1
|
Birebent R, Drubay D, Alves Costa Silva C, Marmorino F, Vitali G, Piccinno G, Hurtado Y, Bonato A, Belluomini L, Messaoudene M, Routy B, Fidelle M, Zalcman G, Mazieres J, Audigier-Valette C, Moro-Sibilot D, Goldwasser F, Scherpereel A, Pegliasco H, Ghiringhelli F, Reni A, Barlesi F, Albiges L, Planchard D, Martinez S, Besse B, Segata N, Cremolini C, Zitvogel L, Iebba V, Derosa L. Surrogate markers of intestinal dysfunction associated with survival in advanced cancers. Oncoimmunology 2025; 14:2484880. [PMID: 40189749 PMCID: PMC11980478 DOI: 10.1080/2162402x.2025.2484880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 02/19/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
Deviations in the diversity and composition of the gut microbiota are called "gut dysbiosis". They have been linked to various chronic diseases including cancers and resistance to immunotherapy. Stool shotgun based-metagenomics informs on the ecological composition of the gut microbiota and the prevalence of homeostatic bacteria such as Akkermansia muciniphila (Akk), while determination of the serum addressin MAdCAM-1 instructs on endothelial gut barrier dysfunction. Here we examined patient survival during chemo-immuno-therapy in 955 cancer patients across four independent cohorts of non-small cell lung (NSCLC), genitourinary (GU) and colorectal (CRC) cancers, according to hallmarks of gut dysbiosis. We show that Akk prevalence represents a stable and favorable phenotype in NSCLC and CRC cancer patients. Over-dominance of Akk above the healthy threshold was observed in dismal prognosis in NSCLC and GU and mirrored an immunosuppressive gut ecosystem and excessive intestinal epithelial exfoliation in NSCLC. In CRC, the combination of a lack of Akk and low sMAdCAM-1 levels identified a subset comprising 28% of patients with reduced survival, independent of the immunoscore. We conclude that gut dysbiosis hallmarks deserve integration within the diagnosis toolbox in oncological practice.
Collapse
Affiliation(s)
- Roxanne Birebent
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Damien Drubay
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Office of Biostatistics and Epidemiology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Inserm, Université Paris-Saclay, CESP U1018, Oncostat, Villejuif, France
| | - Carolina Alves Costa Silva
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Federica Marmorino
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giacomo Vitali
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- MetaGenoPolis, INRAe, Université Paris-Saclay, Jouy en Josas, France
| | | | - Yoan Hurtado
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Adele Bonato
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
| | - Lorenzo Belluomini
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Meriem Messaoudene
- Centre Hospitalier de l’Université de Montréal (CHUM), Hematology-Oncology Division, Department of Medicine, Montréal, QC, Canada
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - Bertrand Routy
- Centre Hospitalier de l’Université de Montréal (CHUM), Hematology-Oncology Division, Department of Medicine, Montréal, QC, Canada
- Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - Marine Fidelle
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gerard Zalcman
- Thoracic Oncology Department-CIC1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Julien Mazieres
- Service de Pneumologie, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | | | - Denis Moro-Sibilot
- Department of Thoracic Oncology, Centre Hospitalier Universitaire, Grenoble, France
| | - François Goldwasser
- INSERM U1016-CNRS UMR8104-Cochin Institute, Université Paris-Cité, Paris,France
- Department of Medical Oncology, Cochin Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Immunomodulatory Therapies Multidisciplinary Study Group (CERTIM), Paris, France
| | - Arnaud Scherpereel
- Department of Pulmonary and Thoracic Oncology, University of Lille, University Hospital (CHU), INSERM unit OncoThAI, Lille, France
| | | | - François Ghiringhelli
- Cancer Biology Transfer Platform, Centre Georges-François Leclerc, Dijon, France
- Centre de Recherche INSERM LNC-UMR1241-CTM (Center of Translational and Molecular Medicine), Dijon, France
- Department of Medical Oncology, Centre Georges-François Leclerc, Dijon, France
| | - Anna Reni
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Fabrice Barlesi
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - Laurence Albiges
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - David Planchard
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - Stéphanie Martinez
- Service des Maladies Respiratoires, Centre Hospitalier d’Aix-en-Provence, Aix-en-Provence, France
| | - Benjamin Besse
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Cremolini
- Unit of Medical Oncology 2, University Hospital of Pisa, Pisa, Italy
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| | - Valerio Iebba
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| | - Lisa Derosa
- Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France
- Faculté de Medicine, Université Paris-Saclay, Ile-de-France, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France
- Department of Clinical Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
2
|
Almonte AA, Thomas S, Zitvogel L. Microbiota-centered interventions to boost immune checkpoint blockade therapies. J Exp Med 2025; 222:e20250378. [PMID: 40261296 PMCID: PMC12013646 DOI: 10.1084/jem.20250378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/24/2025] Open
Abstract
Immune checkpoint blockade therapies have markedly advanced cancer treatment by invigorating antitumor immunity and extending patient survival. However, therapeutic resistance and immune-related toxicities remain major concerns. Emerging evidence indicates that microbial dysbiosis diminishes therapeutic response rates, while a diverse gut ecology and key beneficial taxa correlate with improved treatment outcomes. Therefore, there is a growing understanding that manipulating the gut microbiota could boost therapy efficacy. This review examines burgeoning methods that target the gut microbiome to optimize therapy and innovative diagnostic tools to detect dysbiosis, and highlights challenges that remain to be addressed in the field.
Collapse
Affiliation(s)
- Andrew A. Almonte
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
| | - Simon Thomas
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale Contre le Cancer, Villejuif, France
- Université Paris-Saclay, Kremlin-Bicêtre, France
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France
| |
Collapse
|
3
|
Chalif J, Goldstein N, Mehra Y, Spakowicz D, Chambers LM. The Role of the Microbiome in Cancer Therapies: Current Evidence and Future Directions. Hematol Oncol Clin North Am 2025; 39:269-294. [PMID: 39856008 DOI: 10.1016/j.hoc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
Abstract
The microbiome is essential for maintaining human health and is also a key factor in the development and progression of various diseases, including cancer. Growing evidence has highlighted the microbiome's significant impact on cancer development, progression, and treatment outcomes. As research continues to unfold, the microbiome and its modulation stand out as a promising frontier in cancer research and therapy. This review highlights current literature on the interplay between various cancer treatment modalities and human microbiotas, focusing on how the microbiome may affect treatment efficacy and toxicity and its potential as a therapeutic target to enhance future outcomes.
Collapse
Affiliation(s)
- Julia Chalif
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Naomi Goldstein
- Division of Obstetrics & Gynecology, The Ohio State University, Columbus, OH, USA
| | - Yogita Mehra
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Dan Spakowicz
- Department of Medical Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Laura M Chambers
- Division of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
4
|
Sahin TK, Sonmezer MC. The role of the microbiome in head and neck squamous cell cancers. Eur Arch Otorhinolaryngol 2025; 282:623-637. [PMID: 39306588 DOI: 10.1007/s00405-024-08966-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 02/09/2025]
Abstract
The human microbiome has garnered tremendous interest in the field of oncology, and microbiota studies in head and neck oncology has also flourished. Given the increasing incidence and mortality of HNSCC, as well as the suboptimal outcomes of available treatments, there is an urgent need for innovative approaches involving the microbiome. This review evaluates the intricate relationship between the microbiome and HNSCC, highlighting the potential of the microbiome as a marker for cancer detection, its role in malignancy, and its impact on the efficacy of conventional treatments like chemotherapy and radiotherapy. The review also explores the effects of treatment modalities on the microbiome and discusses the potential of microbiome alterations to predict and influence treatment toxicities such as mucositis and xerostomia. Further research is warranted to characterize the microbiome-HNSCC association, which holds promise for advancing early diagnosis, enhancing prognostic accuracy, and personalizing treatment strategies to improve patient outcomes. The exploration of the microbiome in clinical trials indicates a burgeoning subject of microbiome-focused therapies, heralding a new frontier in most cancer care.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine and Medical Oncology Department, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| | - Meliha Cagla Sonmezer
- Department of Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Reygner J, Delannoy J, Barba-Goudiaby MT, Gasc C, Levast B, Gaschet E, Ferraris L, Paul S, Kapel N, Waligora-Dupriet AJ, Barbut F, Thomas M, Schwintner C, Laperrousaz B, Corvaïa N. Reduction of product composition variability using pooled microbiome ecosystem therapy and consequence in two infectious murine models. Appl Environ Microbiol 2024; 90:e0001624. [PMID: 38651930 PMCID: PMC11107171 DOI: 10.1128/aem.00016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Growing evidence demonstrates the key role of the gut microbiota in human health and disease. The recent success of microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on its potential in conditions associated with gut dysbiosis, such as acute graft-versus-host disease, intestinal bowel diseases, neurodegenerative diseases, or even cancer. However, the difficulty in defining a "good" donor as well as the intrinsic variability of donor-derived products' taxonomic composition limits the translatability and reproducibility of these studies. Thus, the pooling of donors' feces has been proposed to homogenize product composition and achieve higher taxonomic richness and diversity. In this study, we compared the metagenomic profile of pooled products to corresponding single donor-derived products. We demonstrated that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria known to produce anti-inflammatory short chain fatty acids compared to single donor-derived products. We then evaluated pooled products' efficacy compared to corresponding single donor-derived products in Salmonella and C. difficile infectious mouse models. We were able to demonstrate that pooled products decreased pathogenicity by inducing a structural change in the intestinal microbiota composition. Single donor-derived product efficacy was variable, with some products failing to control disease progression. We further performed in vitro growth inhibition assays of two extremely drug-resistant bacteria, Enterococcus faecium vanA and Klebsiella pneumoniae oxa48, supporting the use of pooled microbiotherapies. Altogether, these results demonstrate that the heterogeneity of donor-derived products is corrected by pooled fecal microbiotherapies in several infectious preclinical models.IMPORTANCEGrowing evidence demonstrates the key role of the gut microbiota in human health and disease. Recent Food and Drug Administration approval of fecal microbiotherapy products to treat recurrent Clostridioides difficile infection has shed light on their potential to treat pathological conditions associated with gut dysbiosis. In this study, we combined metagenomic analysis with in vitro and in vivo studies to compare the efficacy of pooled microbiotherapy products to corresponding single donor-derived products. We demonstrate that pooled products are more homogeneous, diverse, and enriched in beneficial bacteria compared to single donor-derived products. We further reveal that pooled products decreased Salmonella and Clostridioides difficile pathogenicity in mice, while single donor-derived product efficacy was variable, with some products failing to control disease progression. Altogether, these findings support the development of pooled microbiotherapies to overcome donor-dependent treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stéphane Paul
- Team GIMAP, Centre International de Recherche en Infectiologie, Université Jean Monnet, Saint-Etienne, France
- Inserm, Université Claude Bernard Lyon, Lyon, France
- CIC 1408 Inserm Vaccinology, University Hospital of Saint-Etienne, Saint-Etienne, France
- Immunology Department, iBiothera Reference Center, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Nathalie Kapel
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- Service de Coprologie fonctionnelle, Hôpital de la Pitié-Salpêtrière-Charles Foix, AP-HP, Paris, France
| | | | - Frederic Barbut
- UMR-S 1139, INSERM, Université Paris Cite, Paris, France
- National Reference Laboratory for Clostridioides difficile, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- The European Society of Clinical Microbiology and Infectious Diseases Study Group for Clostridioides difficile, Basel, Switzerland
| | - Muriel Thomas
- UMR1319, Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
6
|
Sang Y, Zheng K, Zhao Y, Liu Y, Zhu S, Xie X, Shang L, Liu J, Li L. Efficacy and regulatory strategies of gut microbiota in immunotherapy: a narrative review. Transl Cancer Res 2024; 13:2043-2063. [PMID: 38737692 PMCID: PMC11082673 DOI: 10.21037/tcr-24-316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/29/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective With advances in gut microbiome research, it has been recognized that the gut microbiome has an important and far-reaching impact on many human diseases, including cancer. Therefore, more and more researchers are focusing on the treatment of gut flora in tumors. In this article, we present a review of the mechanisms of gut microbes in tumor immunotherapy and related studies to provide reference for further research and insights into the clinical application of gut microbes. Methods Between April 25, 2023, and November 25, 2023, we searched for articles published only in English between 1984 and 2023 using the databases PubMed, American Medical Association and Elsevier ScienceDirect using the keywords "gut microbiology" and "tumor" or "immunotherapy". Key Content and Findings The gastrointestinal tract contains the largest number of microorganisms in the human body. Microorganisms are involved in regulating many physiological activities of the body. Studies have shown that gut microbes and their derivatives are involved in the occurrence and development of a variety of inflammations and tumors, and changes in their abundance and proportion affect the degree of cancer progression and sensitivity to immunotherapy. Gut microbiota-based drug research is ongoing, and some anti-tumor studies have entered the clinical trial stage. Conclusions The abundance and proportion of intestinal microorganisms influence the susceptibility of tumors to tumor immunotherapy. This article reviewed the effects and mechanisms of gut microbes on tumor immunotherapy to further explore the medical value of gut microbes in tumor immunotherapy.
Collapse
Affiliation(s)
- Yaodong Sang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Kexin Zheng
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yulong Zhao
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan Liu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Siqiang Zhu
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaozhou Xie
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Shang
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jin Liu
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| |
Collapse
|
7
|
Chapadgaonkar SS, Bajpai SS, Godbole MS. Gut microbiome influences incidence and outcomes of breast cancer by regulating levels and activity of steroid hormones in women. Cancer Rep (Hoboken) 2023; 6:e1847. [PMID: 37311575 PMCID: PMC10644331 DOI: 10.1002/cnr2.1847] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Breast cancer, the leading cancer type in women worldwide, is affected by reproductive and nonreproductive factors. Estrogen and progesterone influence the incidence and progression of breast cancer. The microbiome of the gut, a complex organ that plays a vital role in digestion and homeostasis, enhances availability of estrogen and progesterone in the host. Thus, an altered gut microbiome may influence the hormone-induced breast cancer incidence. This review describes the current understanding of the roles of gut microbiome in influencing the incidence and progression of breast cancer, with an emphasis on the microbiome-induced metabolism of estrogen and progesterone. RECENT FINDINGS Microbiome has been recognized as a promising hallmark of cancer. Next-generation sequencing technologies have aided in rapid identification of components of the gut microbiome that are capable of metabolizing estrogen and progesterone. Moreover, studies have indicated a wider role of the gut microbiome in metabolizing chemotherapeutic and hormonal therapy agents and reducing their efficacy in patients with breast cancer, with a predominant effect in postmenopausal women. CONCLUSION The gut microbiome and variations in its composition significantly alter the incidence and therapy outcomes of patients with breast cancer. Thus, a healthy and diverse microbiome is required for better response to anticancer therapies. Finally, the review emphasizes the requirement of studies to elucidate mechanisms that may aid in improving the gut microbiome composition, and hence, survival outcomes of patients with breast cancer.
Collapse
Affiliation(s)
- Shilpa S. Chapadgaonkar
- Department of Biosciences and Technology, Faculty of Sciences and Health SciencesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Srashti S. Bajpai
- Department of Biosciences and Technology, Faculty of Sciences and Health SciencesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| | - Mukul S. Godbole
- Department of Biosciences and Technology, Faculty of Sciences and Health SciencesDr. Vishwanath Karad MIT World Peace UniversityPuneIndia
| |
Collapse
|
8
|
Massa C, Seliger B. Combination of multiple omics techniques for a personalized therapy or treatment selection. Front Immunol 2023; 14:1258013. [PMID: 37828984 PMCID: PMC10565668 DOI: 10.3389/fimmu.2023.1258013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/05/2023] [Indexed: 10/14/2023] Open
Abstract
Despite targeted therapies and immunotherapies have revolutionized the treatment of cancer patients, only a limited number of patients have long-term responses. Moreover, due to differences within cancer patients in the tumor mutational burden, composition of the tumor microenvironment as well as of the peripheral immune system and microbiome, and in the development of immune escape mechanisms, there is no "one fit all" therapy. Thus, the treatment of patients must be personalized based on the specific molecular, immunologic and/or metabolic landscape of their tumor. In order to identify for each patient the best possible therapy, different approaches should be employed and combined. These include (i) the use of predictive biomarkers identified on large cohorts of patients with the same tumor type and (ii) the evaluation of the individual tumor with "omics"-based analyses as well as its ex vivo characterization for susceptibility to different therapies.
Collapse
Affiliation(s)
- Chiara Massa
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
| | - Barbara Seliger
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Brandenburg an der Havel, Germany
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| |
Collapse
|
9
|
Chai Y, Huang Z, Shen X, Lin T, Zhang Y, Feng X, Mao Q, Liang Y. Microbiota Regulates Pancreatic Cancer Carcinogenesis through Altered Immune Response. Microorganisms 2023; 11:1240. [PMID: 37317214 PMCID: PMC10221276 DOI: 10.3390/microorganisms11051240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The microbiota is present in many parts of the human body and plays essential roles. The most typical case is the occurrence and development of cancer. Pancreatic cancer (PC), one of the most aggressive and lethal types of cancer, has recently attracted the attention of researchers. Recent research has revealed that the microbiota regulates PC carcinogenesis via an altered immune response. Specifically, the microbiota, in several sites, including the oral cavity, gastrointestinal tract, and pancreatic tissue, along with the numerous small molecules and metabolites it produces, influences cancer progression and treatment by activating oncogenic signaling, enhancing oncogenic metabolic pathways, altering cancer cell proliferation, and triggering chronic inflammation that suppresses tumor immunity. Diagnostics and treatments based on or in combination with the microbiota offer novel insights to improve efficiency compared with existing therapies.
Collapse
Affiliation(s)
- Yihan Chai
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Zhengze Huang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xuqiu Shen
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Tianyu Lin
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Yiyin Zhang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Xu Feng
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
| | - Qijiang Mao
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| | - Yuelong Liang
- Department of General Surgery, Zhejiang University School of Medicine, Sir Run Run Shaw Hospital, Hangzhou 310016, China
- Zhejiang Province Medical Research Center of Minimally Invasive Diagnosis and Treatment of Abdominal Diseases, Hangzhou 310028, China
| |
Collapse
|
10
|
Drobner JC, Lichtbroun BJ, Singer EA, Ghodoussipour S. Examining the Role of Microbiota-Centered Interventions in Cancer Therapeutics: Applications for Urothelial Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231164196. [PMID: 36938621 PMCID: PMC10028658 DOI: 10.1177/15330338231164196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Modern advances in genomic and molecular technologies have sparked substantial research on the human intestinal microbiome over the past decade. A deeper understanding of the microbiome has illuminated that dysbiosis, or a disruption in the microbiome, is associated with inflammatory disease states and carcinogenesis. Novel therapies that target the microbiome and restore healthy flora may have value in dampening the immunopathologic state induced by dysbiosis. A narrative review of the literature on the use of microbiota-centered interventions (MCIs) was conducted. Several randomized clinical trials show that MCIs can augment response to immune checkpoint inhibitor (ICI) therapy in patients with metastatic cancer. Clinical trials have also demonstrated that modulation of the intestinal microbiome can enhance recovery and reduce infectious complications in the surgical management of colorectal adenocarcinoma. Overall, these major discoveries suggest future clinical applications of MCIs for a wide range of immune-mediated conditions. These results may also translate to improved patient outcomes in systemic immunotherapy for urothelial carcinoma as well as in patients recovering from radical cystectomy (RC), which is complicated by high infection rates. Further research is needed to evaluate the optimal bacterial composition of microbiota-centered therapies and the specific cellular changes that lead to improved tumor antigen recognition after microbiota-centered therapies.
Collapse
Affiliation(s)
- Jake C Drobner
- Division of Urologic Oncology, 145249Rutgers Cancer Institute of New Jersey and 549472Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Benjamin J Lichtbroun
- Division of Urologic Oncology, 145249Rutgers Cancer Institute of New Jersey and 549472Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Eric A Singer
- Division of Urologic Oncology, 549472The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Saum Ghodoussipour
- Division of Urologic Oncology, 145249Rutgers Cancer Institute of New Jersey and 549472Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
11
|
Burcher KM, Burcher JT, Inscore L, Bloomer CH, Furdui CM, Porosnicu M. A Review of the Role of Oral Microbiome in the Development, Detection, and Management of Head and Neck Squamous Cell Cancers. Cancers (Basel) 2022; 14:4116. [PMID: 36077651 PMCID: PMC9454796 DOI: 10.3390/cancers14174116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The role of the microbiome in the development and propagation of head and neck squamous cell cancer (HNSCC) is largely unknown and the surrounding knowledge lags behind what has been discovered related to the microbiome and other malignancies. In this review, the authors performed a structured analysis of the available literature from several databases. The authors discuss the merits and detriments of several studies discussing the microbiome of the structures of the aerodigestive system throughout the development of HNSCC, the role of the microbiome in the development of malignancies (generally and in HNSCC) and clinical applications of the microbiome in HNSCC. Further studies will be needed to adequately describe the relationship between HNSCC and the microbiome, and to push this relationship into a space where it is clinically relevant outside of a research environment.
Collapse
Affiliation(s)
| | | | - Logan Inscore
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
12
|
Gunjur A, Manrique‐Rincón AJ, Klein O, Behren A, Lawley TD, Welsh SJ, Adams DJ. 'Know thyself' - host factors influencing cancer response to immune checkpoint inhibitors. J Pathol 2022; 257:513-525. [PMID: 35394069 PMCID: PMC9320825 DOI: 10.1002/path.5907] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionised oncology and are now standard-of-care for the treatment of a wide variety of solid neoplasms. However, tumour responses remain unpredictable, experienced by only a minority of ICI recipients across malignancy types. Therefore, there is an urgent need for better predictive biomarkers to identify a priori the patients most likely to benefit from these therapies. Despite considerable efforts, only three such biomarkers are FDA-approved for clinical use, and all rely on the availability of tumour tissue for immunohistochemical staining or genomic assays. There is emerging evidence that host factors - for example, genetic, metabolic, and immune factors, as well as the composition of one's gut microbiota - influence the response of a patient's cancer to ICIs. Tantalisingly, some of these factors are modifiable, paving the way for co-therapies that may enhance the therapeutic index of these treatments. Herein, we review key host factors that are of potential biomarker value for response to ICI therapy, with a particular focus on the proposed mechanisms for these influences. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Ashray Gunjur
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK,Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia
| | - Andrea J Manrique‐Rincón
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK,Cambridge Institute of Therapeutic Immunology & Infectious Disease, Department of MedicineUniversity of CambridgeCambridgeUK
| | - Oliver Klein
- Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia,Department of Medical OncologyAustin HealthHeidelbergAustralia
| | - Andreas Behren
- Olivia Newton‐John Cancer Research InstituteLa Trobe University School of Cancer MedicineHeidelbergAustralia,Department of MedicineUniversity of MelbourneParkvilleAustralia
| | | | - Sarah J Welsh
- Department of SurgeryUniversity of CambridgeCambridgeUK,Cambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Sanger InstituteHinxtonUK
| |
Collapse
|
13
|
Human microbiota: a crucial gatekeeper in lung cancer initiation, progression, and treatment. MEDICINE IN MICROECOLOGY 2022. [DOI: 10.1016/j.medmic.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Lu Y, Yuan X, Wang M, He Z, Li H, Wang J, Li Q. Gut microbiota influence immunotherapy responses: mechanisms and therapeutic strategies. J Hematol Oncol 2022; 15:47. [PMID: 35488243 PMCID: PMC9052532 DOI: 10.1186/s13045-022-01273-9] [Citation(s) in RCA: 225] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota have long been recognized to play a key role in human health and disease. Currently, several lines of evidence from preclinical to clinical research have gradually established that the gut microbiota can modulate antitumor immunity and affect the efficacy of cancer immunotherapies, especially immune checkpoint inhibitors (ICIs). Deciphering the underlying mechanisms reveals that the gut microbiota reprogram the immunity of the tumor microenvironment (TME) by engaging innate and/or adaptive immune cells. Notably, one of the primary modes by which the gut microbiota modulate antitumor immunity is by means of metabolites, which are small molecules that could spread from their initial location of the gut and impact local and systemic antitumor immune response to promote ICI efficiency. Mechanistic exploration provides novel insights for developing rational microbiota-based therapeutic strategies by manipulating gut microbiota, such as fecal microbiota transplantation (FMT), probiotics, engineered microbiomes, and specific microbial metabolites, to augment the efficacy of ICI and advance the age utilization of microbiota precision medicine.
Collapse
Affiliation(s)
- Yuting Lu
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiangliang Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Miao Wang
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhihao He
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ji Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
15
|
Messaoudene M, Pidgeon R, Richard C, Ponce M, Diop K, Benlaifaoui M, Nolin-Lapalme A, Cauchois F, Malo J, Belkaid W, Isnard S, Fradet Y, Dridi L, Velin D, Oster P, Raoult D, Ghiringhelli F, Boidot R, Chevrier S, Kysela DT, Brun YV, Falcone EL, Pilon G, Oñate FP, Gitton-Quent O, Le Chatelier E, Durand S, Kroemer G, Elkrief A, Marette A, Castagner B, Routy B. A Natural Polyphenol Exerts Antitumor Activity and Circumvents Anti-PD-1 Resistance through Effects on the Gut Microbiota. Cancer Discov 2022; 12:1070-1087. [PMID: 35031549 PMCID: PMC9394387 DOI: 10.1158/2159-8290.cd-21-0808] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/26/2021] [Accepted: 01/11/2022] [Indexed: 01/07/2023]
Abstract
Several approaches to manipulate the gut microbiome for improving the activity of cancer immune-checkpoint inhibitors (ICI) are currently under evaluation. Here, we show that oral supplementation with the polyphenol-rich berry camu-camu (CC; Myrciaria dubia) in mice shifted gut microbial composition, which translated into antitumor activity and a stronger anti-PD-1 response. We identified castalagin, an ellagitannin, as the active compound in CC. Oral administration of castalagin enriched for bacteria associated with efficient immunotherapeutic responses (Ruminococcaceae and Alistipes) and improved the CD8+/FOXP3+CD4+ ratio within the tumor microenvironment. Moreover, castalagin induced metabolic changes, resulting in an increase in taurine-conjugated bile acids. Oral supplementation of castalagin following fecal microbiota transplantation from ICI-refractory patients into mice supported anti-PD-1 activity. Finally, we found that castalagin binds to Ruminococcus bromii and promoted an anticancer response. Altogether, our results identify castalagin as a polyphenol that acts as a prebiotic to circumvent anti-PD-1 resistance. SIGNIFICANCE The polyphenol castalagin isolated from a berry has an antitumor effect through direct interactions with commensal bacteria, thus reprogramming the tumor microenvironment. In addition, in preclinical ICI-resistant models, castalagin reestablishes the efficacy of anti-PD-1. Together, these results provide a strong biological rationale to test castalagin as part of a clinical trial. This article is highlighted in the In This Issue feature, p. 873.
Collapse
Affiliation(s)
- Meriem Messaoudene
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Reilly Pidgeon
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Corentin Richard
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Mayra Ponce
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Khoudia Diop
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Myriam Benlaifaoui
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Alexis Nolin-Lapalme
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Florent Cauchois
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Julie Malo
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Wiam Belkaid
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Stephane Isnard
- Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Yves Fradet
- Centre de recherche du CHU de Québec, Oncology Division, CHU de Québec, Université Laval, Québec City, Quebec, Canada
| | - Lharbi Dridi
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Velin
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Paul Oster
- Service of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Didier Raoult
- Aix Marseille Université, IRD, AP-HM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | | | - Romain Boidot
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Cancer Center, UNICANCER, Dijon, France
- UMR CNRS 6302, Dijon, France
| | - Sandy Chevrier
- Unit of Molecular Biology, Department of Biology and Pathology of Tumors, Georges-François Leclerc Cancer Center, UNICANCER, Dijon, France
| | - David T. Kysela
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, University of Montreal, Montreal, Quebec, Canada
| | - Yves V. Brun
- Faculté de Médecine, Département de Microbiologie, Infectiologie et Immunologie, University of Montreal, Montreal, Quebec, Canada
| | - Emilia Liana Falcone
- Department of Immunity and Viral Infections, Montreal Clinical Research Institute (IRCM), Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Geneviève Pilon
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute and Institute of Nutrition and Functional Foods, Laval University, Québec City, Quebec, Canada
| | | | | | | | - Sylvere Durand
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, Équipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Centre de Recherche des Cordeliers, Équipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
| | - Arielle Elkrief
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - André Marette
- Department of Medicine, Faculty of Medicine, Cardiology Axis of the Québec Heart and Lung Institute and Institute of Nutrition and Functional Foods, Laval University, Québec City, Quebec, Canada
| | - Bastien Castagner
- Department of Pharmacology and Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Bertrand Routy
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
- Hematology-Oncology Division, Department of Medicine, University of Montreal Healthcare Centre (CHUM), Montreal, Quebec, Canada
- Corresponding Author: Bertrand Routy, Hemato-Oncology, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec H2X 3H8, Canada. Phone: 514-890-8000; E-mail:
| |
Collapse
|
16
|
Wardill HR, Chan RJ, Chan A, Keefe D, Costello SP, Hart NH. Dual contribution of the gut microbiome to immunotherapy efficacy and toxicity: supportive care implications and recommendations. Support Care Cancer 2022; 30:6369-6373. [PMID: 35266052 PMCID: PMC9213341 DOI: 10.1007/s00520-022-06948-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/27/2022] [Indexed: 12/19/2022]
Abstract
The efficacy of immune checkpoint inhibitors (immunotherapy) is increasingly recognized to be linked to the composition the gut microbiome. Given the high rates of resistance, interventions targeting the gut microbiome are now being investigated for its ability to improve the efficacy of immunotherapy. In light of recently published data demonstrating a strong correlation between the efficacy and toxicity of immunotherapy, there is a risk that efforts to enhance immunotherapy efficacy may be undermined by increases in immune-related adverse events (IrAEs) This is particularly important for microbial interventions aimed at increasing immunotherapy efficacy, with many microbes implicated in tumour response also linked to IrAEs, especially colitis. IrAEs have a profound impact on patient quality of life, causing physical, psychosocial, and financial distress. Here, we outline strategies at the discovery, translational, and clinical research phases to ensure the impact of augmenting immunotherapy efficacy is approached in a manner that considers adverse implications. Adopting these strategies will ensure that our ongoing efforts to overcome immunotherapy resistance are not impacted by unacceptable toxicity.
Collapse
Affiliation(s)
- Hannah R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia. .,Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
| | - Raymond J Chan
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia.,Division of Cancer Services, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Alexandre Chan
- School of Pharmacy & Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA
| | - Dorothy Keefe
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Cancer Australia, Surry Hills, New South Wales, Australia.,Adelaide Medical School, the University of Adelaide, Adelaide, South Australia, Australia
| | - Samuel P Costello
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, Australia.,Department of Gastroenterology, Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Nicolas H Hart
- Caring Futures Institute, College of Nursing and Health Sciences, Flinders University, Adelaide, South Australia, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia.,Institute for Health Research, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
17
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
18
|
Khan AA, Sirsat AT, Singh H, Cash P. Microbiota and cancer: current understanding and mechanistic implications. Clin Transl Oncol 2022; 24:193-202. [PMID: 34387847 PMCID: PMC8360819 DOI: 10.1007/s12094-021-02690-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
During last few decades, role of microbiota and its importance in several diseases has been a hot topic for research. The microbiota is considered as an accessory organ for maintaining normal physiology of an individual. These microbiota organisms which normally colonize several epithelial surfaces are known to secrete several small molecules leading to local and systemic effects on normal biological processes. The role of microbiota is also established in carcinogenesis as per several recent findings. The effects of microbiota on cancer is not only limited to their contribution in oncogenesis, but the overall susceptibility for oncogenesis and its subsequent progression, development of coinfections, and response to anticancer therapy is also found to be affected by microbiota. The information about microbiota and subsequent contributions of microbes in anticancer response motivated researchers in development of microbes-based anticancer therapeutics. We provided current status of microbiota contribution in oncogenesis with special reference to their mechanistic implications in different aspects of oncogenesis. In addition, the mechanistic implications of bacteria in anticancer therapy are also discussed. We conclude that several mechanisms of microbiota-mediated regulation of oncogenesis is known, but approaches must be focused on understanding contribution of microbiota as a community rather than single organisms-mediated effects.
Collapse
Affiliation(s)
- A A Khan
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, India.
| | - A T Sirsat
- Division of Microbiology, Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, India
| | - H Singh
- Division of Molecular Biology, Indian Council of Medical Research-National AIDS Research Institute, Pune, Maharashtra, India
| | - P Cash
- Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, Scotland
| |
Collapse
|
19
|
Yonekura S, Terrisse S, Alves Costa Silva C, Lafarge A, Iebba V, Ferrere G, Goubet AG, Fahrner JE, Lahmar I, Ueda K, Mansouri G, Pizzato E, Ly P, Mazzenga M, Thelemaque C, Fidelle M, Jaulin F, Cartry J, Deloger M, Aglave M, Droin N, Opolon P, Puget A, Mann F, Neunlist M, Bessard A, Aymeric L, Matysiak-Budnik T, Bosq J, Hofman P, Duong CPM, Ugolini S, Quiniou V, Berrard S, Ryffel B, Kepp O, Kroemer G, Routy B, Lordello L, Bani MA, Segata N, Yousef Yengej F, Clevers H, Scoazec JY, Pasolli E, Derosa L, Zitvogel L. Cancer induces a stress ileopathy depending on B-adrenergic receptors and promoting dysbiosis that contribute to carcinogenesis. Cancer Discov 2021; 12:1128-1151. [DOI: 10.1158/2159-8290.cd-21-0999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/08/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
|
20
|
Roviello G, Iannone LF, Bersanelli M, Mini E, Catalano M. The gut microbiome and efficacy of cancer immunotherapy. Pharmacol Ther 2021; 231:107973. [PMID: 34453999 DOI: 10.1016/j.pharmthera.2021.107973] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/07/2021] [Accepted: 07/27/2021] [Indexed: 12/14/2022]
Abstract
Cancer treatment has been deeply changed by immunotherapy, achieving unprecedented improvement in overall and progression-free survival in several advanced and metastatic cancers. Currently, immune checkpoint inhibitor (ICI) antibodies against cytotoxic T-lymphocyte antigen (CTLA-4) and programmed death/ligand 1 (PD-1/PD-L1) are being tested and approved for different tumors, ranging from melanoma to lung carcinoma. However, only a subgroup of patients can reach treatment benefits and long-term responses, and reliable biomarkers that can accurately predict clinical responses to immunotherapy are still unidentified. In the last decade, accumulating evidence seems to suggest the gut microbiota as one of the modulators that can alter the efficacy and toxicity of immunotherapy drugs (as well as chemotherapeutics), mainly acting through the local and systemic immune system. Herein, we reviewed the highly dynamic and complex microbiome-immune system interface, its bidirectional relationship with cancer immunotherapies, and explored the future possibilities and risks in manipulating the gut microbiome.
Collapse
Affiliation(s)
- Giandomenico Roviello
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy.
| | | | - Melissa Bersanelli
- Medical Oncology, University Hospital of Parma and Medicine and Surgery Department, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Enrico Mini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| | - Martina Catalano
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini, 6, 50139 Florence, Italy
| |
Collapse
|
21
|
Antibiotic-induced disruption of the microbiome exacerbates chemotherapy-induced diarrhoea and can be mitigated with autologous faecal microbiota transplantation. Eur J Cancer 2021; 153:27-39. [PMID: 34130227 DOI: 10.1016/j.ejca.2021.05.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Chemotherapy is well documented to disrupt the gut microbiome, leading to poor treatment outcomes and a heightened risk of adverse toxicity. Although strong associations exist between its composition and gastrointestinal toxicity, its causal contribution remains unclear. Our inability to move beyond association has limited the development and implementation of microbial-based therapeutics in chemotherapy adjuncts with no clear rationale of how and when to deliver them. METHODS/RESULTS Here, we investigate the impact of augmenting the gut microbiome on gastrointestinal toxicity caused by the chemotherapeutic agent, methotrexate (MTX). Faecal microbiome transplantation (FMT) delivered after MTX had no appreciable impact on gastrointestinal toxicity. In contrast, disruption of the microbiome with antibiotics administered before chemotherapy exacerbated gastrointestinal toxicity, impairing mucosal recovery (P < 0.0001) whilst increasing diarrhoea severity (P = 0.0007) and treatment-related mortality (P = 0.0045). Importantly, these detrimental effects were reversed when the microbiome was restored using autologous FMT (P = 0.03), a phenomenon dictated by the uptake and subsequent expansion of Muribaculaceae. CONCLUSIONS These are the first data to show that clinically impactful symptoms of gastrointestinal toxicity are dictated by the microbiome and provide a clear rationale for how and when to target the microbiome to mitigate the acute and chronic complications caused by disruption of the gastrointestinal microenvironment. Translation of this new knowledge should focus on stabilising and strengthening the gut microbiome before chemotherapy and developing new microbial approaches to accelerate recovery of the mucosa. By controlling the depth and duration of mucosal injury, secondary consequences of gastrointestinal toxicity may be avoided.
Collapse
|
22
|
Veziant J, Villéger R, Barnich N, Bonnet M. Gut Microbiota as Potential Biomarker and/or Therapeutic Target to Improve the Management of Cancer: Focus on Colibactin-Producing Escherichia coli in Colorectal Cancer. Cancers (Basel) 2021; 13:2215. [PMID: 34063108 PMCID: PMC8124679 DOI: 10.3390/cancers13092215] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is crucial for physiological development and immunological homeostasis. Alterations of this microbial community called dysbiosis, have been associated with cancers such colorectal cancers (CRC). The pro-carcinogenic potential of this dysbiotic microbiota has been demonstrated in the colon. Recently the role of the microbiota in the efficacy of anti-tumor therapeutic strategies has been described in digestive cancers and in other cancers (e.g., melanoma and sarcoma). Different bacterial species seem to be implicated in these mechanisms: F. nucleatum, B. fragilis, and colibactin-associated E. coli (CoPEC). CoPEC bacteria are prevalent in the colonic mucosa of patients with CRC and they promote colorectal carcinogenesis in susceptible mouse models of CRC. In this review, we report preclinical and clinical data that suggest that CoPEC could be a new factor predictive of poor outcomes that could be used to improve cancer management. Moreover, we describe the possibility of using these bacteria as new therapeutic targets.
Collapse
Affiliation(s)
- Julie Veziant
- Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRAE 2018, CRNH Auvergne, 63000 Clermont-Ferrand, France; (J.V.); (R.V.); (N.B.)
- Department of Digestive, Hepatobiliary and Endocrine Surgery Paris Descartes University Cochin Hospital, 75000 Paris, France
| | - Romain Villéger
- Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRAE 2018, CRNH Auvergne, 63000 Clermont-Ferrand, France; (J.V.); (R.V.); (N.B.)
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267 Université de Poitiers, 86000 Poitiers, France
| | - Nicolas Barnich
- Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRAE 2018, CRNH Auvergne, 63000 Clermont-Ferrand, France; (J.V.); (R.V.); (N.B.)
| | - Mathilde Bonnet
- Microbes Intestin Inflammation et Susceptibilité de l’Hôte (M2iSH) UMR 1071 Inserm/Université Clermont Auvergne, USC-INRAE 2018, CRNH Auvergne, 63000 Clermont-Ferrand, France; (J.V.); (R.V.); (N.B.)
| |
Collapse
|
23
|
Perreault C, Thibault P, Kroemer G. A bacterium-derived, cancer-associated immunopeptidome. Oncoimmunology 2021; 10:1918373. [PMID: 33996268 PMCID: PMC8096325 DOI: 10.1080/2162402x.2021.1918373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/01/2022] Open
Affiliation(s)
- Claude Perreault
- Institute for Research in Immunology and Cancer, Université De Montréal, Montréal, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université De Montréal, Montréal, Canada
| | - Guido Kroemer
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université De Paris, Sorbonne Université, Inserm U1138, Centre De Recherche Des Cordeliers, Institut Universitaire De France, Paris, France
- Pôle De Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| |
Collapse
|
24
|
Metabolic Classification and Intervention Opportunities for Tumor Energy Dysfunction. Metabolites 2021; 11:metabo11050264. [PMID: 33922558 PMCID: PMC8146396 DOI: 10.3390/metabo11050264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
A comprehensive view of cell metabolism provides a new vision of cancer, conceptualized as tissue with cellular-altered metabolism and energetic dysfunction, which can shed light on pathophysiological mechanisms. Cancer is now considered a heterogeneous ecosystem, formed by tumor cells and the microenvironment, which is molecularly, phenotypically, and metabolically reprogrammable. A wealth of evidence confirms metabolic reprogramming activity as the minimum common denominator of cancer, grouping together a wide variety of aberrations that can affect any of the different metabolic pathways involved in cell physiology. This forms the basis for a new proposed classification of cancer according to the altered metabolic pathway(s) and degree of energy dysfunction. Enhanced understanding of the metabolic reprogramming pathways of fatty acids, amino acids, carbohydrates, hypoxia, and acidosis can bring about new therapeutic intervention possibilities from a metabolic perspective of cancer.
Collapse
|
25
|
Immune Therapy Resistance and Immune Escape of Tumors. Cancers (Basel) 2021; 13:cancers13030551. [PMID: 33535559 PMCID: PMC7867077 DOI: 10.3390/cancers13030551] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The genetic adaptability of malignant cells and their consequent heterogeneity even within the same patient poses a great obstacle to cancer patient treatment. This review summarizes the data obtained in the last decade on different preclinical mice models as well as on various immunotherapeutic clinical trials in distinct solid and hematopoietic cancers on how the immune system can be implemented in tumor therapy. Moreover, the different intrinsic and extrinsic escape strategies utilized by the tumor to avoid elimination by the immune system are recapitulated together with the different approaches proposed to overcome them in order to succeed and/or to enhance therapy efficacy. Abstract Immune therapy approaches such as checkpoint inhibitors or adoptive cell therapy represent promising therapeutic options for cancer patients, but their efficacy is still limited, since patients frequently develop innate or acquired resistances to these therapies. Thus, one major goal is to increase the efficiency of immunotherapies by overcoming tumor-induced immune suppression, which then allows for immune-mediated tumor clearance. Innate resistance to immunotherapies could be caused by a low immunogenicity of the tumor itself as well as an immune suppressive microenvironment composed of cellular, physical, or soluble factors leading to escape from immune surveillance and disease progression. So far, a number of strategies causing resistance to immunotherapy have been described in various clinical trials, which broadly overlap with the immunoediting processes of cancers. This review summarizes the novel insights in the development of resistances to immune therapy as well as different approaches that could be employed to overcome them.
Collapse
|
26
|
Leclerc D, Staats Pires AC, Guillemin GJ, Gilot D. Detrimental activation of AhR pathway in cancer: an overview of therapeutic strategies. Curr Opin Immunol 2021; 70:15-26. [PMID: 33429228 DOI: 10.1016/j.coi.2020.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/14/2022]
Abstract
Sustained transcriptional activation of the aryl hydrocarbon receptor (AhR) promotes tumour growth and impairs the immune defence, at least for cutaneous melanoma and glioma. AhR ligands are produced by the tumour microenvironment (TME) and by the tumour itself (intracrine). The recent identification of interleukin-4-induced-1 (IL4I1), a parallel pathway to indoleamine 2 3-dioxygenase 1 (IDO1)/ tryptophan 2,3-dioxygenase (TDO), and its ability to generate AhR ligands, confirms that a complete inhibition of AhR ligand production might be difficult to reach. Here, we have focused on recent discoveries explaining the large varieties of AhR ligands and the functional consequences in terms of cancer cell plasticity and consecutive therapy resistance. We also examined therapeutic strategies targeting the AhR signalling pathway and their possible adverse effects. Since the end of 2019, two phase I clinical trials have investigated the ability of the AhR antagonist to 'reset' the immune system and re-sensitize the cancer cells to therapies by preventing their dedifferentiation.
Collapse
Affiliation(s)
- Delphine Leclerc
- Inserm U1242, Université de Rennes, France, Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Ananda Christina Staats Pires
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia; Laboratório de Bioenergética e Estresse Oxidativo, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gilles J Guillemin
- Neuroinflammation Group, Department of Biomedical Sciences, Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - David Gilot
- Inserm U1242, Université de Rennes, France, Centre de lutte contre le cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
27
|
Sztupinszki Z, Le Naour J, Vacchelli E, Laurent-Puig P, Delaloge S, Szallasi Z, Kroemer G. A major genetic accelerator of cancer diagnosis: rs867228 in FPR1. Oncoimmunology 2021; 10:1859064. [PMID: 33489470 PMCID: PMC7801119 DOI: 10.1080/2162402x.2020.1859064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Zsofia Sztupinszki
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, MA, USA.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France.,Harvard Medical School, Boston, MA, USA.,Université Paris Sud, Paris Saclay, Faculty of Medicine Kremlin Bicêtre, France
| | - Erika Vacchelli
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Pierre Laurent-Puig
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, Hôpital Européen Georges Pompidou, Paris, France
| | - Suzette Delaloge
- Université Paris Sud, Paris Saclay, Faculty of Medicine Kremlin Bicêtre, France.,Department of Cancer Medicine, Gustave Roussy Cancer Campus, Villejuif, France
| | - Zoltan Szallasi
- Computational Health Informatics Program (CHIP), Boston Children's Hospital, Boston, MA, USA.,Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.,Suzhou Institute for stems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
28
|
Daillère R, Routy B, Goubet AG, Cogdill A, Ferrere G, Alves-Costa Silva C, Fluckiger A, Ly P, Haddad Y, Pizzato E, Thelemaque C, Fidelle M, Mazzenga M, Roberti MP, Melenotte C, Liu P, Terrisse S, Kepp O, Kroemer G, Zitvogel L, Derosa L. Elucidating the gut microbiota composition and the bioactivity of immunostimulatory commensals for the optimization of immune checkpoint inhibitors. Oncoimmunology 2020; 9:1794423. [PMID: 32934888 PMCID: PMC7466864 DOI: 10.1080/2162402x.2020.1794423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence from preclinical studies and human trials demonstrated the crucial role of the gut microbiota in determining the effectiveness of anticancer therapeutics such as immunogenic chemotherapy or immune checkpoint blockade. In summary, it appears that a diverse intestinal microbiota supports therapeutic anticancer responses, while a dysbiotic microbiota composition that lacks immunostimulatory bacteria or contains overabundant immunosuppressive species causes treatment failure. In this review, we explore preclinical and translational studies highlighting how eubiotic and dysbiotic microbiota composition can affect progression-free survival in cancer patients.
Collapse
Affiliation(s)
| | - Bertrand Routy
- Hematology-Oncology Division, Department of Medicine, Centre Hospitalier De l'Université De Montréal (CHUM), Montréal.,Centre De Recherche Du Centre Hospitalier De l'Université De Montréal (CRCHUM), Montréal, Canada
| | - Anne-Gaëlle Goubet
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Alexandria Cogdill
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Gladys Ferrere
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | | | - Aurélie Fluckiger
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Pierre Ly
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Yacine Haddad
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Eugenie Pizzato
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Cassandra Thelemaque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Marine Fidelle
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Marine Mazzenga
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Maria Paula Roberti
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Cléa Melenotte
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Peng Liu
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Safae Terrisse
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| | - Oliver Kepp
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, UMR1138, Centre De Recherche Des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.,Pôle De Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Faculty of Medicine, Université Paris Saclay, Le Kremlin-Bicêtre, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Lisa Derosa
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Inserm U1015, Villejuif, France
| |
Collapse
|