubule stability and with ARF6 during cytokinesis. Mouse embryonic fibroblasts deleted for ELMOD2 also displayed changes in cilia-related processes including increased ciliation, multiciliation, ciliary morphology, ciliary signaling, centrin accumulation inside cilia, and loss of rootlets at centrosomes with loss of centrosome cohesion. Increasing ARL2 activity or overexpressing Rootletin reversed these defects, revealing close functional links between the three proteins. This was further supported by the findings that deletion of Rootletin yielded similar phenotypes, which were rescued upon increasing ARL2 activity but not ELMOD2 overexpression. Thus, we propose that ARL2, ELMOD2, and Rootletin all act in a common pathway that suppresses spurious ciliation and maintains centrosome cohesion. Screening a number of markers of steps in the ciliation pathway supports a model in which ELMOD2, Rootletin, and ARL2 act downstream of TTBK2 and upstream of CP110 to prevent spurious release of CP110 and to regulate ciliary vesicle docking. These data thus provide evidence supporting roles for ELMOD2, Rootletin, and ARL2 in the regulation of ciliary licensing.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Emory University, Atlanta, GA 30322
| | - Joshua Linnert
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz 655099, Germany
| | - Eduardo D Gigante
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322.,Neuroscience Graduate Program, Emory University, Atlanta, GA 30322
| | - Uwe Wolfrum
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, Mainz 655099, Germany
| | - Tamara Caspary
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
8
|
Herrera A, Satchell KJF. Cross-Kingdom Activation of Vibrio Toxins by ADP-Ribosylation Factor Family GTPases. J Bacteriol 2020; 202:e00278-20. [PMID: 32900828 PMCID: PMC7685564 DOI: 10.1128/jb.00278-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Vibrio species use many different approaches to subvert, attack, and undermine the host response. The toxins they produce are often responsible for the devastating effects associated with their diseases. These toxins target a variety of host proteins, which leads to deleterious effects, including dissolution of cell organelle integrity and inhibition of protein secretion. Becoming increasingly prevalent as cofactors for Vibrio toxins are proteins of the small GTPase families. ADP-ribosylation factor small GTPases (ARFs) in particular are emerging as a common host cofactor necessary for full activation of Vibrio toxins. While ARFs are not the direct target of Vibrio cholerae cholera toxin (CT), ARF binding is required for its optimal activity as an ADP-ribosyltransferase. The makes caterpillars floppy (MCF)-like and the domain X (DmX) effectors of the Vibrio vulnificus multifunctional autoprocessing repeats-in-toxin (MARTX) toxin also both require ARFs to initiate autoprocessing and activation as independent effectors. ARFs are ubiquitously expressed in eukaryotes and are key regulators of many cellular processes, and as such they are ideal cofactors for Vibrio pathogens that infect many host species. In this review, we cover in detail the known Vibrio toxins that use ARFs as cross-kingdom activators to both stimulate and optimize their activity. We further discuss how these contrast to toxins and effectors from other bacterial species that coactivate, stimulate, or directly modify host ARFs as their mechanisms of action.
Collapse
Affiliation(s)
- Alfa Herrera
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
9
|
Nieuwenhuis B, Eva R. ARF6 and Rab11 as intrinsic regulators of axon regeneration. Small GTPases 2020; 11:392-401. [PMID: 29772958 PMCID: PMC6124649 DOI: 10.1080/21541248.2018.1457914] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/21/2018] [Indexed: 10/28/2022] Open
Abstract
Adult central nervous system (CNS) axons do not regenerate after injury because of extrinsic inhibitory factors, and a low intrinsic capacity for axon growth. Developing CNS neurons have a better regenerative ability, but lose this with maturity. This mini-review summarises recent findings which suggest one reason for regenerative failure is the selective distribution of growth machinery away from axons as CNS neurons mature. These studies demonstrate roles for the small GTPases ARF6 and Rab11 as intrinsic regulators of polarised transport and axon regeneration. ARF6 activation prevents the axonal transport of integrins in Rab11 endosomes in mature CNS axons. Decreasing ARF6 activation permits axonal transport, and increases regenerative ability. The findings suggest new targets for promoting axon regeneration after CNS injury.
Collapse
Affiliation(s)
- Bart Nieuwenhuis
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, The Netherlands
| | - Richard Eva
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Robinson Way, Cambridge, UK
| |
Collapse
|
10
|
Fisher S, Kuna D, Caspary T, Kahn RA, Sztul E. ARF family GTPases with links to cilia. Am J Physiol Cell Physiol 2020; 319:C404-C418. [PMID: 32520609 PMCID: PMC7500214 DOI: 10.1152/ajpcell.00188.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ADP-ribosylation factor (ARF) superfamily of regulatory GTPases, including both the ARF and ARF-like (ARL) proteins, control a multitude of cellular functions, including aspects of vesicular traffic, lipid metabolism, mitochondrial architecture, the assembly and dynamics of the microtubule and actin cytoskeletons, and other pathways in cell biology. Considering their general utility, it is perhaps not surprising that increasingly ARF/ARLs have been found in connection to primary cilia. Here, we critically evaluate the current knowledge of the roles four ARF/ARLs (ARF4, ARL3, ARL6, ARL13B) play in cilia and highlight key missing information that would help move our understanding forward. Importantly, these GTPases are themselves regulated by guanine nucleotide exchange factors (GEFs) that activate them and by GTPase-activating proteins (GAPs) that act as both effectors and terminators of signaling. We believe that the identification of the GEFs and GAPs and better models of the actions of these GTPases and their regulators will provide a much deeper understanding and appreciation of the mechanisms that underly ciliary functions and the causes of a number of human ciliopathies.
Collapse
Affiliation(s)
- Skylar Fisher
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Damian Kuna
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| | - Tamara Caspary
- 3Department of Human Genetics, Emory
University School of Medicine, Atlanta,
Georgia
| | - Richard A. Kahn
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Elizabeth Sztul
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| |
Collapse
|
11
|
Identification of candidate mediators of chemoresponse in breast cancer through therapy-driven selection of somatic variants. Breast Cancer Res Treat 2020; 183:607-616. [PMID: 32734521 PMCID: PMC7497675 DOI: 10.1007/s10549-020-05836-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022]
Abstract
Purpose More than a third of primary breast cancer patients are treated with cytotoxic chemotherapy, typically without guidance from predictive markers. Increased use of neoadjuvant chemotherapy provides opportunities for identification of molecules associated with treatment response, by comparing matched tumour samples before and after therapy. Our hypothesis was that somatic variants of increased prevalence after therapy promote resistance, while variants with reduced prevalence cause sensitivity. Methods We performed systematic analyses of matched pairs of cancer exomes from primary oestrogen receptor-positive/HER2-negative breast cancers (n = 6) treated with neoadjuvant epirubicin/cyclophosphamide. We identified candidate genes as mediators of chemotherapy response by consistent subclonal changes in somatic variant prevalence through therapy, predicted variant impact on gene function, and enrichment of specific functional pathways. Influence of candidate genes on breast cancer outcome was tested using publicly available breast cancer expression data (n = 1903). Results We identified 14 genes as the strongest candidate mediators of chemoresponse: TCHH, MUC17, ARAP2, FLG2, ABL1, CENPF, COL6A3, DMBT1, ITGA7, PLXNA1, S100PBP, SYNE1, ZFHX4, and CACNA1C. Genes contained somatic variants showing prevalence changes in up to 4 patients, with up to 3 being predicted as damaging. Genes coding for extra-cellular matrix components or related signalling pathways were significantly over-represented among variants showing prevalence changes. Expression of 5 genes (TCHH, ABL1, CENPF, S100PBP, and ZFHX4) was significantly associated with patient survival. Conclusions Genomic analysis of paired pre- and post-therapy samples resulting from neoadjuvant therapy provides a powerful method for identification of mediators of response. Genes we identified should be assessed as predictive markers or targets in chemo-sensitization. Electronic supplementary material The online version of this article (10.1007/s10549-020-05836-7) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
13
|
Luo Q, Zhang S, Zhang D, Yuan F, Chen X, Yang S. Expression of ASAP1 and FAK in gastric cancer and its clinicopathological significance. Oncol Lett 2020; 20:974-980. [PMID: 32566028 DOI: 10.3892/ol.2020.11612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 03/06/2020] [Indexed: 01/23/2023] Open
Abstract
The present study aimed to analyze the expression levels of adenosine diphosphate ribosylation factor guanylate kinase 1 (ASAP1) and focal adhesion kinase (FAK) in gastric cancer (GC) tissues in order to explore their association with clinicopathological features and prognosis. A total of 32 patients with GC were enrolled in the present study. All patients had complete clinical follow-up data and paraffin-embedded normal gastric mucosal tissues. The expression levels of ASAP1 and FAK in these tissues were measured by immunohistochemistry. The associations of ASAP1 and FAK expression with clinicopathological factors and the survival of patients with GC were subsequently analyzed. The expression levels of ASAP1 (59.4%) and FAK (68.8%) in GC tissues were significantly higher than those in normal gastric mucosal tissues (28.1 and 40.6%, P<0.05). The expression levels of ASAP1 and FAK were associated with depth of invasion, lymph node metastasis and pathological stage (P<0.05). ASAP1 expression was positively associated with FAK expression (P<0.001). In addition, ASAP1 and FAK expression levels were negatively associated with disease-free survival time and overall survival time (P<0.05). The 5-year overall survival rate was significantly higher in patients with negative ASAP1 or FAK expression compared with that in patients with positive ASAP1 or FAK expression (P<0.05). In conclusion, ASAP1 and FAK were highly expressed in human GC tissues and may serve a synergistic role in promoting tumorigenesis, progression, invasion and metastasis in patients with GC. ASAP1 and FAK expression in GC were associated with patient's survival. Therefore, ASAP1 and FAK may represent novel molecular markers for the pathophysiology and prognosis of GC.
Collapse
Affiliation(s)
- Qiong Luo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Suyun Zhang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Donghuan Zhang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Fang Yuan
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Xiangqi Chen
- Department of Respiratory Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| | - Sheng Yang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
14
|
D'Souza RS, Lim JY, Turgut A, Servage K, Zhang J, Orth K, Sosale NG, Lazzara MJ, Allegood J, Casanova JE. Calcium-stimulated disassembly of focal adhesions mediated by an ORP3/IQSec1 complex. eLife 2020; 9:54113. [PMID: 32234213 PMCID: PMC7159923 DOI: 10.7554/elife.54113] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Coordinated assembly and disassembly of integrin-mediated focal adhesions (FAs) is essential for cell migration. Many studies have shown that FA disassembly requires Ca2+ influx, however our understanding of this process remains incomplete. Here, we show that Ca2+ influx via STIM1/Orai1 calcium channels, which cluster near FAs, leads to activation of the GTPase Arf5 via the Ca2+-activated GEF IQSec1, and that both IQSec1 and Arf5 activation are essential for adhesion disassembly. We further show that IQSec1 forms a complex with the lipid transfer protein ORP3, and that Ca2+ influx triggers PKC-dependent translocation of this complex to ER/plasma membrane (PM) contact sites adjacent to FAs. In addition to allosterically activating IQSec1, ORP3 also extracts PI4P from the PM, in exchange for phosphatidylcholine. ORP3-mediated lipid exchange is also important for FA turnover. Together, these findings identify a new pathway that links calcium influx to FA turnover during cell migration.
Collapse
Affiliation(s)
- Ryan S D'Souza
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Jun Y Lim
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Alper Turgut
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kelly Servage
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Junmei Zhang
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, United States.,Howard Hughes Medical Institute, Dallas, United States
| | - Nisha G Sosale
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Matthew J Lazzara
- Department of Chemical Engineering, University of Virginia, Charlottesville, United States
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, United States
| | - James E Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, United States
| |
Collapse
|
15
|
Casalou C, Faustino A, Silva F, Ferreira IC, Vaqueirinho D, Ferreira A, Castanheira P, Barona T, Ramalho JS, Serpa J, Félix A, Barral DC. Arl13b Regulates Breast Cancer Cell Migration and Invasion by Controlling Integrin-Mediated Signaling. Cancers (Basel) 2019; 11:cancers11101461. [PMID: 31569511 PMCID: PMC6826833 DOI: 10.3390/cancers11101461] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/13/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the first cause of cancer-related mortality among women worldwide, according to the most recent estimates. This mortality is mainly caused by the tumors' ability to form metastases. Cancer cell migration and invasion are essential for metastasis and rely on the interplay between actin cytoskeleton remodeling and cell adhesion. Therefore, understanding the mechanisms by which cancer cell invasion is controlled may provide new strategies to impair cancer progression. We investigated the role of the ADP-ribosylation factor (Arf)-like (Arl) protein Arl13b in breast cancer cell migration and invasion in vitro, using breast cancer cell lines and in vivo, using mouse orthotopic models. We show that Arl13b silencing inhibits breast cancer cell migration and invasion in vitro, as well as cancer progression in vivo. We also observed that Arl13b is upregulated in breast cancer cell lines and patient tissue samples. Moreover, we found that Arl13b localizes to focal adhesions (FAs) and interacts with β3-integrin. Upon Arl13b silencing, β3-integrin cell surface levels and FA size are increased and integrin-mediated signaling is inhibited. Therefore, we uncover a role for Arl13b in breast cancer cell migration and invasion and provide a new mechanism for how ARL13B can function as an oncogene, through the modulation of integrin-mediated signaling.
Collapse
Affiliation(s)
- Cristina Casalou
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - Alexandra Faustino
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, 1169-056 Lisboa, Portugal.
| | - Fernanda Silva
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal.
| | - Inês C Ferreira
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - Daniela Vaqueirinho
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.
| | - Andreia Ferreira
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - Pedro Castanheira
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- ProRegeM-PhD Program in Mechanisms of Disease and Regenerative Medicine, 1169-056 Lisboa, Portugal.
| | - Teresa Barona
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - José S Ramalho
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| | - Jacinta Serpa
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal.
| | - Ana Félix
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal.
| | - Duarte C Barral
- CEDOC, NOVA Medical School| Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-82 Lisboa, Portugal.
| |
Collapse
|
16
|
Pipaliya SV, Schlacht A, Klinger CM, Kahn RA, Dacks J. Ancient complement and lineage-specific evolution of the Sec7 ARF GEF proteins in eukaryotes. Mol Biol Cell 2019; 30:1846-1863. [PMID: 31141460 PMCID: PMC6727740 DOI: 10.1091/mbc.e19-01-0073] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) are the initiators of signaling by every regulatory GTPase, which in turn act to regulate a wide array of essential cellular processes. To date, each family of GTPases is activated by distinct families of GEFs. Bidirectional membrane trafficking is regulated by ADP-ribosylation factor (ARF) GTPases and the development throughout eukaryotic evolution of increasingly complex systems of such traffic required the acquisition of a functionally diverse cohort of ARF GEFs to control it. We performed phylogenetic analyses of ARF GEFs in eukaryotes, defined by the presence of the Sec7 domain, and found three subfamilies (BIG, GBF1, and cytohesins) to have been present in the ancestor of all eukaryotes. The four other subfamilies (EFA6/PSD, IQSEC7/BRAG, FBX8, and TBS) are opisthokont, holozoan, metazoan, and alveolate/haptophyte specific, respectively, and each is derived from cytohesins. We also identified a cytohesin-derived subfamily, termed ankyrin repeat-containing cytohesin, that independently evolved in amoebozoans and members of the SAR and haptophyte clades. Building on evolutionary data for the ARF family GTPases and their GTPase--activating proteins allowed the generation of hypotheses about ARF GEF protein function(s) as well as a better understanding of the origins and evolution of cellular complexity in eukaryotes.
Collapse
Affiliation(s)
- Shweta V Pipaliya
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Alexander Schlacht
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Christen M Klinger
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| | - Joel Dacks
- Department of Medicine, Division of Infectious Diseases, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada.,Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom
| |
Collapse
|
17
|
Sztul E, Chen PW, Casanova JE, Cherfils J, Dacks JB, Lambright DG, Lee FJS, Randazzo PA, Santy LC, Schürmann A, Wilhelmi I, Yohe ME, Kahn RA. ARF GTPases and their GEFs and GAPs: concepts and challenges. Mol Biol Cell 2019; 30:1249-1271. [PMID: 31084567 PMCID: PMC6724607 DOI: 10.1091/mbc.e18-12-0820] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Detailed structural, biochemical, cell biological, and genetic studies of any gene/protein are required to develop models of its actions in cells. Studying a protein family in the aggregate yields additional information, as one can include analyses of their coevolution, acquisition or loss of functionalities, structural pliability, and the emergence of shared or variations in molecular mechanisms. An even richer understanding of cell biology can be achieved through evaluating functionally linked protein families. In this review, we summarize current knowledge of three protein families: the ARF GTPases, the guanine nucleotide exchange factors (ARF GEFs) that activate them, and the GTPase-activating proteins (ARF GAPs) that have the ability to both propagate and terminate signaling. However, despite decades of scrutiny, our understanding of how these essential proteins function in cells remains fragmentary. We believe that the inherent complexity of ARF signaling and its regulation by GEFs and GAPs will require the concerted effort of many laboratories working together, ideally within a consortium to optimally pool information and resources. The collaborative study of these three functionally connected families (≥70 mammalian genes) will yield transformative insights into regulation of cell signaling.
Collapse
Affiliation(s)
- Elizabeth Sztul
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267
| | - James E. Casanova
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908
| | - Jacqueline Cherfils
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS and Ecole Normale Supérieure Paris-Saclay, 94235 Cachan, France
| | - Joel B. Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - David G. Lambright
- Program in Molecular Medicine and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Amherst, MA 01605
| | - Fang-Jen S. Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | | | - Lorraine C. Santy
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802
| | - Annette Schürmann
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Ilka Wilhelmi
- German Institute of Human Nutrition, 85764 Potsdam-Rehbrücke, Germany
| | - Marielle E. Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Richard A. Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322-3050
| |
Collapse
|
18
|
Liang M, Xie X, Pan J, Jin G, Yu C, Wei Z. Structural basis of the target-binding mode of the G protein-coupled receptor kinase-interacting protein in the regulation of focal adhesion dynamics. J Biol Chem 2019; 294:5827-5839. [PMID: 30737283 DOI: 10.1074/jbc.ra118.006915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/04/2019] [Indexed: 12/27/2022] Open
Abstract
Focal adhesions (FAs) are specialized sites where intracellular cytoskeleton elements connect to the extracellular matrix and thereby control cell motility. FA assembly depends on various scaffold proteins, including the G protein-coupled receptor kinase-interacting protein 1 (GIT1), paxillin, and liprin-α. Although liprin-α and paxillin are known to competitively interact with GIT1, the molecular basis governing these interactions remains elusive. To uncover the underlying mechanisms of how GIT1 is involved in FA assembly by alternatively binding to liprin-α and paxillin, here we solved the crystal structures of GIT1 in complex with liprin-α and paxillin at 1.8 and 2.6 Å resolutions, respectively. These structures revealed that the paxillin-binding domain (PBD) of GIT1 employs distinct binding modes to recognize a single α-helix of liprin-α and the LD4 motif of paxillin. Structure-based design of protein variants produced two binding-deficient GIT1 variants; specifically, these variants lost the ability to interact with liprin-α only or with both liprin-α and paxillin. Expressing the GIT1 variants in COS7 cells, we discovered that the two PBD-meditated interactions play different roles in either recruiting GIT1 to FA or facilitating FA assembly. Additionally, we demonstrate that, unlike for the known binding mode of the FAT domain to LD motifs, the PBD of GIT1 uses different surface patches to achieve high selectivity in LD motif recognition. In summary, our results have uncovered the mechanisms by which GIT1's PBD recognizes cognate paxillin and liprin-α structures, information we anticipate will be useful for future investigations of GIT1-protein interactions in cells.
Collapse
Affiliation(s)
- Mingfu Liang
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingqiao Xie
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jian Pan
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gaowei Jin
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cong Yu
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China; the Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Shenzhen 518055, China; the Shenzhen Key Laboratory of Cell Microenvironment, Shenzhen 518055, China.
| | - Zhiyi Wei
- From the Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
19
|
Tanna CE, Goss LB, Ludwig CG, Chen PW. Arf GAPs as Regulators of the Actin Cytoskeleton-An Update. Int J Mol Sci 2019; 20:ijms20020442. [PMID: 30669557 PMCID: PMC6358971 DOI: 10.3390/ijms20020442] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf GAPs. Arf GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function.
Collapse
Affiliation(s)
- Christine E Tanna
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Louisa B Goss
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Calvin G Ludwig
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| | - Pei-Wen Chen
- Department of Biology, Williams College, Williamstown, MA 01267, USA.
| |
Collapse
|
20
|
Giguère H, Dumont AA, Berthiaume J, Oliveira V, Laberge G, Auger-Messier M. ADAP1 limits neonatal cardiomyocyte hypertrophy by reducing integrin cell surface expression. Sci Rep 2018; 8:13605. [PMID: 30206251 PMCID: PMC6134004 DOI: 10.1038/s41598-018-31784-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
The ArfGAP with dual PH domains 1 (ADAP1) regulates the activation of the hypertrophic mitogen-activated protein kinase ERK1/2 pathway in non-cardiomyocytes. However, its role in cardiomyocytes is unknown. Our aim was to characterize the role of ADAP1 in the hypertrophic process of cardiomyocytes. We assessed the expression of ADAP1 in the hearts of adult and neonatal rats by RT-qPCR and Western blotting and showed that it is preferentially expressed in cardiomyocytes. Adenoviral-mediated ADAP1 overexpression in cultured rat neonatal ventricular cardiomyocytes limited their serum-induced hypertrophic response as measured by immunofluorescence microscopy. Furthermore, ADAP1 overexpression completely blocked phenylephrine- and Mek1 constitutively active (Mek1ca) mutant-induced hypertrophy in these cells. The anti-hypertrophic effect of ADAP1 was not caused by a reduction in protein synthesis, interference with the Erk1/2 pathway, or disruption of the fetal gene program activation, as assessed by nascent protein labeling, Western blotting, and RT-qPCR, respectively. An analysis of cultured cardiomyocytes by confocal microscopy revealed that ADAP1 partially re-organizes α-actinin into dense puncta, a phenomenon that is synergized by Mek1ca overexpression. Biotin labeling of cell surface proteins from cardiomyocytes overexpressing ADAP1 revealed that it reduces the surface expression of β1-integrin, an effect that is strongly potentiated by Mek1ca overexpression. Our findings provide insights into the anti-hypertrophic function of ADAP1 in cardiomyocytes.
Collapse
Affiliation(s)
- Hugo Giguère
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Audrey-Ann Dumont
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Berthiaume
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vanessa Oliveira
- Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Gino Laberge
- Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mannix Auger-Messier
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada. .,Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada. .,Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|