1
|
Montauti E, Oh DY, Fong L. CD4 + T cells in antitumor immunity. Trends Cancer 2024; 10:969-985. [PMID: 39242276 PMCID: PMC11464182 DOI: 10.1016/j.trecan.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Advances in cancer immunotherapy have transformed cancer care and realized unprecedented responses in many patients. The growing arsenal of novel therapeutics - including immune checkpoint inhibition (ICI), adoptive T cell therapies (ACTs), and cancer vaccines - reflects the success of cancer immunotherapy. The therapeutic benefits of these treatment modalities are generally attributed to the enhanced quantity and quality of antitumor CD8+ T cell responses. Nevertheless, CD4+ T cells are now recognized to play key roles in both the priming and effector phases of the antitumor immune response. In addition to providing T cell help through co-stimulation and cytokine production, CD4+ T cells can also possess cytotoxicity either directly on MHC class II-expressing tumor cells or to other cells within the tumor microenvironment (TME). The presence of specific populations of CD4+ T cells, and their intrinsic plasticity, within the TME can represent an important determinant of clinical response to immune checkpoint inhibitors, vaccines, and chimeric antigen receptor (CAR) T cell therapies. Understanding how the antitumor functions of specific CD4+ T cell types are induced while limiting their protumorigenic attributes will enable more successful immunotherapies.
Collapse
Affiliation(s)
- Elena Montauti
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
2
|
Łaszczych D, Czernicka A, Gostomczyk K, Szylberg Ł, Borowczak J. The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives. Med Oncol 2024; 41:187. [PMID: 38918274 PMCID: PMC11199243 DOI: 10.1007/s12032-024-02434-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, which, despite significant progress made in the last years in the field of neuro-oncology, remains an incurable disease. GBM has a poor prognosis with a median survival of 12-15 months, and its aggressive clinical course is related to rapid growth, extensive infiltration of adjacent tissues, resistance to chemotherapy, radiotherapy and immunotherapy, and frequent relapse. Currently, several molecular biomarkers are used in clinical practice to predict patient prognosis and response to treatment. However, due to the overall unsatisfactory efficacy of standard multimodal treatment and the remaining poor prognosis, there is an urgent need for new biomarkers and therapeutic strategies for GBM. Recent evidence suggests that GBM tumorigenesis is associated with crosstalk between cancer, immune and stromal cells mediated by various cytokines. One of the key factors involved in this process appears to be interleukin-17 (IL-17), a pro-inflammatory cytokine that is significantly upregulated in the serum and tissue of GBM patients. IL-17 plays a key role in tumorigenesis, angiogenesis, and recurrence of GBM by activating pro-oncogenic signaling pathways and promoting cell survival, proliferation, and invasion. IL-17 facilitates the immunomodulation of the tumor microenvironment by promoting immune cells infiltration and cytokine secretion. In this article we review the latest scientific reports to provide an update on the role of IL-17 role in tumorigenesis, tumor microenvironment, diagnosis, prognosis, and treatment of GBM.
Collapse
Affiliation(s)
- Dariusz Łaszczych
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland.
| | - Aleksandra Czernicka
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum, Nicolaus Copernicus University in Bydgoszcz, Ujejskiego 75 street, 85-168, Bydgoszcz, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| | - Jędrzej Borowczak
- Department of Clinical Oncology, Oncology Centre - Prof. Franciszek Łukaszczyk Memorial Hospital, dr Izabeli Romanowskiej 2 street, 85-796, Bydgoszcz, Poland
| |
Collapse
|
3
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
4
|
Mishchenko TA, Turubanova VD, Gorshkova EN, Krysko O, Vedunova MV, Krysko DV. Glioma: bridging the tumor microenvironment, patient immune profiles and novel personalized immunotherapy. Front Immunol 2024; 14:1299064. [PMID: 38274827 PMCID: PMC10809268 DOI: 10.3389/fimmu.2023.1299064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024] Open
Abstract
Glioma is the most common primary brain tumor, characterized by a consistently high patient mortality rate and a dismal prognosis affecting both survival and quality of life. Substantial evidence underscores the vital role of the immune system in eradicating tumors effectively and preventing metastasis, underscoring the importance of cancer immunotherapy which could potentially address the challenges in glioma therapy. Although glioma immunotherapies have shown promise in preclinical and early-phase clinical trials, they face specific limitations and challenges that have hindered their success in further phase III trials. Resistance to therapy has been a major challenge across many experimental approaches, and as of now, no immunotherapies have been approved. In addition, there are several other limitations facing glioma immunotherapy in clinical trials, such as high intra- and inter-tumoral heterogeneity, an inherently immunosuppressive microenvironment, the unique tissue-specific interactions between the central nervous system and the peripheral immune system, the existence of the blood-brain barrier, which is a physical barrier to drug delivery, and the immunosuppressive effects of standard therapy. Therefore, in this review, we delve into several challenges that need to be addressed to achieve boosted immunotherapy against gliomas. First, we discuss the hurdles posed by the glioma microenvironment, particularly its primary cellular inhabitants, in particular tumor-associated microglia and macrophages (TAMs), and myeloid cells, which represent a significant barrier to effective immunotherapy. Here we emphasize the impact of inducing immunogenic cell death (ICD) on the migration of Th17 cells into the tumor microenvironment, converting it into an immunologically "hot" environment and enhancing the effectiveness of ongoing immunotherapy. Next, we address the challenge associated with the accurate identification and characterization of the primary immune profiles of gliomas, and their implications for patient prognosis, which can facilitate the selection of personalized treatment regimens and predict the patient's response to immunotherapy. Finally, we explore a prospective approach to developing highly personalized vaccination strategies against gliomas, based on the search for patient-specific neoantigens. All the pertinent challenges discussed in this review will serve as a compass for future developments in immunotherapeutic strategies against gliomas, paving the way for upcoming preclinical and clinical research endeavors.
Collapse
Affiliation(s)
- Tatiana A. Mishchenko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria D. Turubanova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Neuroscience Research Institute, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ekaterina N. Gorshkova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
5
|
Wang R, Zhang G, Zhu X, Xu Y, Cao N, Li Z, Han C, Qin M, Shen Y, Dong J, Ma F, Zhao A. Prognostic Implications of LRP1B and Its Relationship with the Tumor-Infiltrating Immune Cells in Gastric Cancer. Cancers (Basel) 2023; 15:5759. [PMID: 38136305 PMCID: PMC10741692 DOI: 10.3390/cancers15245759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Recent studies have shown that low-density lipoprotein receptor-related protein 1b (LRP1B), as a potential tumor suppressor, is implicated in the response to immunotherapy. The frequency of LRP1B mutation gene is high in many cancers, but its role in gastric cancer (GC) has not been determined. METHODS The prognostic value of LRP1B mutation in a cohort containing 100 patients having received radical gastrectomy for stage II-III GC was explored. By analyzing the data of LRP1B mRNA, the risk score of differentially expressed genes (DEGs) between LRP1B mutation-type and wild-type was constructed based on the TCGA-STAD cohort. The infiltration of tumor immune cells was evaluated by the CYBERSORT algorithm and verified by immunohistochemistry. RESULTS LRP1B gene mutation was an independent risk factor for disease-free survival (DFS) in GC patients (HR = 2.57, 95% CI: 1.28-5.14, p = 0.008). The Kaplan-Meier curve demonstrated a shorter survival time in high-risk patients stratified according to risk score (p < 0.0001). CYBERSORT analysis showed that the DEGs were mainly concentrated in CD4+ T cells and macrophages. TIMER analysis suggested that LRP1B expression was associated with the infiltration of CD4+ T cells and macrophages. Immunohistochemistry demonstrated that LRP1B was expressed in the tumor cells (TCs) and immune cells in 16/89 and 26/89 of the cohort, respectively. LRP1B-positive TCs were associated with higher levels of CD4+ T cells, CD8+ T cells, and CD86/CD163 (p < 0.05). Multivariate analysis showed that LRP1B-positive TCs represented an independent protective factor of DFS in GC patients (HR = 0.43, 95% CI: 0.10-0.93, p = 0.042). CONCLUSIONS LRP1B has a high prognostic value in GC. LRP1B may stimulate tumor immune cell infiltration to provide GC patients with survival benefits.
Collapse
Affiliation(s)
- Rui Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Guangtao Zhang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, School of Medicine Affiliated Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Chen Han
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Mengmeng Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Yumiao Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Jiahuan Dong
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; (R.W.); (G.Z.); (X.Z.); (Y.X.); (N.C.)
| |
Collapse
|
6
|
Chu J, Liu W, Hu X, Zhang H, Jiang J. P2RY13 is a prognostic biomarker and associated with immune infiltrates in renal clear cell carcinoma: A comprehensive bioinformatic study. Health Sci Rep 2023; 6:e1646. [PMID: 38045624 PMCID: PMC10691167 DOI: 10.1002/hsr2.1646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/03/2023] [Accepted: 10/10/2023] [Indexed: 12/05/2023] Open
Abstract
Background and Aims Clear cell renal cell carcinoma (ccRCC) is a common and aggressive form of cancer with a high incidence globally. This study aimed to investigate the role of P2RY13 in the progression of ccRCC and elucidate its mechanism of action. Methods Gene Expression Omnibus and The Cancer Genome Atlas databases were used to extract gene expression profiles of ccRCC. These profiles were annotated and visualized by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses, as well as Gene Set Enrichment Analysis (GSEA). The STRING database was used to establish a protein-protein interaction network and to analyze the functional similarity. The GEPIA2 database was used to predict survival associated with hub genes. Meanwhile, the TIMER2.0 database was used to assess immune cell infiltration and its link with the hub genes. Immunohistochemistry (IHC) was used to determine the difference between ccRCC and adjacent normal tissue. Results We identified 272 differentially expressed genes (DEGs). GO and KEGG analyses suggested that DEGs were primarily involved in lymphocyte activation, inflammatory response, immunological effector mechanism pathways. By cytohubba, the 20 highest-scoring hub genes were screened to identify critical genes in the protein-protein interaction network linked with ccRCC. Resting dendritic cells, CD8 T cells, and activated mast cells all showed a significant positive correlation with these hub genes. Moreover, a higher immune score was associated with increased prognostic risk scores, which in turn correlated with a poorer prognosis. IHC revealed that P2RY13 was expressed at higher levels in ccRCC compared to para-cancer tissues. Conclusion Identifying the DEGs will aid in the understanding of the causes and molecular mechanisms involved in ccRCC. P2RY13 may play a pivotal role in the progression and prognosis of ccRCC, potentially driving carcinogenesis though immune system mechanisms.
Collapse
Affiliation(s)
- Jie Chu
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Wei Liu
- Department of General Family MedicineThe First People's Hospital of NeiJiangNeiJiangChina
| | - Xinyue Hu
- Department of Clinical Laboratory, Kunming First People's HospitalKunming Medical UniversityKunmingChina
| | - Huiling Zhang
- Department of OncologyThe First People's Hospital of ZiyangZiyangChina
| | - Jiudong Jiang
- Department of SurgeryThe First People's Hospital of ZiYangZiyangChina
| |
Collapse
|
7
|
Li S, Li Z, Wang X, Zhong J, Yu D, Chen H, Ma W, Liu L, Ye M, Shen R, Jiang C, Meng X, Cai J. HK3 stimulates immune cell infiltration to promote glioma deterioration. Cancer Cell Int 2023; 23:227. [PMID: 37779195 PMCID: PMC10543879 DOI: 10.1186/s12935-023-03039-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Glioma is the most common and lethal type of brain tumor, and it is characterized by unfavorable prognosis and high recurrence rates. The reprogramming of energy metabolism and an immunosuppressive tumor microenvironment (TME) are two hallmarks of tumors. Complex and dynamic interactions between neoplastic cells and the surrounding microenvironment can generate an immunosuppressive TME, which can accelerate the malignant progression of glioma. Therefore, it is crucial to explore associations between energy metabolism and the immunosuppressive TME and to identify new biomarkers for glioma prognosis. METHODS In our work, we analyzed the co-expression relationship between glycolytic genes and immune checkpoints based on the transcriptomic data from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) and found the correlation between HK3 expression and glioma tumor immune status. To investigate the biological role of HK3 in glioma, we performed bioinformatics analysis and established a mouse glioblastoma (GBM) xenograft model. RESULTS Our study showed that HK3 significantly stimulated immune cell infiltration into the glioma TME. Tissue samples with higher HK3 expressive level showed increasing levels of immune cells infiltration, including M2 macrophages, neutrophils, and various subtypes of activated memory CD4+ T cells. Furthermore, HK3 expression was significantly increasing along with the elevated tumor grade, had a higher level in the mesenchymal subtype compared with those in other subtypes of GBM and could independently predict poor outcomes of GBM patients. CONCLUSION The present work mainly concentrated on the biological role of HK3 in glioma and offered a novel insight of HK3 regulating the activation of immune cells in the glioma microenvironment. These findings could provide a new theoretical evidence for understanding the metabolic molecular within the glioma microenvironment and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Shupeng Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurosurgery, The Dalian Municipal Central Hospital, Dalian, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziwei Li
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Junzhe Zhong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Daohan Yu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lingling Liu
- Department of Clinical Medical Record, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minghuang Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruofei Shen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- The Sixth Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Ortiz-Rivera J, Albors A, Kucheryavykh Y, Harrison JK, Kucheryavykh L. The Dynamics of Tumor-Infiltrating Myeloid Cell Activation and the Cytokine Expression Profile in a Glioma Resection Site during the Post-Surgical Period in Mice. Brain Sci 2022; 12:brainsci12070893. [PMID: 35884700 PMCID: PMC9313002 DOI: 10.3390/brainsci12070893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma is the most aggressive brain cancer and is highly infiltrated with cells of myeloid lineage (TIM) that support tumor growth and invasion. Tumor resection is the primary treatment for glioblastoma; however, the activation state of TIM at the site of tumor resection and its impact on glioma regrowth are poorly understood. Using the C57BL/6/GL261 mouse glioma implantation model, we investigated the state of TIM in the tumor resection area during the post-surgical period. TIM isolated from brain tissue at the resection site were analyzed at 0, 1, 4, 7, 14, and 21 days after tumor resection. An increase in expression of CD86 during the first 7 days after surgical resection and then upregulation of arginase 1 from the 14th to 21st days after resection were detected. Cytokine expression analysis combined with qRT-PCR revealed sustained upregulation of IL4, IL5, IL10, IL12, IL17, vascular endothelial growth factor (VEGF), and monocyte chemoattractant protein 1 (MCP1/CCL2) in TIM purified from regrown tumors compared with primary implanted tumors. Flow cytometry analysis revealed increased CD86+/CD206+ population in regrown tumors compared with primary implanted tumors. Overall, we found that TIM in primary implanted tumors and tumors regrown after resection exhibited different phenotypes and cytokine expression patterns.
Collapse
Affiliation(s)
- Jescelica Ortiz-Rivera
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
- Correspondence:
| | - Alejandro Albors
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Yuriy Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| | - Jeffrey K. Harrison
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Lilia Kucheryavykh
- Department of Biochemistry, School of Medicine, Universidad Central de Caribe, Bayamon, PR 00956, USA; (A.A.); (Y.K.); (L.K.)
| |
Collapse
|
9
|
Wang F, Cathcart SJ, DiMaio DJ, Zhao N, Chen J, Aizenberg MR, Shonka NA, Lin C, Zhang C. Comparison of tumor immune environment between newly diagnosed and recurrent glioblastoma including matched patients. J Neurooncol 2022; 159:163-175. [PMID: 35754074 DOI: 10.1007/s11060-022-04053-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/31/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Glioblastoma (GBM) is the most lethal primary brain tumor in adult patients. The disease progression, response to chemotherapy and radiotherapy at initial diagnosis, and prognosis are profoundly associated with the tumor microenvironment, especially the features of tumor-infiltrating immune cells (TII). Recurrent GBM is even more challenging to manage. Differences in the immune environment between newly diagnosed and recurrent GBM and an association with tumor prognosis are not well defined. METHODS To address this knowledge gap, we analyzed the clinical data and tissue specimens from 24 GBM patients (13 at initial diagnosis and 11 at recurrence). The expression levels of multiple immunobiological markers in patients' GBM at initial diagnosis versus at recurrence were compared, including five patients with both specimens available (paired). The distribution patterns of TII were evaluated in both the intratumoral and perivascular regions. RESULTS We found that tumors from recurrent GBM have significantly more tumor-infiltrating lymphocytes (TILs) and macrophages and higher PD-L1 and PD-1 expression than tumors at primary diagnosis and benign brain specimens from epilepsy surgery. The pattern changes of the TILs and macrophages of the five paired specimens were consistent with the unpaired patients, while the CD8 to CD4 ratio remained constant from diagnosis to recurrence in the paired tissues. The levels of TILs, macrophages, PD-1 or PD-L1+ cells at initial diagnosis did not correlate with OS. TILs, macrophages, and PD-1+ cells were increased in recurrent tumors both in intratumoral and perivascular areas, with higher distribution levels in intratumoral than perivascular regions. Higher CD4 or CD8 infiltration at recurrence was associated with a worse prognosis, respectively. CONCLUSIONS Our study elucidated that TIL and TAM tend to accumulate in perivascular region and are more abundant in recurrent GBM than newly diagnosed GBM.
Collapse
Affiliation(s)
- Fei Wang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7521, USA
| | - Sahara J Cathcart
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dominick J DiMaio
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nan Zhao
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7521, USA
| | - Jie Chen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michele R Aizenberg
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole A Shonka
- Division of Oncology and Hematology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Chi Lin
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7521, USA
| | - Chi Zhang
- Department of Radiation Oncology, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198-7521, USA.
| |
Collapse
|
10
|
Proliferating CD8+ T Cell Infiltrates Are Associated with Improved Survival in Glioblastoma. Cells 2021; 10:cells10123378. [PMID: 34943886 PMCID: PMC8699921 DOI: 10.3390/cells10123378] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Background: tumor-infiltrating lymphocytes are prognostic in many human cancers. However, the prognostic value of lymphocytes infiltrating glioblastoma (GBM), and roles in tumor control or progression are unclear. We hypothesized that B and T cell density, and markers of their activity, proliferation, differentiation, or function, would have favorable prognostic significance for patients with GBM. Methods: initial resection specimens from 77 patients with IDH1/2 wild type GBM who received standard-of-care treatment were evaluated with multiplex immunofluorescence histology (mIFH), for the distribution, density, differentiation, and proliferation of T cells and B cells, as well as for the presence of tertiary lymphoid structures (TLS), and IFNγ expression. Immune infiltrates were evaluated for associations with overall survival (OS) by univariate and multivariate Cox proportional hazards modeling. Results: in univariate analyses, improved OS was associated with high densities of proliferating (Ki67+) CD8+ cells (HR 0.36, p = 0.001) and CD20+ cells (HR 0.51, p = 0.008), as well as CD8+Tbet+ cells (HR 0.46, p = 0.004), and RORγt+ cells (HR 0.56, p = 0.04). Conversely, IFNγ intensity was associated with diminished OS (HR 0.59, p = 0.036). In multivariable analyses, adjusting for clinical variables, including age, resection extent, Karnofsky Performance Status (KPS), and MGMT methylation status, improved OS was associated with high densities of proliferating (Ki67+) CD8+ cells (HR 0.15, p < 0.001), and higher ratios of CD8+ cells to CD4+ cells (HR 0.31, p = 0.005). Diminished OS was associated with increases in patient age (HR 1.21, p = 0.005) and higher mean intensities of IFNγ (HR 2.13, p = 0.027). Conclusions: intratumoral densities of proliferating CD8 T cells and higher CD8/CD4 ratios are independent predictors of OS in patients with GBM. Paradoxically, higher mean intensities of IFNγ in the tumors were associated with shorter OS. These findings suggest that survival may be enhanced by increasing proliferation of tumor-reactive CD8+ T cells and that approaches may be needed to promote CD8+ T cell dominance in GBM, and to interfere with the immunoregulatory effects of IFNγ in the tumor microenvironment.
Collapse
|
11
|
Kemmerer CL, Schittenhelm J, Dubois E, Neumann L, Häsler LM, Lambert M, Renovanz M, Kaeser SA, Tabatabai G, Ziemann U, Naumann U, Kowarik MC. Cerebrospinal fluid cytokine levels are associated with macrophage infiltration into tumor tissues of glioma patients. BMC Cancer 2021; 21:1108. [PMID: 34654395 PMCID: PMC8520299 DOI: 10.1186/s12885-021-08825-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/01/2021] [Indexed: 12/24/2022] Open
Abstract
Background Diffuse gliomas are the most common malignant tumors of the central nervous system with poor treatment efficacy. Infiltration of immune cells into tumors during immunosurveillance is observed in multiple tumor entities and often associated with a favorable outcome. The aim of this study was to evaluate the infiltration of immune cells in gliomas and their association with cerebrospinal fluid (CSF) cytokine concentrations. Methods We applied immunohistochemistry in tumor tissue sections of 18 high-grade glioma (HGG) patients (4 anaplastic astrocytoma, IDH-wildtype WHO-III; 14 glioblastomas (GBM), IDH-wildtype WHO-IV) in order to assess and quantify leucocytes (CD45) and macrophages (CD68, CD163) within the tumor core, infiltration zone and perivascular spaces. In addition, we quantified the concentrations of 30 cytokines in the same patients’ CSF and in 14 non-inflammatory controls. Results We observed a significantly higher percentage of CD68+ macrophages (21–27%) in all examined tumor areas when compared to CD45+ leucocytes (ca. 3–7%); CD163+ cell infiltration was between 5 and 15%. Compared to the tumor core, significantly more macrophages and leucocytes were detectable within the perivascular area. The brain parenchyma showing a lower tumor cell density seems to be less infiltrated by macrophages. Interleukin (IL)-7 was significantly downregulated in CSF of GBM patients compared to controls. Additionally, CD68+ macrophage infiltrates showed significant correlations with the expression of eotaxin, interferon-γ, IL-1β, IL-2, IL-10, IL-13, IL-16 and vascular endothelial growth factor. Conclusions Our findings suggest that the infiltration of lymphocytes is generally low in HGG, and does not correlate with cytokine concentrations in the CSF. In contrast, macrophage infiltrates in HGG are associated with CSF cytokine changes that possibly shape the tumor microenvironment. Although results point towards an escape from immunosurveillance or even exploitation of immune cells by HGG, further studies are necessary to decipher the exact role of the immune system in these tumors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08825-1.
Collapse
Affiliation(s)
- Constanze L Kemmerer
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Jens Schittenhelm
- Department of Pathology and Neuropathology, University Hospital Tübingen, Calwerstr. 3, Tübingen, Germany.,Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Evelyn Dubois
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Laura Neumann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Lisa M Häsler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Mirjam Renovanz
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,Department of Neurosurgery, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Stephan A Kaeser
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, Germany
| | - Ghazaleh Tabatabai
- Center for Neuro-Oncology, Comprehensive Cancer Center Tuebingen-Stuttgart, University Hospital of Tuebingen, Eberhard Karls University of Tuebingen, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Neurology and Interdisciplinary Neuro-Oncology, Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Ulf Ziemann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany.,Department of Neurology & Stroke, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Ulrike Naumann
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany
| | - Markus C Kowarik
- Department of Vascular Neurology, Hertie-Institute for Clinical Brain Research, Eberhard-Karls University Tübingen, Otfried-Müller-Straße 27, Tübingen, Germany. .,Department of Neurology & Stroke, Eberhard-Karls University Tübingen, Tübingen, Germany. .,Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich, Germany.
| |
Collapse
|
12
|
Shadbad MA, Asadzadeh Z, Hosseinkhani N, Derakhshani A, Alizadeh N, Brunetti O, Silvestris N, Baradaran B. A Systematic Review of the Tumor-Infiltrating CD8 + T-Cells/PD-L1 Axis in High-Grade Glial Tumors: Toward Personalized Immuno-Oncology. Front Immunol 2021; 12:734956. [PMID: 34603316 PMCID: PMC8486082 DOI: 10.3389/fimmu.2021.734956] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Based on preclinical findings, programmed death-ligand 1 (PD-L1) can substantially attenuate CD8+ T-cell-mediated anti-tumoral immune responses. However, clinical studies have reported controversial results regarding the significance of the tumor-infiltrating CD8+ T-cells/PD-L1 axis on the clinical picture and the response rate of patients with high-grade glial tumors to anti-cancer therapies. Herein, we conducted a systematic review according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statements to clarify the clinical significance of the tumor-infiltrating CD8+ T-cells/PD-L1 axis and elucidate the impact of this axis on the response rate of affected patients to anti-cancer therapies. Indeed, a better understanding of the impact of this axis on the response rate of affected patients to anti-cancer therapies can provide valuable insights to address the futile response rate of immune checkpoint inhibitors in patients with high-grade glial tumors. For this purpose, we systematically searched Scopus, Web of Science, Embase, and PubMed to obtain peer-reviewed studies published before 1 January 2021. We have observed that PD-L1 overexpression can be associated with the inferior prognosis of glioblastoma patients who have not been exposed to chemo-radiotherapy. Besides, exposure to anti-cancer therapies, e.g., chemo-radiotherapy, can up-regulate inhibitory immune checkpoint molecules in tumor-infiltrating CD8+ T-cells. Therefore, unlike unexposed patients, increased tumor-infiltrating CD8+ T-cells in anti-cancer therapy-exposed tumoral tissues can be associated with the inferior prognosis of affected patients. Because various inhibitory immune checkpoints can regulate anti-tumoral immune responses, the single-cell sequencing of the cells residing in the tumor microenvironment can provide valuable insights into the expression patterns of inhibitory immune checkpoints in the tumor micromovement. Thus, administrating immune checkpoint inhibitors based on the data from the single-cell sequencing of these cells can increase patients’ response rates, decrease the risk of immune-related adverse events development, prevent immune-resistance development, and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Research Center for Evidence-Based Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Hosseinkhani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afshin Derakhshani
- Laboratory of Experimental Pharmacology, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Oronzo Brunetti
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Nicola Silvestris
- Medical Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy.,Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Diamant G, Simchony Goldman H, Gasri Plotnitsky L, Roitman M, Shiloach T, Globerson-Levin A, Eshhar Z, Haim O, Pencovich N, Grossman R, Ram Z, Volovitz I. T Cells Retain Pivotal Antitumoral Functions under Tumor-Treating Electric Fields. THE JOURNAL OF IMMUNOLOGY 2021; 207:709-719. [PMID: 34215656 DOI: 10.4049/jimmunol.2100100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Tumor-treating fields (TTFields) are a localized, antitumoral therapy using alternating electric fields, which impair cell proliferation. Combining TTFields with tumor immunotherapy constitutes a rational approach; however, it is currently unknown whether TTFields' locoregional effects are compatible with T cell functionality. Healthy donor PBMCs and viably dissociated human glioblastoma samples were cultured under either standard or TTFields conditions. Select pivotal T cell functions were measured by multiparametric flow cytometry. Cytotoxicity was evaluated using a chimeric Ag receptor (CAR)-T-based assay. Glioblastoma patient samples were acquired before and after standard chemoradiation or standard chemoradiation + TTFields treatment and examined by immunohistochemistry and by RNA sequencing. TTFields reduced the viability of proliferating T cells, but had little or no effect on the viability of nonproliferating T cells. The functionality of T cells cultured under TTFields was retained: they exhibited similar IFN-γ secretion, cytotoxic degranulation, and PD1 upregulation as controls with similar polyfunctional patterns. Glioblastoma Ag-specific T cells exhibited unaltered viability and functionality under TTFields. CAR-T cells cultured under TTFields exhibited similar cytotoxicity as controls toward their CAR target. Transcriptomic analysis of patients' glioblastoma samples revealed a significant shift in the TTFields-treated versus the standard-treated samples, from a protumoral to an antitumoral immune signature. Immunohistochemistry of samples before and after TTFields treatment showed no reduction in T cell infiltration. T cells were found to retain key antitumoral functions under TTFields settings. Our data provide a mechanistic insight and a rationale for ongoing and future clinical trials that combine TTFields with immunotherapy.
Collapse
Affiliation(s)
- Gil Diamant
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel.,Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Hadar Simchony Goldman
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| | - Lital Gasri Plotnitsky
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| | - Marina Roitman
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| | - Tamar Shiloach
- Laboratory for Cancer Research and Immunotherapy, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Globerson-Levin
- Laboratory for Cancer Research and Immunotherapy, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zelig Eshhar
- Laboratory for Cancer Research and Immunotherapy, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Oz Haim
- Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Niv Pencovich
- Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Rachel Grossman
- Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Zvi Ram
- Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel; .,Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| |
Collapse
|
14
|
Advanced Molecular Characterization Using Digital Spatial Profiling Technology on Immunooncology Targets in Methylated Compared with Unmethylated IDH-Wildtype Glioblastoma. JOURNAL OF ONCOLOGY 2021; 2021:8819702. [PMID: 33995529 PMCID: PMC8096575 DOI: 10.1155/2021/8819702] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 01/05/2023]
Abstract
Introduction Glioblastoma (GBM) is the most common primary adult brain tumour with a median overall survival (OS) of 12-15 months. Molecular characterization of multiple immunooncology targets in GBM may help target novel immunotherapeutic strategies. We used NanoString GeoMx® Digital Spatial Profiling (DSP) to assess multiple immunooncology protein targets in methylated versus unmethylated IDH-wild-type glioblastoma. Methods NanoString GeoMx® DSP technology uses multiple primary antibodies conjugated to indexing DNA oligos with a UV photocleavable linker. Tissue regions of interest (ROIs) are selected with bound fluorescent antibodies; oligos are released via a UV-mediated linker and quantitated. We used DSP multiplex analysis of 31 immunooncology proteins and controls (CD4, CD14, CD68, CD8A, B7-H3, PD-L1, CD19, FOXP3, CD44, STAT3 (phospho Y705), CD45, Pan Cytokeratin, MS4A1/CD20, CD45RO, PD1, CD3, beta-2 microglobulin, VISTA, Bcl2, GZMB, PTEN, beta-catenin, CD56, Ki-67, STAT3, AKT, p-Akt, S6, Histone H3, IgG Rabbit control, and Mouse IgG control) from ROIs in a cohort of 10 IDH-wild-type glioblastomas (5 methylated and 5 unmethylated). An nCounter platform allowed quantitative comparisons of antibodies between ROIs in MGMT methylated and unmethylated tumours. Mean protein expression counts between methylated and unmethylated GBM were compared using technical and biological replicates. Results The analysis showed 10/27 immunooncology target proteins were significantly increased in methylated versus unmethylated IDH-wild-type glioblastoma tumour core (false discovery rate (FDR) <0.1 by Benjamini-Hochberg procedure). Conclusions NanoString GeoMx® DSP was used to analyse multiple immunooncology protein target expression in methylated versus unmethylated IDH-wild-type glioblastoma. In this small study, there was a statistical increase in CD4, CD14, CD68, CD8A, B7-H3, PDL-1, CD19, FOXP3, CD44, and STAT3 protein expression in methylated versus unmethylated GBM tumour core; however, this requires larger cohort validation. Advanced multiplex immunooncological biomarker analysis may be useful in identifying biomarkers for novel immunotherapeutic agents in GBMs.
Collapse
|
15
|
Su L, Guo W, Lou L, Nie S, Zhang Q, Liu Y, Chang Y, Zhang X, Li Y, Shen H. EGFR-ERK pathway regulates CSN6 to contribute to PD-L1 expression in glioblastoma. Mol Carcinog 2020; 59:520-532. [PMID: 32134157 DOI: 10.1002/mc.23176] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
Glioblastoma (GBM) is the most common and malignant brain tumor in adults. Recently, programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockades have been applied for GBM treatment. However, the mechanism of PD-L1 upregulation in GBM is still unclear. COP9 signalosome 6 (CSN6) is crucial for maintaining the protein stabilization in cancer cells. In this study, we applied human GBM specimens and cell lines to investigate whether the EGFR-ERK pathway regulates CSN6 for PD-L1 upregulation. Data from The Cancer Genome Atlas dataset showed that high expression of EGFR, CSN6, and PD-L1 in patients with glioma was associated with poor prognosis. In 47 human GBM specimens, high expression of PD-L1 was associated with low amount of CD8+ T cell infiltration as well as the poor prognosis of patients. CSN6 was positively correlated with EGFR and PD-L1 expression in human GBM specimens. We treated two GBM cell lines (U87 and U251) with epidermal growth factor (EGF) in vitro, and found EGF-upregulated p-EGFR, p-ERK, CSN6, and PD-L1 expression in GBM cells. PD98059, the ERK blocker, inhibited upregulations of CSN6 and PD-L1 in EGF-treated cells. Inhibition of CSN6 by small interfering RNA decreased PD-L1 expression but also increased CHIP expression in GBM cells. When the cells were treated with EGF and cycloheximide (CHX), a protein synthesis inhibitor, EGF-reduced CHX-induced CSN6 and PD-L1 turnover in GBM cells. Furthermore, CSN6-mediated downregulation of PD-L1 was inhibited by MG132, a proteasome inhibitor in U87 cells. Thus, these results suggest that the EGFR-ERK pathway may upregulate CSN6, which may inhibit PD-L1 degradation and subsequently maintain PD-L1 stability in GBM.
Collapse
Affiliation(s)
- Lingrui Su
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Laboratory of Pathology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Wenli Guo
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Lou
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Saisai Nie
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qing Zhang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Liu
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ying Chang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Laboratory of Pathology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haitao Shen
- Laboratory of Pathology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Castaneda CA, Castillo M, Aliaga K, Bernabe LA, Casavilca S, Sanchez J, Torres-Cabala CA, Gomez HL, Mas L, Dunstan J, Cotrina JM, Abugattas J, Chavez I, Ruiz E, Montenegro P, Rojas V, Orrego E, Galvez-Nino M, Felix B, Landa-Baella MP, Vidaurre T, Villa MR, Zevallos R, Taxa L, Guerra H. Level of tumor-infiltrating lymphocytes and density of infiltrating immune cells in different malignancies. Biomark Med 2019; 13:1481-1491. [DOI: 10.2217/bmm-2019-0178] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Aim: To correlate levels of tumor-infiltrating lymphocytes (TIL) evaluated using the International Immuno-Oncology Biomarker Working Group methodology, and both density of tumor-infiltrating immune cell and clinicopathological features in different malignancies. Methods: 209 pathological samples from gastric cancer, cervical cancer (CC), non-small-lung cancer, cutaneous melanoma (CM) and glioblastoma were tested for TIL in hematoxylin eosin, and density of CD3+, CD4+, CD8+, CD20+, CD68+ and CD163+ cells by digital analysis. Results: TIL levels were higher in invasive margin compartments (IMC). TIL in IMC, intratumoral and stromal compartments predicted survival. CC and gastric cancer had higher TIL in intratumoral; CC and CM had higher TIL in stromal compartment and IMC. CM had the highest density of lymphocyte and macrophage populations. CD20 density was associated with survival in the whole series. Conclusion: Standardized evaluation of TIL levels may provide valuable prognostic information in a spectrum of different malignancies.
Collapse
Affiliation(s)
- Carlos A Castaneda
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
- Faculty of Health Sciences, Universidad Científica del Sur, Lima 15067, Peru
| | - Miluska Castillo
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Karina Aliaga
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Luis A Bernabe
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Sandro Casavilca
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Joselyn Sanchez
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Carlos A Torres-Cabala
- Departments of Pathology & Dermatology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Henry L Gomez
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Luis Mas
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Jorge Dunstan
- Department of Soft Tissue Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Jose M Cotrina
- Department of Soft Tissue Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Julio Abugattas
- Department of Soft Tissue Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Ivan Chavez
- Department of Abdominal Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Eloy Ruiz
- Department of Abdominal Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Paola Montenegro
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Victor Rojas
- Department of Chest Surgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Enrique Orrego
- Department of Neurosurgery, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Marco Galvez-Nino
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Brayam Felix
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Maria P Landa-Baella
- Department of Research, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Tatiana Vidaurre
- Medical Oncology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Maria R Villa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Rocio Zevallos
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Luis Taxa
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Henry Guerra
- Department of Pathology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| |
Collapse
|
17
|
Klopfenstein Q, Truntzer C, Vincent J, Ghiringhelli F. Cell lines and immune classification of glioblastoma define patient's prognosis. Br J Cancer 2019; 120:806-814. [PMID: 30899088 PMCID: PMC6474266 DOI: 10.1038/s41416-019-0404-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/11/2019] [Accepted: 01/28/2019] [Indexed: 12/26/2022] Open
Abstract
Background Prognostic markers for glioblastoma are lacking. Both intrinsic tumour characteristics and microenvironment could influence cancer prognostic. The aim of our study was to generate a pure glioblastoma cell lines and immune classification in order to decipher the respective role of glioblastoma cell and microenvironment on prognosis. Methods We worked on two large cohorts of patients suffering from glioblastoma (TCGA, n = 481 and Rembrandt, n = 180) for which clinical data, transcriptomic profiles and outcome were recorded. Transcriptomic profiles of 129 pure glioblastoma cell lines were clustered to generate a glioblastoma cell lines classification. Presence of subtypes of glioblastoma cell lines and immune cells was determined using deconvolution. Results Glioblastoma cell lines classification defined three new molecular groups called oncogenic, metabolic and neuronal communication enriched. Neuronal communication-enriched tumours were associated with poor prognosis in both cohorts. Immune cell infiltrate was more frequent in mesenchymal classical classification subgroup and metabolic-enriched tumours. A combination of age, glioblastoma cell lines classification and immune classification could be used to determine patient’s outcome in both cohorts. Conclusions Our study shows that glioblastoma-bearing patients can be classified based on their age, glioblastoma cell lines classification and immune classification. The combination of these information improves the capacity to address prognosis.
Collapse
Affiliation(s)
- Quentin Klopfenstein
- Research Platform in Biological Oncology, Dijon, France.,GIMI Genetic and Immunology Medical Institute, Dijon, France
| | - Caroline Truntzer
- Research Platform in Biological Oncology, Dijon, France.,GIMI Genetic and Immunology Medical Institute, Dijon, France
| | - Julie Vincent
- Department of Medical Oncology, Centre GF Leclerc, Dijon, France
| | - Francois Ghiringhelli
- Research Platform in Biological Oncology, Dijon, France. .,GIMI Genetic and Immunology Medical Institute, Dijon, France. .,Department of Medical Oncology, Centre GF Leclerc, Dijon, France. .,INSERM, UMR1231, Dijon, France.
| |
Collapse
|
18
|
Haeryfar SMM, Shaler CR, Rudak PT. Mucosa-associated invariant T cells in malignancies: a faithful friend or formidable foe? Cancer Immunol Immunother 2018; 67:1885-1896. [PMID: 29470597 PMCID: PMC11028145 DOI: 10.1007/s00262-018-2132-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/13/2018] [Indexed: 12/12/2022]
Abstract
Mucosa-associated invariant T (MAIT) cells are a subset of innate-like T lymphocytes known for their ability to respond to MHC-related protein 1 (MR1)-restricted stimuli and select cytokine signals. They are abundant in humans and especially enriched in mucosal layers, common sites of neoplastic transformation. MAIT cells have been found within primary and metastatic tumors. However, whether they promote malignancy or contribute to anticancer immunity is unclear. On the one hand, MAIT cells produce IL-17A in certain locations and under certain circumstances, which could in turn facilitate neoangiogenesis, intratumoral accumulation of immunosuppressive cell populations, and cancer progression. On the other hand, they can express a potent arsenal of cytotoxic effector molecules, NKG2D and IFN-γ, all of which have established roles in cancer immune surveillance. In this review, we highlight MAIT cells' characteristics as they might pertain to cancer initiation, progression, or control. We discuss recent findings, including our own, that link MAIT cells to cancer, with a focus on colorectal carcinoma, as well as some of the outstanding questions in this active area of research. Finally, we provide a hypothetical picture in which MAIT cells constitute attractive targets in cancer immunotherapy.
Collapse
Affiliation(s)
- S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada.
- Centre for Human Immunology, Western University, London, ON, Canada.
- Lawson Health Research Institute, London, ON, Canada.
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, ON, Canada.
| | - Christopher R Shaler
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| | - Patrick T Rudak
- Department of Microbiology and Immunology, Western University, 1151 Richmond Street, London, ON, N6A 5C1, Canada
| |
Collapse
|
19
|
Barbagallo M, Albatly AA, Schreiner S, Hayward-Könnecke HK, Buck A, Kollias SS, Huellner MW. Value of 18F-FET PET in Patients With Suspected Tumefactive Demyelinating Disease-Preliminary Experience From a Retrospective Analysis. Clin Nucl Med 2018; 43:e385-e391. [PMID: 30153143 DOI: 10.1097/rlu.0000000000002244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE To investigate the diagnostic value of F-fluoroethyl-L-tyrosine (FET) positron emission tomography (PET) in patients with suspected tumefactive demyelinating disease. METHODS We retrospectively examined FET-PET and MR imaging of 21 patients (12 female, 9 male) with known demyelinating disease and newly diagnosed tumefactive lesions. The maximum standardized uptake value (SUVmax), time activity curves (TAC) and lesion-to-background ratio (TBR) of these lesions were calculated. The standard of reference consisted of biopsy and/or follow-up imaging. FET parameters of true neoplastic lesions and tumefactive demyelinating lesions were compared using Mann-Whitney U-test and receiver operating characteristic (ROC) analysis. RESULTS Nine patients (42.9%) had neoplastic lesions, 12 patients (57.1%) had tumefactive demyelinating lesions. TBRmax, SUVmax and TAC were significantly different between demyelinating lesions and neoplastic lesions: Tumors had a higher TBRmax (3.53 ± 1.09 vs. 1.48 ± 0.31, respectively; P < 0.001) and SUVmax (3.95 ± 1.59 vs. 1.86 ± 0.50, respectively; P < 0.001) than tumefactive demyelinating lesions. The TAC of tumors was significantly higher compared to tumefactive demyelinating lesions at all time points (P < 0.05). ROC analysis revealed that a TBRmax threshold of 2.2 and a SUVmax threshold of 2.5 could reliably differentiate tumor and tumefactive demyelination (area under the curve, 1.000 and 0.958, respectively). CONCLUSION In patients with demyelinating disease, FET-PET parameters TBRmax (cut-off 2.2) and SUVmax (cut-off 2.5) are able to distinguish tumefactive demyelinations from true neoplastic lesions.
Collapse
Affiliation(s)
| | | | - Simon Schreiner
- Neurology Clinic, University Hospital Zurich/University of Zurich, Frauenklinikstrasse
| | | | | | - Spyros S Kollias
- Department of Neuroradiology, University Hospital Zurich/University of Zurich, Rämistrasse, Zürich, Switzerland
| | | |
Collapse
|
20
|
Zheng Q, Diao S, Wang Q, Zhu C, Sun X, Yin B, Zhang X, Meng X, Wang B. IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signalling pathway. J Cell Mol Med 2018; 23:357-369. [PMID: 30353649 PMCID: PMC6307791 DOI: 10.1111/jcmm.13938] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas (GBMs) are the most common of both benign and malignant primary brain tumours, in which the inflammatory and immunologic abnormalities are involved. Interleukin-17A (IL-17A) plays an important role in various inflammatory diseases and cancers. Several recent studies revealed that the expression of IL-17A was overexpressed in human GBMs tissue. However, the accurate role of IL-17A in GBMs remains unclear. In this study, we aimed to explore the effect of IL-17A on cell migration and invasion of GBMs and the mechanism by which the effects occurred. We found that exogenous IL-17A promoted significantly cell migration and invasion abilities in two GBMs cell lines (U87MG and U251) in a time-dependent manner. In addition, the protein expressions of PI3K, Akt and MMP-2/9 were increased in the GBMs cells challenged by IL-17A. Furthermore, a tight junction protein ZO-1 was down-regulated but Twist and Bmi1 were up-regulated. Treatment with a PI3K inhibitor (LY294002) significantly reduced the abilities of both migration and invasion in U87MG and U251 cells. LY294002 treatment also attenuated the IL-17A causing increases of protein levels of PI3K, AKT, MMP-2/9, Twist and the decreases of protein level of ZO-1 in the U87MG and U251 cells. Taken together, we concluded that IL-17A promotes the GBM cells migration and invasion via PI3K/AKT signalling pathway. IL-17A and its related signalling pathways may be potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shuo Diao
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Bo Yin
- Department of Urology, ShengJing Hospital of China Medical University, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School & Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Orrego E, Castaneda CA, Castillo M, Bernabe LA, Casavilca S, Chakravarti A, Meng W, Garcia-Corrochano P, Villa-Robles MR, Zevallos R, Mejia O, Deza P, Belmar-Lopez C, Ojeda L. Distribution of tumor-infiltrating immune cells in glioblastoma. CNS Oncol 2018; 7:CNS21. [PMID: 30299157 PMCID: PMC6331699 DOI: 10.2217/cns-2017-0037] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aim: Evaluation of features related to infiltrating immune cell level in glioblastoma. Methods: Tumor-infiltrating lymphocytes (TILs) through H&E staining, and TILs (CD3, CD4, CD8 and CD20) and macrophage (CD68 and CD163) levels through immunohistochemistry were evaluated through digital analysis. Results: CD68 (9.1%), CD163 (2.2%), CD3 (1.6%) and CD8 (1.6%) had the highest density. Higher CD4+ was associated with unmethylated MGMT (p = 0.016). Higher CD8+ was associated with larger tumoral size (p = 0.027). Higher CD163+ was associated with higher age (p = 0.044) and recursive partitioning analysis = 4. Women (p < 0.05), total resection (p < 0.05), MGMT-methylation (p < 0.001), radiotherapy (p < 0.001), chemotherapy (p < 0.001) and lower CD4+ (p < 0.05) were associated with longer overall survival. Conclusion: Macrophages are more frequent than TILs. Some subsets are associated with clinical features.
Collapse
Affiliation(s)
- Enrique Orrego
- Neurosurgery Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Carlos A Castaneda
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru.,Faculty of Medicine, Universidad Peruana San Juan Bautista, Lima, 15067, Peru
| | - Miluska Castillo
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Luis A Bernabe
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Sandro Casavilca
- Pathology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital, Columbus, OH, 43210, USA
| | - Wei Meng
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center-Arthur G. James Cancer Hospital, Columbus, OH, 43210, USA
| | | | - Maria R Villa-Robles
- Pathology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Rocio Zevallos
- Pathology Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Omar Mejia
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Pedro Deza
- Neurosurgery Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Carolina Belmar-Lopez
- Research Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| | - Luis Ojeda
- Neurosurgery Department, Instituto Nacional de Enfermedades Neoplasicas, Lima, 15038, Peru
| |
Collapse
|
22
|
Wang R, Yang L, Zhang C, Wang R, Zhang Z, He Q, Chen X, Zhang B, Qin Z, Wang L, Zhang Y. Th17 cell-derived IL-17A promoted tumor progression via STAT3/NF-κB/Notch1 signaling in non-small cell lung cancer. Oncoimmunology 2018; 7:e1461303. [PMID: 30377557 PMCID: PMC6205058 DOI: 10.1080/2162402x.2018.1461303] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 12/16/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for the majority of all lung cancer cases, which is the leading cause of cancer deaths worldwide. IL-17░A, the major effector cytokine derived from Th17 cells, is a key cytokine in tumor pathogenesis and modulates tumor progression. We aimed to identify whether IL-17░A derived from Th17 cells promotes the progression of NSCLC. Here we found that the level of Th17 cells was increased in NSCLC and IL-17░A was mainly produced by CD4+ cells (Th17 cells) in NSCLC. IL-17░A enhanced the migration, invasion and stemness of NSCLC via STAT3/NF-κB/Notch1 signaling. Blockade of this signaling inhibited the migration, invasion and stemness of NSCLC mediated by IL-17░A. Th17 cells in NSCLC were closely associated with poor prognosis of NSCLC patients. Our results indicated that Th17 cell-derived IL-17░A plays an important role in tumor progression of NSCLC via STAT3/NF-κB/Notch1 signaling. Therefore, therapeutic strategies against this pathway would be valuable to be developed for NSCLC treatment.
Collapse
Affiliation(s)
- Ruirui Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
| | - Chaoqi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
| | - Ruijie Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
| | - Qianyi He
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
| | - Xinfeng Chen
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
| | - Bin Zhang
- Department of Hematology/Oncology, School of Medicine, Northwestern University, Chicago, IL60611, USA
| | - Zhihai Qin
- Medical Research Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Liping Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan 450052, P.R. China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
23
|
Bockmayr M, Mohme M, Klauschen F, Winkler B, Budczies J, Rutkowski S, Schüller U. Subgroup-specific immune and stromal microenvironment in medulloblastoma. Oncoimmunology 2018; 7:e1462430. [PMID: 30228931 PMCID: PMC6140816 DOI: 10.1080/2162402x.2018.1462430] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/28/2018] [Accepted: 04/02/2018] [Indexed: 01/20/2023] Open
Abstract
Knowledge on immune and stromal cells in medulloblastoma microenvironment is still limited as previous work was frequently restricted by low sample size and the lack of molecular subgroup information. We characterized 10 microenvironment cell populations as well as PD-L1 from gene expression in 1422 brain tumors and 763 medulloblastomas. All in all, medulloblastomas showed low expression of immune markers. Still, there were substantial differences with a clustering of medulloblastoma subgroups according to their microenvironment profile. Specifically, SHH medulloblastomas displayed strong signatures of fibroblasts, T cells and macrophages, while markers of cytotoxic lymphocytes were enriched in Group 4 tumors. PD-L1 gene expression appeared to be relatively high in single SHH and WNT cases but was undetectable by immunohistochemistry. In addition, two diverse immuno-stromal patterns were identified, indicating distinct types of local tumor immunosuppression, which were primarily controlled by either macrophage and regulatory T cell-mediated mechanisms or immunosuppressive cytokines and checkpoints, respectively. None of the immune cell signatures had an independent prognostic value in the present dataset after multiple testing correction. These results suggest a mild, but subgroup-specific infiltration of immune cells in medulloblastoma.
Collapse
Affiliation(s)
- Michael Bockmayr
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
- Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frederick Klauschen
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Beate Winkler
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Budczies
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, Berlin, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute, Children's Cancer Center Hamburg, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|