1
|
Arrizabalaga L, Di Trani CA, Fernández-Sendin M, Bella Á, Russo-Cabrera JS, Gomar C, Ardaiz N, Belsue V, González-Gomariz J, Zalba S, Gil-Korilis A, Garrido MJ, Melero I, Aranda F, Berraondo P. Intraperitoneal administration of mRNA encoding interleukin-12 for immunotherapy in peritoneal carcinomatosis. J Nanobiotechnology 2025; 23:113. [PMID: 39962479 PMCID: PMC11834514 DOI: 10.1186/s12951-025-03196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/02/2025] [Indexed: 02/20/2025] Open
Abstract
Peritoneal carcinomatosis is an advanced stage of cancer with very limited treatment options. Locoregional immunotherapy is being evaluated as a way to improve efficacy and limit toxicity. This study assessed the efficacy of a cationic polymer/lipid-based transfection compound in delivering mRNA molecules intraperitoneally. Our investigation of the transfer of luciferase mRNA in murine models of peritoneal carcinomatosis revealed preferential luciferase expression in the omentum upon the intraperitoneal administration of complexed mRNAs. Macrophages were identified as key cells that capture and express the mRNA complexes, and accordingly, depletion of resident macrophages led to reduced reporter luciferase expression. To explore the therapeutic potential of this approach, mRNA complexes encoding single-chain interleukin-12 (IL12), an immunostimulatory molecule (mRNA-IL12), were investigated. mRNA-IL12-treated mice exhibited a significant survival advantage in models of peritoneal carcinomatosis and acquired immune memory, as shown upon subcutaneous rechallenge. Tumor microenvironment analyses revealed increased numbers of CD4+ and CD8+ T cells with a more proliferative phenotype, accompanied by decreased myeloid populations in the omentum. Overall, our study underscores the potential of mRNA complexes for efficient mRNA delivery, eliciting effective antitumor responses and modulating the tumor microenvironment to treat peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernández-Sendin
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ángela Bella
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Joan Salvador Russo-Cabrera
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Nuria Ardaiz
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Virginia Belsue
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - José González-Gomariz
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Sara Zalba
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Pharmaceutical Sciences, School of Pharmacy & Nutrition, University of Navarra, Pamplona, Spain
| | - Adrián Gil-Korilis
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maria J Garrido
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Pharmaceutical Sciences, School of Pharmacy & Nutrition, University of Navarra, Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
- Department of Oncology, Cancer Center Clínica, Universidad de Navarra (CCUN), Madrid, Spain
- Nuffield Department of Medicine (NDM), University of Oxford, Oxford, UK
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cancer Center Clínica, Cima Universidad de Navarra, Universidad de Navarra (CCUN), Avenida Pio XII, 55, Pamplona, Spain.
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain.
- Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain.
| |
Collapse
|
2
|
Che K, Li J, Chen Z, Li Q, Wen Q, Wang C, Yang Z. IL-33 in cancer immunotherapy: Pleiotropic functions and biological strategies. Cytokine Growth Factor Rev 2024:S1359-6101(24)00093-5. [PMID: 39638672 DOI: 10.1016/j.cytogfr.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Interleukin-33 (IL-33) belongs to the IL-1 cytokine superfamily and plays a critical role in regulating immune responses and maintaining host homeostasis. IL-33 is essential for driving and enhancing type 2 immune responses and is closely associated with the pathogenesis of various inflammatory diseases, infections, and the progression and metastasis of cancers. This study aimed to provide an overview of the anti-tumor effects of IL-33 by examining its complex immunomodulatory functions within the tumor microenvironment and how it regulates immune cells to mediate these effects. We also provided perspectives on the pleiotropic roles of IL-33 in immunomodulation, its potential use in cancer immunotherapies, and possible adverse effects associated with its therapeutic application. Understanding these mechanisms is crucial for developing more effective IL-33-based diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Keying Che
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinyu Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zheng Chen
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiang Wen
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chuanxi Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
3
|
Cheng WD, Bin L, Lin ZX, Yu D, Xiang DK, Lo S, Ravichandran M, Kong TS. Human umbilical cord mesenchymal stem cells toxicity and allergy effects: In vivo assessment. PLoS One 2024; 19:e0309429. [PMID: 39446814 PMCID: PMC11500854 DOI: 10.1371/journal.pone.0309429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/12/2024] [Indexed: 10/26/2024] Open
Abstract
OBJECTIVE Human umbilical cord mesenchymal stem cells (hUCMSCs) hold significant promise across various clinical applications. Therefore, regulatory requirements necessitate a thorough investigation of the hUCMSCs safety before clinical trials and potential allergic reactions after transplantation. METHODS Abnormal toxicity test employed mice and guinea pigs dosed daily at 0.5×106 cells and 5×106 cells, respectively for 7 days. Acute toxicity test employed low, medium, and high doses of hUCMSCs injected into mice once, followed by observations for 23 days. In systemic allergy test, guinea pigs received low and high dose of hUCMSCs, with sensitization and excitation stages at day 14 and 21, respectively. RESULTS The abnormal toxicity test of hUCMSC injections revealed no abnormal reactions over a seven-day observation period, indicating the safety of this administration route. In acute toxicity studies, the high-dose hUCMSCs group resulted in fatalities due to pulmonary embolism. Conversely, the low-dose group exhibited no toxic reactions or deaths. The maximum tolerated dose was determined to be >2×107 cells/kg. Systemic active allergy test showed that high doses of hUCMSC intravenous injections did not induce allergic reactions. CONCLUSION This research affirms hUCMSC injections meet safety standards for clinical cell therapy, emphasizing their safe and promising clinical utility.
Collapse
Affiliation(s)
- Wu Dong Cheng
- School of Medicine, Wuhan University, Wuhan, Hubei, China
| | - Luo Bin
- School of Medicine, Wuhan University, Wuhan, Hubei, China
| | - Zuo Xia Lin
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
- Institute of Neurosciences, Guangzhou Medical University Hospital, Guangzhou, China
| | - Ding Yu
- Department of Health Management, Nanfang Hospital, Southern Medical University of China, Guangzhou, Guangdong, China
| | - Ding Ke Xiang
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
- School of Public Health, Southern Medical University of China, Guangzhou, Guangdong, China
| | - Samantha Lo
- Celestialab Sdn Bhd, ALPS Global Holding, Kuala Lumpur, Malaysia
| | - Manickam Ravichandran
- MyGenome, ALPS Global Holding, Kuala Lumpur, Malaysia
- Faculty of Applied Sciences, Department of Biotechnology, AIMST University, Bedong, Kedah, Malaysia
| | - Tham Seng Kong
- ALPS Medical Centre, ALPS Global Holding, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Arrizabalaga L, Risson A, Ezcurra-Hualde M, Aranda F, Berraondo P. Unveiling the multifaceted antitumor effects of interleukin 33. Front Immunol 2024; 15:1425282. [PMID: 38881897 PMCID: PMC11176530 DOI: 10.3389/fimmu.2024.1425282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Interleukin 33 (IL-33), once predominantly recognized for its pro-tumoral activities, has emerged as a multifunctional cytokine with antitumor properties. IL-33 pleiotropic activities include activation of Th1 CD4+ T cells, CD8+ T cells, NK cells, dendritic cells, eosinophils, as well as type 2 innate lymphoid cells. Regarding this immunomodulatory activity, IL-33 demonstrates synergistic interactions with various cancer therapies, including immune checkpoint blockade and chemotherapy. Combinatorial treatments leveraging IL-33 exhibit enhanced antitumor efficacy across different tumor models, promising novel avenues for cancer therapy. Despite its antitumor effects, the complex interplay of IL-33 within the tumor microenvironment underscores the need for further investigation. Understanding the mechanisms underlying IL-33's dual role as both a promoter and inhibitor of tumor progression is essential for refining therapeutic strategies and fully realizing its potential in cancer immunotherapy. This review delves into the intricate landscape of IL-33 effects within the tumor microenvironment, highlighting its pivotal role in orchestrating immune responses against cancer.
Collapse
Affiliation(s)
- Leire Arrizabalaga
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Aline Risson
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Miriam Ezcurra-Hualde
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Fernando Aranda
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
| | - Pedro Berraondo
- Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA) and Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
5
|
Fuller AD, Karami AL, Kabir MF, Klochkova A, Jackson JL, Mu A, Tan Y, Klein-Szanto AJ, Whelan KA. Eosinophilic esophagitis-associated epithelial remodeling may limit esophageal carcinogenesis. FRONTIERS IN ALLERGY 2023; 4:1086032. [PMID: 37064719 PMCID: PMC10090679 DOI: 10.3389/falgy.2023.1086032] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023] Open
Abstract
Introduction Under homeostatic conditions, esophageal epithelium displays a proliferation/differentiation gradient that is generated as proliferative basal cells give rise to suprabasal cells then terminally differentiated superficial cells. This proliferation/differentiation gradient is often perturbed in esophageal pathologies. Basal cell hyperplasia may occur in patients with gastroesophageal reflux disease (GERD), a condition in which acid from the stomach enters the esophagus, or eosinophilic esophagitis (EoE), an emerging form of food allergy. While GERD is a primary risk factor for esophageal cancer, epidemiological data suggests that EoE patients do not develop esophageal cancer. Methods In order to investigate the impact of EoE and esophageal cancer specifically on the cellular landscape of esophageal epithelium, we perform single cell RNA-sequencing in murine models of EoE and esophageal cancer, specifically esophageal squamous cell carcinoma (ESCC). We further evaluate modules of co-expressed genes in EoE- and ESCC-enriched epithelial cell clusters. Finally, we pair EoE and ESCC murine models to examine the functional relationship between these pathologies. Results In mice with either EoE or ESCC, we find expansion of cell populations as compared to normal esophageal epithelium. In mice with EoE, we detect distinct expansion of 4 suprabasal populations coupled with depletion of 2 basal populations. By contrast, mice with ESCC display unique expansion of 2 basal populations and 1 suprabasal population, as well as depletion of 2 suprabasal populations. Senescence, glucocorticoid receptor signaling, and granulocyte-macrophage colony-stimulating factor pathways are associated with EoE-enriched clusters while pathways associated with cell proliferation and metabolism are identified in ESCC-enriched clusters. Finally, our in vivo data demonstrate that exposure to EoE inflammation limits tumor burden of esophageal carcinogenesis. Discussion Our findings provide the first functional investigation of the relationship between EoE and esophageal cancer and suggest that esophageal epithelial remodeling events occurring in response to EoE inflammation may limit esophageal carcinogenesis. This investigation may have future implications for leveraging allergic inflammation-associated alterations in epithelial biology to prevent and/or treat esophageal cancer.
Collapse
Affiliation(s)
- Annie D. Fuller
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Adam L. Karami
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Mohammad Faujul Kabir
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Alena Klochkova
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jazmyne L. Jackson
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Anbin Mu
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Yinfei Tan
- Genomics Facility, Fox Chase Cancer Center, Philadelphia, PA, United States
| | | | - Kelly A. Whelan
- Fels Cancer Institute for Personalized Medicine, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
- Department of Cancer & Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
6
|
Xu W, Liu Y. Xiaoaiping improves the general state of rats with malignant ascites secondary to gastric cancer by blocking the TGF-β1 signaling pathway. Am J Transl Res 2023; 15:612-621. [PMID: 36777819 PMCID: PMC9908485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/16/2022] [Indexed: 02/14/2023]
Abstract
OBJECTIVE To investigate the effect of Xiaoaiping on the general state of rats with malignant ascites secondary to gastric cancer by blocking the transforming growth factor-β1 (TGF-β1) signaling pathway. METHODS Fifty healthy Wistar rats were randomly divided into 5 groups, with 10 rats in each group. After successful modeling, 0.2 g/(20 g∙d), 0.4 g/(20 g∙d) and 0.8 g/(20 g∙d) of Xiaoaiping injections were administrated at the low dose group (LDG), medium dose group (MDG) and high dose group (HDG), respectively. The model group (MG) was injected intraperitoneally with the same amount of sterile normal saline for 8 d. Rats in the control group (CG) were healthy without any treatment. The general states (mental state, dietary habits, reactions and body shape) of rats in each group were observed. The abdominal circumference, platelet (PLT) count, white blood cell (WBC) count, serum ferritin (SF), ascites volume, cell survival rate, and expression levels of TGF-β1 signaling pathway (TGF-β1, Smad2) were compared among the groups. RESULTS PLT and WBC counts in the MG were lower than those in the CG. Ascites volume, tumor cell survival rate, and SF in the MG were higher than those in the LDG, MDG and HDG (P<0.05). Thymus index in the LDG, MDG and HDG were significantly higher than that in the MG (P<0.05). There was no significant difference in the spleen indices among the groups (P>0.05). The kidney index, serum creatinine and urea nitrogen levels in LDG, MDG and HDG were significantly lower than those of MG (P<0.05). The LDG, MDG and HDG exhibited significantly higher peripheral blood CD4+ cells and CD4+/CD8+, and lower CD8+ level, as compared with the MG (P<0.05). The levels of serum interferon γ (IFN-γ), interleukin (IL)-1α, IL-1β, IL-2, IL-4 and tumor necrosis factor-α (TNF-α) in the LDG, MDG and HDG were higher than those in the MG (P<0.05). The ascites volume and tumor cell survival rate were decreased sequentially in the LDG, MDG and HDG (P<0.05). The MG had higher mRNA levels of TGF-β1 and Smad2 than the CG (P<0.05). No statistically significant difference was found in TGF-β1 and Smad2 between the LDG and MG (P>0.05). CONCLUSION Xiaoaiping could significantly reduce the ascites volume in rats with gastric cancer, inhibit the production of tumor cells in the abdominal cavity, and improve the general state of rats in a dose-dependent manner. The mechanism may be related to the down-regulation of the mRNA level of TGF-β1 and Smad2.
Collapse
Affiliation(s)
- Weiming Xu
- Department of Gastroenterology, The First People’s Hospital of Fuyang DistrictHangzhou 311400, Zhejiang, China
| | - Yanshen Liu
- Department of Ultrasound, The First People’s Hospital of Fuyang DistrictHangzhou 311400, Zhejiang, China
| |
Collapse
|
7
|
Di Trani CA, Cirella A, Arrizabalaga L, Bella Á, Fernandez-Sendin M, Russo-Cabrera JS, Gomar C, Olivera I, Bolaños E, González-Gomariz J, Álvarez M, Etxeberria I, Palencia B, Teijeira Á, Melero I, Berraondo P, Aranda F. Intracavitary adoptive transfer of IL-12 mRNA-engineered tumor-specific CD8 + T cells eradicates peritoneal metastases in mouse models. Oncoimmunology 2022; 12:2147317. [PMID: 36531687 PMCID: PMC9757485 DOI: 10.1080/2162402x.2022.2147317] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that local delivery of tumor antigen-specific CD8+ T lymphocytes engineered to transiently express single-chain IL-12 mRNA is highly efficacious. Peritoneal dissemination of cancer is a frequent and often fatal patient condition usually diagnosed when the tumor burden is too large and hence uncontrollable with current treatment options. In this study, we have modeled intracavitary adoptive T cell therapy with OVA-specific OT-I T cells electroporated with IL-12 mRNA to treat B16-OVA and PANC02-OVA tumor spread in the peritoneal cavity. Tumor localization in the omentum and the effects of local T-cell encounter with the tumor antigens were monitored, the gene expression profile evaluated, and the phenotypic reprogramming of several immune subsets was characterized. Intraperitoneal administration of T cells promoted homing to the omentum more effectively than intravenous administration. Transient IL-12 expression was responsible for a favorable reprogramming of the tumor immune microenvironment, longer persistence of transferred T lymphocytes in vivo, and the development of immunity to endogenous antigens following primary tumor eradication. The efficacy of the strategy was at least in part recapitulated with the adoptive transfer of lower affinity transgenic TCR-bearing PMEL-1 T lymphocytes to treat the aggressive intraperitoneally disseminated B16-F10 tumor. Locoregional adoptive transfer of transiently IL-12-armored T cells appears to offer promising therapeutic advantages in terms of anti-tumor efficacy to treat peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Claudia Augusta Di Trani
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ángela Bella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Myriam Fernandez-Sendin
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Joan Salvador Russo-Cabrera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Celia Gomar
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Elizabeth Bolaños
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - José González-Gomariz
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maite Álvarez
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain,Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Belen Palencia
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain,Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain,Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain,Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain,Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain,CONTACT Fernando Aranda Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain,Spanish Center for Biomedical Research Network in Oncology (CIBERONC), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| |
Collapse
|
8
|
Cederberg RA, Franks SE, Wadsworth BJ, So A, Decotret LR, Hall MG, Shi R, Hughes MR, McNagny KM, Bennewith KL. Eosinophils Decrease Pulmonary Metastatic Mammary Tumor Growth. Front Oncol 2022; 12:841921. [PMID: 35756626 PMCID: PMC9213661 DOI: 10.3389/fonc.2022.841921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic breast cancer is challenging to effectively treat, highlighting the need for an improved understanding of host factors that influence metastatic tumor cell colonization and growth in distant tissues. The lungs are a common site of breast cancer metastasis and are host to a population of tissue-resident eosinophils. Eosinophils are granulocytic innate immune cells known for their prominent roles in allergy and Th2 immunity. Though their presence in solid tumors and metastases have been reported for decades, the influence of eosinophils on metastatic tumor growth in the lungs is unclear. We used transgenic mouse models characterized by elevated pulmonary eosinophils (IL5Tg mice) and eosinophil-deficiency (ΔdblGATA mice), as well as antibody-mediated depletion of eosinophils, to study the role of eosinophils in EO771 mammary tumor growth in the lungs. We found that IL5Tg mice exhibit reduced pulmonary metastatic colonization and decreased metastatic tumor burden compared to wild-type (WT) mice or eosinophil-deficient mice. Eosinophils co-cultured with tumor cells ex vivo produced peroxidase activity and induced tumor cell death, indicating that eosinophils are capable of releasing eosinophil peroxidase (EPX) and killing EO771 tumor cells. We found that lung eosinophils expressed phenotypic markers of activation during EO771 tumor growth in the lungs, and that metastatic growth was accelerated in eosinophil-deficient mice and in WT mice after immunological depletion of eosinophils. Our results highlight an important role for eosinophils in restricting mammary tumor cell growth in the lungs and support further work to determine whether strategies to trigger local eosinophil degranulation may decrease pulmonary metastatic growth.
Collapse
Affiliation(s)
- Rachel A Cederberg
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Brennan J Wadsworth
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alvina So
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada
| | - Lisa R Decotret
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael G Hall
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Rocky Shi
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Hughes
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kelly M McNagny
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada.,Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kevin L Bennewith
- Integrative Oncology, BC Cancer, Vancouver, BC, Canada.,Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Immunotherapy of Ovarian Cancer with Particular Emphasis on the PD-1/PDL-1 as Target Points. Cancers (Basel) 2021; 13:cancers13236063. [PMID: 34885169 PMCID: PMC8656861 DOI: 10.3390/cancers13236063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Ovarian cancer has remained the leading cause of death among gynecologic malignancies. The current standard of treatment, in most cases, is a combination of surgery and chemotherapy, based on platinum agents and taxanes. Despite the increasing usage of newer drug groups, such as bevacizumab and PARP inhibitors, and the expansion of patient groups for these drugs, ovarian cancer is characterized by recurrences, particularly in the form of peritoneal implants. This review focuses on immunotherapy for ovarian cancer. It considers the current state of knowledge in areas such as cancer vaccines, adoptive cell therapy, CAR-T therapy, and anti-CTLA-4 monotherapy. The paper specifically considers PD-1/PDL-1 as drug targets. Anti-PD-1/PD-L1 monotherapy, and anti-PD-1/PD-L1 immunotherapy in combination with other agents, are analyzed. Abstract Ovarian cancer is one of the most fatal cancers in women worldwide. Cytoreductive surgery combined with platinum-based chemotherapy has been the current first-line treatment standard. Nevertheless, ovarian cancer appears to have a high recurrence rate and mortality. Immunological processes play a significant role in tumorigenesis. The production of ligands for checkpoint receptors can be a very effective, and undesirable, immunosuppressive mechanism for cancers. The CTLA-4 protein, as well as the PD-1 receptor and its PD-L1 ligand, are among the better-known components of the control points. The aim of this paper was to review current research on immunotherapy in the treatment of ovarian cancer. The authors specifically considered immune checkpoints molecules such as PD-1/PDL-1 as targets for immunotherapy. We found that immune checkpoint-inhibitor therapy does not have an improved prognosis in ovarian cancer; although early trials showed that a combination of anti-PD-1/PD-L1 therapy with targeted therapy might have the potential to improve responses and outcomes in selected patients. However, we must wait for the final results of the trials. It seems important to identify a group of patients who could benefit significantly from treatment with immune checkpoints inhibitors. However, despite numerous trials, ICIs have not become part of routine clinical practice for the treatment of ovarian cancer.
Collapse
|
10
|
Sun S, Cao C, Li J, Meng Q, Cheng B, Shi B, Shan A. Lycopene Modulates Placental Health and Fetal Development Under High-Fat Diet During Pregnancy of Rats. Mol Nutr Food Res 2021; 65:e2001148. [PMID: 34018317 DOI: 10.1002/mnfr.202001148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 04/09/2021] [Indexed: 01/07/2023]
Abstract
Lycopene plays an important role in improving immunity, promoting antioxidant capacity, and regulating fat metabolism. The placenta, an important organ for nutrients exchange between mother and child during pregnancy, directly affects fetal development. This study aims to characterize effects of lycopene on placental health and fetal development under a high-fat diet, and utilize RNA sequencing (RNA-seq) to investigate and integrate the differences of molecular pathways and biological processes in placenta. For placental health, high-fat diet during pregnancy increases placental oxidative stress, inflammation, and fat deposition. However, lycopene reduces the negative effects of high-fat diet on placenta to some extent, and further promotes fetal development. Under high-fat diet, lycopene reduces the levels of Interleukin 17 (IL-17), Interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α) in placenta (p < 0.05) through the IL-17 pathway. Furthermore, lycopene supplementation in high-fat diet increases Glutaredoxin (Glrx) gene and protein expression in the placenta (p < 0.05), increases Glutathione peroxidase (GSH-Px) and Total antioxidant capacity (T-AOC) levels (p < 0.05), decreases reactive oxygen species (ROS) (p < 0.01) and Hydrogen peroxide (H2 O2 ) levels (p < 0.05) in placenta. In addition, lycopene supplementation in high fat diet increases the expression of Lep gene and protein in placenta and increases the level of leptin (p < 0.05). In terms of fetal development, the average fetal weight and fetal litter weight are increased by lycopene compared to high-diet treatment.
Collapse
Affiliation(s)
- Shishuai Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Chunyu Cao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Baojing Cheng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Baoming Shi
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, P. R. China
| |
Collapse
|
11
|
Li F, Du X, Lan F, Li N, Zhang C, Zhu C, Wang X, He Y, Shao Z, Chen H, Luo M, Li W, Chen Z, Ying S, Shen H. Eosinophilic inflammation promotes CCL6-dependent metastatic tumor growth. SCIENCE ADVANCES 2021; 7:7/22/eabb5943. [PMID: 34039594 PMCID: PMC8153717 DOI: 10.1126/sciadv.abb5943] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/08/2021] [Indexed: 05/30/2023]
Abstract
Compelling evidence suggests that inflammatory components contribute to cancer development. However, eosinophils, involved in several inflammatory diseases, were not fully explored in cancer metastasis. We show that airway inflammatory eosinophilia and colonic inflammation with eosinophil infiltration are both associated with increased metastasis in mice. Eosinophilia is responsible for increased bone metastasis in eosinophil-enriched Cd3δ-Il-5 transgenic (Il-5 Tg) mice. We also observe increased eosinophils in the malignant pleural effusion of cancer patients with pleural metastasis. Mechanistically, eosinophils promote tumor cell migration and metastasis formation through secreting C-C motif chemokine ligand 6 (CCL6). Genetic knockout of Ccl6 in Il-5 Tg mice remarkably attenuates bone metastasis. Moreover, inhibition of C-C chemokine receptor 1 (CCR1, the receptor of CCL6) in tumor cells reduces tumor cell migration and metastasis. Thus, our study identifies a CCL6-dependent prometastatic activity of eosinophils, which can be inhibited by targeting CCR1 and represent an approach to preventing metastatic disease.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xufei Du
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fen Lan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Na Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Chao Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Chen Zhu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xiaohui Wang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yicheng He
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhehua Shao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haixia Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Man Luo
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Songmin Ying
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
- State Key Lab of Respiratory Disease, Guangzhou 510120, China
| |
Collapse
|
12
|
Liu N, Chen J, Zhao Y, Zhang M, Piao L, Wang S, Yue Y. Role of the IL-33/ST2 receptor axis in ovarian cancer progression. Oncol Lett 2021; 22:504. [PMID: 33986865 DOI: 10.3892/ol.2021.12765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023] Open
Abstract
Ovarian cancer remains a significant health problem for women in the world due to its diagnosis at advanced stages of disease and the high mortality rate of patients. To date, ovarian cancer is frequently treated with tumor reduction surgery followed by platinum/paclitaxel-based chemotherapy; however, most patients eventually develop relapsed disease. The mRNA expression levels of interleukin-33 (IL-33) and the suppressor of tumorigenicity 2 (ST2) receptor are significantly upregulated in ovarian cancer tissues and metastatic tumor lesions. In addition, IL-33 and ST2 expression has been associated with a poor overall survival in patients with epithelial ovarian cancer. The IL-33 receptor ST2 is expressed as both a membrane-anchored receptor (ST2L) activated by IL-33, and as a soluble variant that exhibits anti-inflammatory properties. In the present review, the functions of the IL-33/ST2L axis in cells and their aberrant expression levels in ovarian cancer were discussed. In addition, targeting their expression as a novel strategy for the control of ovarian cancer progression was emphasized.
Collapse
Affiliation(s)
- Ning Liu
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Jintong Chen
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yinghua Zhao
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Mingyue Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Li Piao
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Siqing Wang
- Department of Cancer Immunology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
13
|
Mast Cells and Skin and Breast Cancers: A Complicated and Microenvironment-Dependent Role. Cells 2021; 10:cells10050986. [PMID: 33922465 PMCID: PMC8146516 DOI: 10.3390/cells10050986] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Mast cells are important sentinel cells in host defense against infection and major effector cells in allergic disease. The role of these cells in cancer settings has been widely debated. The diverse range of mast cell functions in both immunity and tissue remodeling events, such as angiogenesis, provides multiple opportunities for mast cells to modify the tumor microenvironment. In this review, we consider both skin and breast cancer settings to address the controversy surrounding the importance of mast cells in the host response to tumors. We specifically address the key mediators produced by mast cells which impact tumor development. The role of environmental challenges in modifying mast cell responses and opportunities to modify mast cell responses to enhance anti-tumor immunity are also considered. While the mast cell's role in many cancer contexts is complicated and poorly understood, the activities of these tissue resident and radioresistant cells can provide important opportunities to enhance anti-cancer responses and limit cancer development.
Collapse
|
14
|
Grisaru-Tal S, Itan M, Klion AD, Munitz A. A new dawn for eosinophils in the tumour microenvironment. Nat Rev Cancer 2020; 20:594-607. [PMID: 32678342 DOI: 10.1038/s41568-020-0283-9] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 01/10/2023]
Abstract
Eosinophils are evolutionarily conserved, pleotropic cells that display key effector functions in allergic diseases, such as asthma. Nonetheless, eosinophils infiltrate multiple tumours and are equipped to regulate tumour progression either directly by interacting with tumour cells or indirectly by shaping the tumour microenvironment (TME). Eosinophils can readily respond to diverse stimuli and are capable of synthesizing and secreting a large range of molecules, including unique granule proteins that can potentially kill tumour cells. Alternatively, they can secrete pro-angiogenic and matrix-remodelling soluble mediators that could promote tumour growth. Herein, we aim to comprehensively outline basic eosinophil biology that is directly related to their activity in the TME. We discuss the mechanisms of eosinophil homing to the TME and examine their diverse pro-tumorigenic and antitumorigenic functions. Finally, we present emerging data regarding eosinophils as predictive biomarkers and effector cells in immunotherapy, especially in response to immune checkpoint blockade therapy, and highlight outstanding questions for future basic and clinical cancer research.
Collapse
Affiliation(s)
- Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Michal Itan
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel
| | - Amy D Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel.
| |
Collapse
|
15
|
Luo P, Deng S, Ye H, Yu X, Deng Q, Zhang Y, Jiang L, Li J, Yu Y, Han W. The IL-33/ST2 pathway suppresses murine colon cancer growth and metastasis by upregulating CD40 L signaling. Biomed Pharmacother 2020; 127:110232. [PMID: 32559854 DOI: 10.1016/j.biopha.2020.110232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family, participating in both helper T1 (Th1)- and Th2-type immune responses, but its ambiguous effects on tumor growth and related immune mechanisms remain unclear. Here, we report that recombinant mouse IL-33 (mIL-33) significantly inhibited colon cancer growth and metastasis to lung and liver in a murine CT26 or MC38 tumor-cell engraftment model. This effect could be associated with CD4+ T cells and CD40 L signaling, as depletion of CD4+ T cells or blocking CD40 L signaling in vivo partly abolished the antitumor function of IL-33. In addition, IL-33 treatment upregulated CD40 L expression on tumor-infiltrating lymphocytes, and promoted the activation of CD4+ T, CD8+ T and natural killer cells via CD40 L signaling. Furthermore, IL-33 was sufficient to induce the ST2 expression on CD4+ T cells, but not on CD8+ T and natural killer cells, indicating that IL-33 acted on CD4+ T cells via a positive-feedback loop. Our findings shed new light on the IL-33-mediated antitumor effects and mechanisms of Th1 action, and also suggest that IL-33 may serve as an activator to boost anticancer immune responses in singular or combinatory therapies.
Collapse
Affiliation(s)
- Ping Luo
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shaorong Deng
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Hao Ye
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaolan Yu
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Deng
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yinjie Zhang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liya Jiang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jingjing Li
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
16
|
Chang CP, Hu MH, Hsiao YP, Wang YC. ST2 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:83-93. [PMID: 32060890 DOI: 10.1007/978-3-030-38315-2_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Suppression of tumorigenicity 2 (ST2), also known as interleukin-1 receptor-like 1 (IL1RL1), is one of the natural receptors of IL-33. Three major isoforms, ST2L (transmembrane form), sST2 (soluble form), and ST2V, are generated by alternative splicing. Damage to stromal cells induces necrosis and release of IL-33, which binds to heterodimeric ST2L/IL-1RAcP complex on the membrane of a variety of immune cells. This IL-33/ST2L signal induces transcription of the downstream inflammatory and anti-inflammatory genes by activating diverse intracellular kinases and factors to mount an adequate immune response, even in tumor microenvironment. For example, activation of IL-33/ST2L signal may trigger Th2-dependent M2 macrophage polarization to facilitate tumor progression. Notably, sST2 is a soluble form of ST2 that lacks a transmembrane domain but preserves an extracellular domain similar to ST2L, which acts as a "decoy" receptor for IL-33. sST2 has been shown to involve in the inflammatory tumor microenvironment and the progression of colorectal cancer, non-small cell lung cancer, and gastric cancer. Therefore, targeting the IL-33/ST2 axis becomes a promising new immunotherapy for treatment of many cancers. This chapter reviews the recent findings on IL-33/ST2L signaling in tumor microenvironment, the trafficking mode of sST2, and the pharmacological strategies to target IL-33/ST2 axis for cancer treatment.
Collapse
Affiliation(s)
- Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Hsuan Hu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Peng Hsiao
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Andreone S, Spadaro F, Buccione C, Mancini J, Tinari A, Sestili P, Gambardella AR, Lucarini V, Ziccheddu G, Parolini I, Zanetti C, D’Urso MT, De Ninno A, Businaro L, Afferni C, Mattei F, Schiavoni G. IL-33 Promotes CD11b/CD18-Mediated Adhesion of Eosinophils to Cancer Cells and Synapse-Polarized Degranulation Leading to Tumor Cell Killing. Cancers (Basel) 2019; 11:cancers11111664. [PMID: 31717819 PMCID: PMC6895824 DOI: 10.3390/cancers11111664] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/15/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022] Open
Abstract
Eosinophils are major effectors of Th2-related pathologies, frequently found infiltrating several human cancers. We recently showed that eosinophils play an essential role in anti-tumor responses mediated by immunotherapy with the ‘alarmin’ intereukin-33 (IL-33) in melanoma mouse models. Here, we analyzed the mechanisms by which IL-33 mediates tumor infiltration and antitumor activities of eosinophils. We show that IL-33 recruits eosinophils indirectly, via stimulation of tumor cell-derived chemokines, while it activates eosinophils directly, up-regulating CD69, the adhesion molecules ICAM-1 and CD11b/CD18, and the degranulation marker CD63. In co-culture experiments with four different tumor cell lines, IL-33-activated eosinophils established large numbers of stable cell conjugates with target tumor cells, with the polarization of eosinophil effector proteins (ECP, EPX, and granzyme-B) and CD11b/CD18 to immune synapses, resulting in efficient contact-dependent degranulation and tumor cell killing. In tumor-bearing mice, IL-33 induced substantial accumulation of degranulating eosinophils within tumor necrotic areas, indicating cytotoxic activity in vivo. Blocking of CD11b/CD18 signaling significantly reduced IL-33-activated eosinophils’ binding and subsequent killing of tumor cells, indicating a crucial role for this integrin in triggering degranulation. Our findings provide novel mechanistic insights for eosinophil-mediated anti-tumoral function driven by IL-33. Treatments enabling tumor infiltration and proper activation of eosinophils may improve therapeutic response in cancer patients.
Collapse
Affiliation(s)
- Sara Andreone
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Francesca Spadaro
- Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (P.S.)
| | - Carla Buccione
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Jacopo Mancini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Antonella Tinari
- Center for Gender Medicine, Istituto Superiore di Sanità, 00161, Rome, Italy;
| | - Paola Sestili
- Microscopy Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy; (F.S.); (P.S.)
| | - Adriana Rosa Gambardella
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Valeria Lucarini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Giovanna Ziccheddu
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Isabella Parolini
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Cristiana Zanetti
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Maria Teresa D’Urso
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, National Research Council (CNR), 00156 Rome, Italy; (A.D.N.); (L.B.)
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, National Research Council (CNR), 00156 Rome, Italy; (A.D.N.); (L.B.)
| | - Claudia Afferni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy; (S.A.); (C.B.); (J.M.); (A.R.G.); (V.L.); (G.Z.); (I.P.); (C.Z.); (M.T.D.); (F.M.)
- Correspondence: ; Tel.: +39-0649906099
| |
Collapse
|
18
|
Wojtak K, Perales-Puchalt A, Weiner DB. Novel Synthetic DNA Immunogens Targeting Latent Expressed Antigens of Epstein-Barr Virus Elicit Potent Cellular Responses and Inhibit Tumor Growth. Vaccines (Basel) 2019; 7:vaccines7020044. [PMID: 31137606 PMCID: PMC6631996 DOI: 10.3390/vaccines7020044] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
Infectious diseases are linked to 15%-20% of cancers worldwide. Among them, Epstein-Barr virus (EBV) is an oncogenic herpesvirus that chronically infects over 90% of the adult population, with over 200,000 cases of cancer and 150,000 cancer-related deaths attributed to it yearly. Acute EBV infection can present as infectious mononucleosis, and lead to the future onset of multiple cancers, including Burkitt lymphoma, Hodgkin lymphoma, nasopharyngeal carcinoma, and gastric carcinoma. Many of these cancers express latent viral genes, including Epstein-Barr virus nuclear antigen 1 (EBNA1) and latent membrane proteins 1 and 2 (LMP1 and LMP2). Previous attempts to create potent immunogens against EBV have been reported but generated mixed success. We designed novel Synthetic Consensus (SynCon) DNA vaccines against EBNA1, LMP1 and LMP2 to improve on the immune potency targeting important antigens expressed in latently infected cells. These EBV tumor antigens are hypothesized to be useful targets for potential immunotherapy of EBV-driven cancers. We optimized the genetic sequences for these three antigens, studied them for expression, and examined their immune profiles in vivo. We observed that these immunogens generated unique profiles based on which antigen was delivered as the vaccine target. EBNA1vax and LMP2Avax generated the most robust T cell immunity. Interestingly, LMP1vax was a very weak immunogen, generating very low levels of CD8 T cell immunity both as a standalone vaccine and as part of a trivalent vaccine cocktail. LMP2Avax was able to drive immunity that impacted EBV-antigen-positive tumor growth. These studies suggest that engineered EBV latent protein vaccines deserve additional study as potential agents for immunotherapy of EBV-driven cancers.
Collapse
Affiliation(s)
- Krzysztof Wojtak
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
- Cell and Molecular Biology Graduate Program, The University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|