1
|
Antony F, Kang X, Pundkar C, Wang C, Mishra A, Chen P, Babu RJ, Suryawanshi A. Targeting β-catenin using XAV939 nanoparticle promotes immunogenic cell death and suppresses conjunctival melanoma progression. Int J Pharm 2023; 640:123043. [PMID: 37172631 PMCID: PMC10399699 DOI: 10.1016/j.ijpharm.2023.123043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Many tumors dysregulate Wnt/β-catenin pathway to promote stem-cell-like phenotype, tumorigenesis, immunosuppression, and resistance to targeted cancer immunotherapies. Therefore, targeting this pathway is a promising therapeutic approach to suppress tumor progression and elicit robust anti-tumor immunity. In this study, using a nanoparticle formulation for XAV939 (XAV-Np), a tankyrase inhibitor that promotes β-catenin degradation, we investigated the effect of β-catenin inhibition on melanoma cell viability, migration, and tumor progression using a mouse model of conjunctival melanoma. XAV-Nps were uniform and displayed near-spherical morphology with size stability for upto 5 days. We show that XAV-Np treatment of mouse melanoma cells significantly suppresses cell viability, tumor cell migration, and tumor spheroid formation compared to control nanoparticle (Con-Np) or free XAV939-treated groups. Further, we demonstrate that XAV-Np promotes immunogenic cell death (ICD) of tumor cells with a significant extracellular release or expression of ICD molecules, including high mobility group box 1 protein (HMGB1), calreticulin (CRT), and adenosine triphosphate (ATP). Finally, we show that local intra-tumoral delivery of XAV-Nps during conjunctival melanoma progression significantly suppresses tumor size and conjunctival melanoma progression compared to Con-Nps-treated animals. Collectively, our data suggest that selective inhibition of β-catenin in tumor cells using nanoparticle-based targeted delivery represents a novel approach to suppress tumor progression through increased tumor cell ICD.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Chuanyu Wang
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
2
|
Pundkar C, Antony F, Kang X, Mishra A, Babu RJ, Chen P, Li F, Suryawanshi A. Targeting Wnt/β-catenin signaling using XAV939 nanoparticles in tumor microenvironment-conditioned macrophages promote immunogenicity. Heliyon 2023; 9:e16688. [PMID: 37313143 PMCID: PMC10258387 DOI: 10.1016/j.heliyon.2023.e16688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/15/2023] Open
Abstract
The aberrant activation of Wnt/β-catenin signaling in tumor cells and immune cells in the tumor microenvironment (TME) promotes malignant transformation, metastasis, immune evasion, and resistance to cancer treatments. The increased Wnt ligand expression in TME activates β-catenin signaling in antigen (Ag)-presenting cells (APCs) and regulates anti-tumor immunity. Previously, we showed that activation of Wnt/β-catenin signaling in dendritic cells (DCs) promotes induction of regulatory T cell responses over anti-tumor CD4+ and CD8+ effector T cell responses and promotes tumor progression. In addition to DCs, tumor-associated macrophages (TAMs) also serve as APCs and regulate anti-tumor immunity. However, the role of β-catenin activation and its effect on TAM immunogenicity in TME is largely undefined. In this study, we investigated whether inhibiting β-catenin in TME-conditioned macrophages promotes immunogenicity. Using nanoparticle formulation of XAV939 (XAV-Np), a tankyrase inhibitor that promotes β-catenin degradation, we performed in vitro macrophage co-culture assays with melanoma cells (MC) or melanoma cell supernatants (MCS) to investigate the effect on macrophage immunogenicity. We show that XAV-Np-treatment of macrophages conditioned with MC or MCS significantly upregulates the cell surface expression of CD80 and CD86 and suppresses the expression of PD-L1 and CD206 compared to MC or MCS-conditioned macrophages treated with control nanoparticle (Con-Np). Further, XAV-Np-treated macrophages conditioned with MC or MCS significantly increased IL-6 and TNF-α production, with reduced IL-10 production compared to Con-Np-treated macrophages. Moreover, the co-culture of MC and XAV-Np-treated macrophages with T cells resulted in increased CD8+ T cell proliferation compared to Con-Np-treated macrophages. These data suggest that targeted β-catenin inhibition in TAMs represents a promising therapeutic approach to promote anti-tumor immunity.
Collapse
Affiliation(s)
- Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Pengyu Chen
- Materials Research and Education Center, Materials Engineering, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849, USA
| | - Feng Li
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Frega G, Wu Q, Le Naour J, Vacchelli E, Galluzzi L, Kroemer G, Kepp O. Trial Watch: experimental TLR7/TLR8 agonists for oncological indications. Oncoimmunology 2020; 9:1796002. [PMID: 32934889 PMCID: PMC7466852 DOI: 10.1080/2162402x.2020.1796002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Resiquimod (R848) and motolimod (VTX-2337) are second-generation experimental derivatives of imiquimod, an imidazoquinoline with immunostimulatory properties originally approved by the US Food and Drug Administration for the topical treatment of actinic keratosis and genital warts more than 20 years ago. Both resiquimod and motolimod operate as agonists of Toll-like receptor 7 (TLR7) and/or TLR8, in thus far delivering adjuvant-like signals to antigen-presenting cells (APCs). In line with such an activity, these compounds are currently investigated as immunostimulatory agents for the treatment of various malignancies, especially in combination with peptide-based, dendritic cell-based, cancer cell lysate-based, or DNA-based vaccines. Here, we summarize preclinical and clinical evidence recently collected to support the development of resiquimod and motolimod and other TLR7/TLR8 agonists as anticancer agents.
Collapse
Affiliation(s)
- Giorgio Frega
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Department of Experimental, Diagnostic and Specialty Medicine, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Qi Wu
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Julie Le Naour
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institutet, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Oliver Kepp
- Equipe labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Abstract
Stimulator of interferon response cGAMP interactor 1 (STING1, best known as STING) is an endoplasmic reticulum-sessile protein that serves as a signaling hub, receiving input from several pattern recognition receptors, most of which sense ectopic DNA species in the cytosol. In particular, STING ensures the production of type I interferon (IFN) in response to invading DNA viruses, bacterial pathogens, as well as DNA leaking from mitochondria or the nucleus (e.g., in cells exposed to chemotherapy or radiotherapy). As a type I IFN is critical for the initiation of anticancer immune responses, the pharmaceutical industry has generated molecules that directly activate STING for use in oncological indications. Such STING agonists are being tested in clinical trials with the rationale of activating STING in tumor cells or tumor-infiltrating immune cells (including dendritic cells) to elicit immunostimulatory effects, alone or in combination with a range of established chemotherapeutic and immunotherapeutic regimens. In this Trial Watch, we discuss preclinical evidence and accumulating clinical experience shaping the design of Phase I and Phase II trials that evaluate the safety and preliminary efficacy of STING agonists in cancer patients.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, USA.,Sandra and Edward Meyer Cancer Center, New York, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Université Paris Sud, Paris Saclay, Medicine Kremlin Bicêtre, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2020; 9:1777625. [PMID: 32934882 PMCID: PMC7466863 DOI: 10.1080/2162402x.2020.1777625] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the first, rate-limiting step of the so-called “kynurenine pathway”, which converts the essential amino acid L-tryptophan (Trp) into the immunosuppressive metabolite L-kynurenine (Kyn). While expressed constitutively by some tissues, IDO1 can also be induced in specific subsets of antigen-presenting cells that ultimately favor the establishment of immune tolerance to tumor antigens. At least in part, the immunomodulatory functions of IDO1 can be explained by depletion of Trp and accumulation of Kyn and its derivatives. In animal tumor models, genetic or pharmacological IDO1 inhibition can cause the (re)activation of anticancer immune responses. Similarly, neoplasms expressing high levels of IDO1 may elude anticancer immunosurveillance. Therefore, IDO1 inhibitors represent promising therapeutic candidates for cancer therapy, and some of them have already entered clinical evaluation. Here, we summarize preclinical and clinical studies testing IDO1-targeting interventions for oncologic indications.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
6
|
Le Naour J, Galluzzi L, Zitvogel L, Kroemer G, Vacchelli E. Trial watch: TLR3 agonists in cancer therapy. Oncoimmunology 2020; 9:1771143. [PMID: 32934877 PMCID: PMC7466857 DOI: 10.1080/2162402x.2020.1771143] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Toll-like receptor 3 (TLR3) is a pattern recognition receptor that senses exogenous (viral) as well as endogenous (mammalian) double-stranded RNA in endosomes. On activation, TLR3 initiates a signal transduction pathway that culminates with the secretion of pro-inflammatory cytokines including type I interferon (IFN). The latter is essential not only for innate immune responses to infection but also for the initiation of antigen-specific immunity against viruses and malignant cells. These aspects of TLR3 biology have supported the development of various agonists for use as stand-alone agents or combined with other therapeutic modalities in cancer patients. Here, we review recent preclinical and clinical advances in the development of TLR3 agonists for oncological disorders. Abbreviations cDC, conventional dendritic cell; CMT, cytokine modulating treatment; CRC, colorectal carcinoma; CTL, cytotoxic T lymphocyte; DC, dendritic cell; dsRNA, double-stranded RNA; FLT3LG, fms-related receptor tyrosine kinase 3 ligand; HNSCC, head and neck squamous cell carcinoma; IFN, interferon; IL, interleukin; ISV, in situ vaccine; MUC1, mucin 1, cell surface associated; PD-1, programmed cell death 1; PD-L1, programmed death-ligand 1; polyA:U, polyadenylic:polyuridylic acid; polyI:C, polyriboinosinic:polyribocytidylic acid; TLR, Toll-like receptor.
Collapse
Affiliation(s)
- Julie Le Naour
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Faculty of Medicine Kremlin Bicêtre, Université Paris Sud, Paris Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université De Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France.,Equipe Labellisée Ligue Contre Le Cancer, INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,AP-HP, Hôpital Européen Georges Pompidou, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Erika Vacchelli
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, INSERM U1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
7
|
Abstract
Research over the last decades has provided strong evidence for the pivotal role of the tumor-associated blood and lymphatic vasculature in supporting immunoevasion and in subverting T cell-mediated immunosurveillance. Conversely, tumor blood and lymphatic vessel growth is in part regulated by the immune system, with infiltrating innate as well as adaptive immune cells providing both immunosuppressive and various angiogenic signals. Thus, tumor angiogenesis and escape of immunosurveillance are two cancer hallmarks that are tightly linked and interregulated by cell constituents from compartments secreting both chemokines and cytokines. In this review, we discuss the implication and regulation of innate and adaptive immune cells in regulating blood and lymphatic angiogenesis in tumor progression and metastases. Moreover, we also highlight novel therapeutic approaches that target the tumor vasculature as well as the immune compartment to sustain and improve therapeutic efficacy in cancer.
Collapse
Affiliation(s)
- Massimiliano Mazzone
- VIB-Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven B-3000 Belgium;
| | - Gabriele Bergers
- VIB-Center for Cancer Biology and Department of Oncology, KU Leuven, Leuven B-3000 Belgium;
- Department of Neurological Surgery, UCSF Comprehensive Cancer Center, San Francisco, California 94158, USA;
| |
Collapse
|
8
|
Peng M, Li X, Lei G, Weng YM, Hu MX, Song QB. The efficacy and safety of immune checkpoint inhibitor combination therapy in lung cancer: a systematic review and meta-analysis. Onco Targets Ther 2018; 11:7369-7383. [PMID: 30425525 PMCID: PMC6204847 DOI: 10.2147/ott.s177318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The value of immune checkpoint inhibitor (ICI) combination therapy for patients with lung cancer remains unclear. We conducted a meta-analysis using PubMed, Embase, and ClinicalTrials.gov databases to identify eligible randomized controlled trials (RCTs) that might provide a reference for clinical practice. The selection criteria were defined according to the population, intervention, comparison, outcome and study design (PICOS) framework. In all, 12 RCTs with 5,989 patients were included in this meta-analysis. Our results showed that ICI combination therapy was significantly associated with the improvement of overall response rate (ORR) (RR =1.44 [95% CI 1.19, 1.74], P=0.0002), progression-free survival (PFS) (HR =0.67 [95% CI 0.59, 0.77], P<0.00001), and OS (HR =0.81 [95% CI 0.70, 0.95], P=0.008) in lung cancer. In subgroup analyses, combination ICI therapy significantly prolonged OS in non-small-cell lung cancer (NSCLC) patients (HR =0.80 [95% CI 0.73, 0.88], P<0.00001) but not in SCLC (HR =0.94 [95% CI 0.82, 1.08], P=0.40) patients. Data suggested that PD-1 inhibitors had higher efficacy and safety profiles than PD-L1 and CTLA-4 inhibitors in combination ICI therapy for lung cancer patients. Furthermore, tolerability analysis revealed higher incidences of grade ≥3 AEs, fatigue, and increased transaminases from combination ICI therapy. In conclusion, our meta-analysis indicated that combination ICI therapy should be considered in clinical practice and future study designs for NSCLC patients. However, the current data do not support the large-scale clinical application of combination ICI therapy in SCLC patients.
Collapse
Affiliation(s)
- Min Peng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China,
| | - Xing Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Gu Lei
- Department of Pathology, Huangshi Central Hospital of Edong Healthcare Group, Huangshi 435000, Hubei Province, China
| | - Yi Ming Weng
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China,
| | - Meng Xue Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China,
| | - Qi Bin Song
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China,
| |
Collapse
|
9
|
Budczies J, Seidel A, Christopoulos P, Endris V, Kloor M, Győrffy B, Seliger B, Schirmacher P, Stenzinger A, Denkert C. Integrated analysis of the immunological and genetic status in and across cancer types: impact of mutational signatures beyond tumor mutational burden. Oncoimmunology 2018; 7:e1526613. [PMID: 30524909 DOI: 10.1080/2162402x.2018.1526613] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/10/2018] [Accepted: 09/13/2018] [Indexed: 12/25/2022] Open
Abstract
Harnessing the immune system by checkpoint blockade has greatly expanded the therapeutic options for advanced cancer. Since the efficacy of immunotherapies is influenced by the molecular make-up of the tumor and its crosstalk with the immune system, comprehensive analysis of genetic and immunologic tumor characteristics is essential to gain insight into mechanisms of therapy response and resistance. We investigated the association of immune cell contexture and tumor genetics including tumor mutational burden (TMB), copy number alteration (CNA) load, mutant allele heterogeneity (MATH) and specific mutational signatures (MutSigs) using TCGA data of 5722 tumor samples from 21 cancer types. Among all genetic variables, MutSigs associated with DNA repair deficiency and AID/APOBEC gene activity showed the strongest positive correlations with immune parameters. For smoking-related and UV-light-exposure associated MutSigs a few positive correlations were identified, while MutSig 1 (clock-like process) correlated non-significantly or negatively with the major immune parameters in most cancer types. High TMB was associated with high immune cell infiltrates in some but not all cancer types, in contrast, high CNA load and high MATH were mostly associated with low immune cell infiltrates. While a bi- or multimodal distribution of TMB was observed in colorectal, stomach and endometrial cancer where its levels were associated with POLE/POLD1 mutations and MSI status, TMB was unimodal distributed in the most other cancer types including NSCLC and melanoma. In summary, this study uncovered specific genetic-immunology associations in major cancer types and suggests that mutational signatures should be further investigated as interesting candidates for response prediction beyond TMB.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Charité University Hospital, Berlin, Germany.,Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Berlin and Heidelberg partner sites, Germany
| | - Anja Seidel
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany.,German Center for Lung Research (DZL), Germany
| | - Volker Endris
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU), University Hospital Heidelberg, Heidelberg, Germany
| | - Balázs Győrffy
- 2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
| | - Barbara Seliger
- Institute of Medical Immunology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Berlin and Heidelberg partner sites, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Berlin and Heidelberg partner sites, Germany
| | - Carsten Denkert
- Institute of Pathology, Charité University Hospital, Berlin, Germany.,German Cancer Consortium (DKTK), Berlin and Heidelberg partner sites, Germany
| |
Collapse
|
10
|
Pilla L, Ferrone S, Maccalli C. Methods for improving the immunogenicity and efficacy of cancer vaccines. Expert Opin Biol Ther 2018; 18:765-784. [PMID: 29874943 PMCID: PMC8670419 DOI: 10.1080/14712598.2018.1485649] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Cancer vaccines represent one of the oldest immunotherapy strategies. A variety of tumor-associated antigens have been exploited to investigate their immunogenicity as well as multiple strategies for vaccine administration. These efforts have led to the development of several clinical trials in tumors with different histological origins to test the clinical efficacy of cancer vaccines. However, suboptimal clinical results have been reported mainly due to the lack of optimized strategies to induce strong and sustained systemic tumor antigen-specific immune responses. AREAS COVERED We provide an overview of different types of cancer vaccines that have been developed and used in the context of clinical studies. Moreover, we review different preclinical and clinical strategies pursued to enhance the immunogenicity, stability, and targeting at tumor site of cancer vaccines. EXPERT OPINION Additional and appropriate preclinical studies are warranted to optimize the immunogenicity and delivery of cancer vaccines. The appropriate choice of target antigens is challenging; however, the exploitation of neoantigens generated from somatic mutations of tumor cells represents a promising approach to target highly immunogenic tumor-specific antigens. Remarkably, the investigation of the combination of cancer vaccines with immunomodulating agents able to skew the tumor microenvironment from immunosuppressive to immunostimulating will dramatically improve their clinical efficacy.
Collapse
Affiliation(s)
- Lorenzo Pilla
- Medical Oncology Unit, San Gerardo Hospital, Monza, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Maccalli
- Clinical Research Center, Division of Translational Medicine, Sidra Medicine, Doha, Qatar
| |
Collapse
|
11
|
Lowenstein PR, Castro MG. Evolutionary basis of a new gene- and immune-therapeutic approach for the treatment of malignant brain tumors: from mice to clinical trials for glioma patients. Clin Immunol 2018; 189:43-51. [PMID: 28720549 PMCID: PMC5768465 DOI: 10.1016/j.clim.2017.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 02/06/2023]
Abstract
Glioma cells are one of the most aggressive and malignant tumors. Following initial surgery, and radio-chemotherapy they progress rapidly, so that patients' median survival remains under two years. They invade throughout the brain, which makes them difficult to treat, and are universally lethal. Though total resection is always attempted it is not curative. Standard of care in 2016 comprises surgical resection, radiotherapy and chemotherapy (temozolomide). Median survival is currently ~14-20months post-diagnosis though it can be higher in high complexity medical university centers, or during clinical trials. Why the immune system fails to recognize the growing brain tumor is not completely understood. We believe that one reason for this failure is that the brain lacks cells that perform the role that dendritic cells serve in other organs. The lack of functional dendritic cells from the brain causes the brain to be deficient in priming systemic immune responses to glioma antigens. To overcome this drawback we reconstituted the brain immune system for it to initiate and prime anti-glioma immune responses from within the brain. To achieve brain immune reconstitution adenoviral vectors are injected into the resection cavity or remaining tumor. One adenoviral vector expresses the HSV-1 derived thymidine kinase which converts ganciclovir into phospho-ganciclovir which becomes cytotoxic to dividing cells. The second adenovirus expresses the cytokine fms-like tyrosine kinase 3 ligand (Flt3L). Flt3L differentiates precursors into dendritic cells and acts as a chemokine for dendritic cells. This results in HSV-1/ganciclovir killing of tumor cells, and the release of tumor antigens, which are then taken up by dendritic cells recruited to the brain tumor microenvironment by Flt3L. Concomitant release of HMGB1, a TLR2 agonist that activates dendritic cells, stimulates dendritic cells loaded with glioma antigens to migrate to the cervical lymph nodes to prime a systemic CD8+ T cytotoxic killing of brain tumor cells. This induced immune response causes glioma-specific cytotoxicity, induces immunological memory, and does not cause brain toxicity or autoimmunity. A Phase I Clinical Trial, to test our hypothesis in human patients, was opened in December 2013 (see: NCT01811992, Combined Cytotoxic and Immune-Stimulatory Therapy for Glioma, at ClinicalTrials.gov). This trial is a first in human trial to test whether the re-engineering of the brain immune system can serve to treat malignant brain tumors. The long and winding road from the laboratory to the clinical trial follows below.
Collapse
Affiliation(s)
- Pedro R Lowenstein
- Department of Neurosurgery, The University of Michigan, The Medical School, Ann Arbor, Michigan, United States; Department of Cell and Developmental Biology, The University of Michigan, The Medical School, Ann Arbor, Michigan, United States.
| | - Maria G Castro
- Department of Neurosurgery, The University of Michigan, The Medical School, Ann Arbor, Michigan, United States; Department of Cell and Developmental Biology, The University of Michigan, The Medical School, Ann Arbor, Michigan, United States
| |
Collapse
|
12
|
Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology 2017; 6:e1398878. [PMID: 29209575 DOI: 10.1080/2162402x.2017.1398878] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022] Open
Abstract
DNA-based vaccination is a promising approach to cancer immunotherapy. DNA-based vaccines specific for tumor-associated antigens (TAAs) are indeed relatively simple to produce, cost-efficient and well tolerated. However, the clinical efficacy of DNA-based vaccines for cancer therapy is considerably limited by central and peripheral tolerance. During the past decade, considerable efforts have been devoted to the development and characterization of novel DNA-based vaccines that would circumvent this obstacle. In this setting, particular attention has been dedicated to the route of administration, expression of modified TAAs, co-expression of immunostimulatory molecules, and co-delivery of immune checkpoint blockers. Here, we review preclinical and clinical progress on DNA-based vaccines for cancer therapy.
Collapse
Affiliation(s)
- Stefano Pierini
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Renzo Perales-Linares
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mireia Uribe-Herranz
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan G Pol
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France.,Université Pierre et Marie Curie/Paris VI, Paris.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Andrea Facciabene
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Ovarian Cancer Research Center (OCRC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
13
|
Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology 2017; 6:e1371896. [PMID: 29209572 PMCID: PMC5706611 DOI: 10.1080/2162402x.2017.1371896] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/14/2022] Open
Abstract
The goal of cancer immunotherapy is to establish new or boost pre-existing anticancer immune responses that eradicate malignant cells while generating immunological memory to prevent disease relapse. Over the past few years, immunomodulatory monoclonal antibodies (mAbs) that block co-inhibitory receptors on immune effectors cells - such as cytotoxic T lymphocyte-associated protein 4 (CTLA4), programmed cell death 1 (PDCD1, best known as PD-1) - or their ligands - such as CD274 (best known as PD-L1) - have proven very successful in this sense. As a consequence, many of such immune checkpoint blockers (ICBs) have already entered the clinical practice for various oncological indications. Considerable attention is currently being attracted by a second group of immunomodulatory mAbs, which are conceived to activate co-stimulatory receptors on immune effector cells. Here, we discuss the mechanisms of action of these immunostimulatory mAbs and summarize recent progress in their preclinical and clinical development.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Rienk Offringa
- Department of General Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Division of Molecular Oncology of Gastrointestinal Tumors, German Cancer Research Center, Heidelberg, Germany
- DKFZ-Bayer Joint Immunotherapeutics Laboratory, German Cancer Research Center, Heidelberg, Germany
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, France
- Université Pierre et Marie Curie/Paris VI, Paris
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- INSERM, U1138, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
- Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP; Paris, France
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
14
|
Long J, Lin J, Wang A, Wu L, Zheng Y, Yang X, Wan X, Xu H, Chen S, Zhao H. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy. J Hematol Oncol 2017; 10:146. [PMID: 28774337 PMCID: PMC5543600 DOI: 10.1186/s13045-017-0511-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/12/2017] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal (GI) malignancies are the most prevalent tumors worldwide, with increasing incidence and mortality. Although surgical resection, chemotherapy, radiotherapy, and molecular targeted therapy have led to significant advances in the treatment of GI cancer patients, overall survival is still low. Therefore, alternative strategies must be identified to improve patient outcomes. In the tumor microenvironment, tumor cells can escape the host immune response through the interaction of PD-1 and PD-L, which inhibits the function of T cells and tumor-infiltrating lymphocytes while increasing the function of immunosuppressive T regulatory cells. The use of an anti-PD-1/PD-L blockade enables reprogramming of the immune system to efficiently identify and kill tumor cells. In recent years, the efficacy of PD-1/PD-L blockade has been demonstrated in many tumors, and this treatment is expected to be a pan-immunotherapy for tumors. Here, we review the signaling pathway underlying the dysregulation of PD-1/PD-L in tumors, summarize the current clinical data for PD-1/PD-L inhibitors in GI malignancies, and discuss road toward precision immunotherapy in relation to PD-1/PD-L blockade. The preliminary data for PD-1/PD-L inhibitors are encouraging, and the precision immunotherapy of PD-1/PD-L inhibitors will be a viable and pivotal clinical strategy for GI cancer therapy.
Collapse
Affiliation(s)
- Junyu Long
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haifeng Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuguang Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Jain V, Bahia J, Mohebtash M, Barac A. Cardiovascular Complications Associated With Novel Cancer Immunotherapies. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2017; 19:36. [PMID: 28401456 DOI: 10.1007/s11936-017-0532-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OPINION STATEMENT Immune therapies represent a quantum leap in the fight against cancer. Recently approved immune checkpoint inhibitors that target receptors involved in immune escape of cancer cells (including cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), programmed cell death protein-1 (PD-1), and programmed cell death protein ligand-1 (PD-L1) are increasingly being used for therapeutic benefit in a number of cancers. The robust anti-cancer activity of these agents has been accompanied by the recognition of new adverse effects, often due to the over activation of immune system, that may limit their therapeutic benefit and adversely impact outcomes. Combination treatments in particular, such as approaches using two targeted immunotherapy agents, have higher risk of adverse effects. Our review focuses on the approved checkpoint inhibitor therapies and their potential for cardiovascular toxicity. While very few cases of autoimmune cardiotoxicity and myocarditis have been reported in clinical trials, severe, life-threatening episodes of heart failure and hemodynamic compromise associated with the use of immune checkpoint inhibitors have recently been reported in the literature. Early recognition, diagnosis, and management of autoimmune myocarditis represent an important clinical challenge with no current guidelines available for prevention, identification, and treatment of this serious condition. This area of cardio-oncology is evolving rapidly as more drugs in this class are being discovered and pending approval. There is a need for future studies focused on prospective identification of biomarkers and clinical standards for treatment and long-term follow-up of cardiovascular toxicity to successfully continue the treatment of cancer while preventing the adverse outcomes with novel immune therapies.
Collapse
Affiliation(s)
- Varun Jain
- MedStar Washington Hospital Center, Washington, DC, USA
- Georgetown University, Washington, DC, USA
| | | | | | - Ana Barac
- MedStar Washington Hospital Center, Washington, DC, USA.
- Georgetown University, Washington, DC, USA.
- MedStar Heart and Vascular Institute, Washington, DC, USA.
| |
Collapse
|
16
|
Wang L, Heng X, Lu Y, Cai Z, Yi Q, Che F. Could B7-H4 serve as a target to activate anti-cancer immunity? Int Immunopharmacol 2016; 38:97-103. [DOI: 10.1016/j.intimp.2016.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
|
17
|
Hatzioannou A, Nayar S, Gaitanis A, Barone F, Anagnostopoulos C, Verginis P. Intratumoral accumulation of podoplanin-expressing lymph node stromal cells promote tumor growth through elimination of CD4 + tumor-infiltrating lymphocytes. Oncoimmunology 2016; 5:e1216289. [PMID: 27757315 DOI: 10.1080/2162402x.2016.1216289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/04/2016] [Accepted: 07/18/2016] [Indexed: 10/21/2022] Open
Abstract
The beneficial effects of checkpoint blockade in tumor immunotherapy are limited to patients with increased tumor-infiltrating lymphocytes (TILs). Delineation of the regulatory networks that orchestrate the presence of TILs holds great promise for the design of effective immunotherapies. Podoplanin/gp38 (PDPN)-expressing lymph node stromal cells (LNSCs) are present in tumor stroma; however, their effect in the regulation of TILs remains elusive. Herein we demonstrate that intratumor injection of ex-vivo-isolated PDPN+ LNSCs into melanoma-bearing mice induces elimination of TILs and promotes tumor growth. In support, PDPN+ LNSCs exert their function through direct inhibition of CD4+ T cell proliferation in a cell-to-cell contact independent fashion. Mechanistically, we demonstrate that PDPN+ LNSCs mediate T cell growth arrest and induction of apoptosis to activated CD69+CD4+ T cells. Importantly, LTbR-Ig-mediated blockade of PDPN+ LNSCs expansion and function significantly attenuates melanoma tumor growth and enhances the infiltration and proliferation of CD4+ TILs. Overall, our findings decipher a novel role of PDPN-expressing LNSCs in the elimination of CD4+ TILs and propose a new target for tumor immunotherapy.
Collapse
Affiliation(s)
- Aikaterini Hatzioannou
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens , Athens, Greece
| | - Saba Nayar
- College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Anastasios Gaitanis
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens , Athens, Greece
| | - Francesca Barone
- College of Medical and Dental Sciences, University of Birmingham , Birmingham, UK
| | - Constantinos Anagnostopoulos
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens , Athens, Greece
| | - Panayotis Verginis
- Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens , Athens, Greece
| |
Collapse
|
18
|
Vacchelli E, Bloy N, Aranda F, Buqué A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 2016; 5:e1214790. [PMID: 27757313 DOI: 10.1080/2162402x.2016.1214790] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Malignant cells succumbing to some forms of radiation therapy are particularly immunogenic and hence can initiate a therapeutically relevant adaptive immune response. This reflects the intrinsic antigenicity of malignant cells (which often synthesize a high number of potentially reactive neo-antigens) coupled with the ability of radiation therapy to boost the adjuvanticity of cell death as it stimulates the release of endogenous adjuvants from dying cells. Thus, radiation therapy has been intensively investigated for its capacity to improve the therapeutic profile of several anticancer immunotherapies, including (but not limited to) checkpoint blockers, anticancer vaccines, oncolytic viruses, Toll-like receptor (TLR) agonists, cytokines, and several small molecules with immunostimulatory effects. Here, we summarize recent preclinical and clinical advances in this field of investigation.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College , New York, NY, USA
| | | | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; INSERM, U970, Paris, France; Paris-Cardiovascular Research Center (PARCC), Paris, France; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT1428, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
19
|
Bellinger AM, Arteaga CL, Force T, Humphreys BD, Demetri GD, Druker BJ, Moslehi JJ. Cardio-Oncology: How New Targeted Cancer Therapies and Precision Medicine Can Inform Cardiovascular Discovery. Circulation 2016; 132:2248-58. [PMID: 26644247 DOI: 10.1161/circulationaha.115.010484] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cardio-oncology (the cardiovascular care of cancer patients) has developed as a new translational and clinical field based on the expanding repertoire of mechanism-based cancer therapies. Although these therapies have changed the natural course of many cancers, several may also lead to cardiovascular complications. Many new anticancer drugs approved over the past decade are "targeted" kinase inhibitors that interfere with intracellular signaling contributing to tumor progression. Unexpected cardiovascular and cardiometabolic effects of patient treatment with these inhibitors have provided unique insights into the role of kinases in human cardiovascular biology. Today, an ever-expanding number of cancer therapies targeting novel kinases and other specific cellular and metabolic pathways are being developed and tested in oncology clinical trials. Some of these drugs may affect the cardiovascular system in detrimental ways and others perhaps in beneficial ways. We propose that the numerous ongoing oncology clinical trials are an opportunity for closer collaboration between cardiologists and oncologists to study the cardiovascular and cardiometabolic changes caused by the modulation of these pathways in patients. In this regard, cardio-oncology represents an opportunity and a novel platform for basic and translational investigation and can serve as a potential avenue for optimization of anticancer therapies and for cardiovascular research and drug discovery.
Collapse
Affiliation(s)
- Andrew M Bellinger
- From Department of Medicine, Brigham and Women's Hospital, Boston, MA (A.M.B., G.D.D.); Vanderbilt-Ingram Cancer Center (C.L.A., J.M.), Cardiovascular Division (T.F., J.J.M.), and Cardio-Oncology Program (C.L.A., T.F., J.J.M.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Washington University Medical Center, St. Louis, MO (B.D.H., J.M.); Dana-Farber Cancer Institute and Ludwig Center at Harvard, Harvard Medical School, Boston, MA (G.D.D.); and Knight Cancer Institute, Oregon Health & Science University and Howard Hughes Medical Institute, Portland, OR (B.J.D.)
| | - Carlos L Arteaga
- From Department of Medicine, Brigham and Women's Hospital, Boston, MA (A.M.B., G.D.D.); Vanderbilt-Ingram Cancer Center (C.L.A., J.M.), Cardiovascular Division (T.F., J.J.M.), and Cardio-Oncology Program (C.L.A., T.F., J.J.M.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Washington University Medical Center, St. Louis, MO (B.D.H., J.M.); Dana-Farber Cancer Institute and Ludwig Center at Harvard, Harvard Medical School, Boston, MA (G.D.D.); and Knight Cancer Institute, Oregon Health & Science University and Howard Hughes Medical Institute, Portland, OR (B.J.D.)
| | - Thomas Force
- From Department of Medicine, Brigham and Women's Hospital, Boston, MA (A.M.B., G.D.D.); Vanderbilt-Ingram Cancer Center (C.L.A., J.M.), Cardiovascular Division (T.F., J.J.M.), and Cardio-Oncology Program (C.L.A., T.F., J.J.M.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Washington University Medical Center, St. Louis, MO (B.D.H., J.M.); Dana-Farber Cancer Institute and Ludwig Center at Harvard, Harvard Medical School, Boston, MA (G.D.D.); and Knight Cancer Institute, Oregon Health & Science University and Howard Hughes Medical Institute, Portland, OR (B.J.D.)
| | - Benjamin D Humphreys
- From Department of Medicine, Brigham and Women's Hospital, Boston, MA (A.M.B., G.D.D.); Vanderbilt-Ingram Cancer Center (C.L.A., J.M.), Cardiovascular Division (T.F., J.J.M.), and Cardio-Oncology Program (C.L.A., T.F., J.J.M.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Washington University Medical Center, St. Louis, MO (B.D.H., J.M.); Dana-Farber Cancer Institute and Ludwig Center at Harvard, Harvard Medical School, Boston, MA (G.D.D.); and Knight Cancer Institute, Oregon Health & Science University and Howard Hughes Medical Institute, Portland, OR (B.J.D.)
| | - George D Demetri
- From Department of Medicine, Brigham and Women's Hospital, Boston, MA (A.M.B., G.D.D.); Vanderbilt-Ingram Cancer Center (C.L.A., J.M.), Cardiovascular Division (T.F., J.J.M.), and Cardio-Oncology Program (C.L.A., T.F., J.J.M.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Washington University Medical Center, St. Louis, MO (B.D.H., J.M.); Dana-Farber Cancer Institute and Ludwig Center at Harvard, Harvard Medical School, Boston, MA (G.D.D.); and Knight Cancer Institute, Oregon Health & Science University and Howard Hughes Medical Institute, Portland, OR (B.J.D.)
| | - Brian J Druker
- From Department of Medicine, Brigham and Women's Hospital, Boston, MA (A.M.B., G.D.D.); Vanderbilt-Ingram Cancer Center (C.L.A., J.M.), Cardiovascular Division (T.F., J.J.M.), and Cardio-Oncology Program (C.L.A., T.F., J.J.M.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Washington University Medical Center, St. Louis, MO (B.D.H., J.M.); Dana-Farber Cancer Institute and Ludwig Center at Harvard, Harvard Medical School, Boston, MA (G.D.D.); and Knight Cancer Institute, Oregon Health & Science University and Howard Hughes Medical Institute, Portland, OR (B.J.D.)
| | - Javid J Moslehi
- From Department of Medicine, Brigham and Women's Hospital, Boston, MA (A.M.B., G.D.D.); Vanderbilt-Ingram Cancer Center (C.L.A., J.M.), Cardiovascular Division (T.F., J.J.M.), and Cardio-Oncology Program (C.L.A., T.F., J.J.M.), Vanderbilt University School of Medicine, Nashville, TN; Department of Medicine, Washington University Medical Center, St. Louis, MO (B.D.H., J.M.); Dana-Farber Cancer Institute and Ludwig Center at Harvard, Harvard Medical School, Boston, MA (G.D.D.); and Knight Cancer Institute, Oregon Health & Science University and Howard Hughes Medical Institute, Portland, OR (B.J.D.).
| |
Collapse
|
20
|
Ladoire S, Senovilla L, Enot D, Ghiringhelli F, Poirier-Colame V, Chaba K, Erdag G, Schaefer JT, Deacon DH, Zitvogel L, Slingluff CL, Kroemer G. Biomarkers of immunogenic stress in metastases from melanoma patients: Correlations with the immune infiltrate. Oncoimmunology 2016; 5:e1160193. [PMID: 27471635 DOI: 10.1080/2162402x.2016.1160193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 01/21/2023] Open
Abstract
Melanoma is known to be under latent immunosurveillance. Here, we studied four biomarkers of immunogenic cell stress and death (microtubule-associated proteins 1A/1B light chain 3B (MAP-LC3B, best known as LC3B)-positive puncta in the cytoplasm as a sign of autophagy; presence of nuclear HMGB1; phosphorylation of eIF2α; increase in ploidy) in melanoma cells, in tissue microarrays (TMA) from metastases from 147 melanoma patients. These biomarkers of immunogenicity were correlated with the density of immune cells infiltrating the metastases and expressing CD3, CD4(+), CD8(+), CD20, CD45, CD56, CD138, CD163, DC-LAMP or FOXP3. LC3B puncta positively correlated with the infiltration of metastases by CD163(+) macrophages, while expression of HMGB1 correlated with infiltration by FOXP3(+) regulatory T cells and CD56(+) lymphocytes. eIF2α phosphorylation was associated with an augmentation of nuclear diameters, reflecting an increase in ploidy. Interestingly, therapeutic vaccination led to a reduction of eIF2α phosphorylation suggestive of immunoselection against cells bearing this sign of endoplasmic reticulum (ER) stress. None of the stress/death-related biomarkers had a significant prognostic impact, contrasting with the major prognostic effect of the ratio of cytotoxic T lymphocytes (CTL) over immunosuppressive FOXP3(+) and CD163(+) cells. Altogether, these results support the idea of a mutual dialog between, on one hand, melanoma cells with their cell-intrinsic stress pathways and, on the other hand, immune effectors. Future work is required to understand the detailed mechanisms of this interaction.
Collapse
Affiliation(s)
- Sylvain Ladoire
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Avenir Team INSERM, University of Burgundy, Dijon, France; Institut National de la Santé et de la Recherche Médicale, U1015, Equipe labellisée Ligue Nationale Contre le Cancer, Institut Gustave Roussy, Villejuif, France
| | - Laura Senovilla
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; University of Paris Sud XI, Villejuif, France
| | - David Enot
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus , Villejuif, France
| | - François Ghiringhelli
- Department of Medical Oncology, Georges François Leclerc Center, Dijon, France; Institut National de la Santé et de la Recherche Médicale, Avenir Team INSERM, University of Burgundy, Dijon, France
| | - Vichnou Poirier-Colame
- Institut National de la Santé et de la Recherche Médicale, U1015, Equipe labellisée Ligue Nationale Contre le Cancer, Institut Gustave Roussy , Villejuif, France
| | - Kariman Chaba
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gulsun Erdag
- Department of Pathology, University of Virginia, Charlottesville, VA, USA; Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Jochen T Schaefer
- Department of Pathology, University of Virginia, Charlottesville, VA, USA; Department of Surgery, University of Virginia, Charlottesville, VA, USA
| | - Donna H Deacon
- Department of Surgery, University of Virginia , Charlottesville, VA, USA
| | - Laurence Zitvogel
- Institut National de la Santé et de la Recherche Médicale, U1015, Equipe labellisée Ligue Nationale Contre le Cancer, Institut Gustave Roussy, Villejuif, France; University of Paris Sud XI, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | - Craig L Slingluff
- Department of Surgery, University of Virginia , Charlottesville, VA, USA
| | - Guido Kroemer
- Equipe 11 labellisée pas la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; INSERM, U1138, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
21
|
Hanks BA. Immune evasion pathways and the design of dendritic cell-based cancer vaccines. DISCOVERY MEDICINE 2016; 21:135-142. [PMID: 27011049 PMCID: PMC4934601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Emerging data is suggesting that the process of dendritic cell (DC) tolerization is an important step in tumorigenesis. Our understanding of the networks within the tumor microenvironment that functionally tolerize DC function is evolving while methods for genetically manipulating DC populations in situ continue to develop. A more intimate understanding of the paracrine signaling pathways which mediate immune evasion by subverting DC function promises to provide novel strategies for improving the clinical efficacy of DC-based cancer vaccines. This will likely require a better understanding of both the antigen expression profile and the immune evasion network of the tumor and its associated stromal tissues.
Collapse
Affiliation(s)
- Brent A Hanks
- Department of Medicine Division of Medical Oncology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
22
|
Abstract
As calculated by the meta-analysis of Korn et al., the prognosis of metastatic melanoma in the pretarget and immunological therapy era was poor, with a median survival of 6.2 and a 1-year life expectancy of 25.5%. Nowadays, significant advances in melanoma treatment have been gained, and immunotherapy is one of the promising approaches to get to durable responses and survival improvement. The aim of the present review is to highlight the recent innovations in melanoma immunotherapy and to propose a critical perspective of the future directions of this enthralling oncology subspecialty.
Collapse
Affiliation(s)
- Sara Valpione
- Christie Hospital NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, UK
| | - Luca G Campana
- Department of Surgery, Oncology & Gastroenterology, University of Padova, via Gattamelata 64, 35128 Padova, Italy
| |
Collapse
|
23
|
Márquez-Rodas I, Cerezuela P, Soria A, Berrocal A, Riso A, González-Cao M, Martín-Algarra S. Immune checkpoint inhibitors: therapeutic advances in melanoma. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:267. [PMID: 26605313 DOI: 10.3978/j.issn.2305-5839.2015.10.27] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, new strategies for treating melanoma have been introduced, improving the outlook for this challenging disease. One of the most important advances has been the development of immunotherapy. The better understanding of the role of the immunological system in tumor control has paved the way for strategies to enhance the immune response against cancer cells. Monoclonal antibodies (mAbs) against the immune checkpoints cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have demonstrated high activity in melanoma and other tumors. Ipilimumab, an anti CTLA-4 antibody, was the first drug of this class that was approved. Although the response rate with ipilimumab is low (less than 20% of patients have objective responses), 20% of patients have long survival, with similar results in the first and second line settings. Nivolumab and pembrolizumab, both anti PD-1 inhibitors, have been approved for the treatment of melanoma, with response rates of 40% and a demonstrated survival advantage in phase III trials. This has marked a new era in the treatment of metastatic melanoma and much research is now ongoing with other drugs targeting checkpoint inhibitors. In addition, the agonist of activating molecules on T cells and their combinations are being investigated. Herein we review the clinical development of checkpoint inhibitors and their approval for treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Ivan Márquez-Rodas
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Pablo Cerezuela
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Ainara Soria
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Alfonso Berrocal
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Aldo Riso
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - María González-Cao
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| | - Salvador Martín-Algarra
- 1 Servicio de Oncología Médica, Hospital General Universitario Gregorio Marañon, Madrid, Spain ; 2 Spanish Melanoma Group (GEM); 3 Servicio Oncología Médica, Hospital General Universitario Santa Lucía, Cartagena, Spain ; 4 Servicio de Oncología Médica, Universitario Ramon y Cajal, Madrid, Spain ; 5 Servicio de Oncología Médica, Hospital General Universitario de Valencia, Valencia, Spain ; 6 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain ; 7 Servicio de Oncología Médica, Clínica Universitaria de Navarra, Pamplona, Spain
| |
Collapse
|
24
|
Nahas GR, Walker ND, Bryan M, Rameshwar P. A Perspective of Immunotherapy for Breast Cancer: Lessons Learned and Forward Directions for All Cancers. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2015; 9:35-43. [PMID: 26568682 PMCID: PMC4631157 DOI: 10.4137/bcbcr.s29425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/09/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022]
Abstract
Immunotherapy for cancer has been a focus 50 years ago. At the time, this treatment was developed prior to cloning of the cytokines, no knowledge of regulatory T-cells, and very little information that mesenchymal stem cells (MSCs) (originally colony forming unit-fibroblasts [CFU-F]) could be licensed by the inflammatory microenvironment to suppress an immune response. Given the information available at that time, mononuclear cells from the peripheral blood were activated ex vivo and then replaced in the patients with tumor. The intent was to harness these activated immune cells to target the cancer cells. These studies did not lead to long-term responses because the activated cells when reinfused into the patients were an advantage to the resident MSCs, which can home the tumor and then become suppressive in the presence of the immune cells. The immune suppression caused by MSCs would also expand regulatory T-cells, resulting instead in tumor protection. As time progressed, these different fields converged into a new approach to use immunotherapy for cancer. This article discusses these approaches and also reviews chimeric antigen receptor in the context of future treatments for solid tumors, including breast cancer.
Collapse
Affiliation(s)
| | - Nykia D Walker
- Rutgers New Jersey Medical School, Newark, NJ, USA. ; Rutgers Graduate School of Biomedical Sciences, Newark, NJ, USA
| | | | - Pranela Rameshwar
- Rutgers New Jersey Medical School, Newark, NJ, USA. ; Rutgers Graduate School of Biomedical Sciences, Newark, NJ, USA
| |
Collapse
|
25
|
The continuing evolution of targeted therapy for inflammatory skin disease. Semin Immunopathol 2015; 38:123-33. [DOI: 10.1007/s00281-015-0524-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 12/30/2022]
|