1
|
Karim M, Hasan MM, Kim SH, Azam Z, Wahab R, Islam T, Alam F, Kim YJ, Bae DJ, Roy S, Grippo P, Bishehsari F, Choi JU, Al-Hilal TA. Stromal fibrin shapes immune infiltration landscape of pancreatic ductal adenocarcinoma. Biomaterials 2025; 320:123280. [PMID: 40147113 DOI: 10.1016/j.biomaterials.2025.123280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
In pancreatic ductal adenocarcinoma (PDAC), in-situ coagulation creates a thrombotic, crosslinked fibrin (x-fibrin)-rich tumor stroma (FibTS), whose impact on immune cell behavior remains unclear. We aimed to elucidate how FibTS in PDAC regulates immune cell infiltration, polarization, and crosstalk that favors immunosuppressive microenvironment and tumor growth. We assessed the spatial distribution of immune cells by multiplex immunostaining of human PDAC tissues, along with novel bioengineering and mouse tumor models. We investigated how FibTS influences the infiltration of tumor-associated macrophage (TAM) and T-cell subtypes and identified two distinct variants of PDAC, fibrin-high (Fibhi) and fibrin-low (Fiblow). Our findings reveal that PDAC cells secrete fibrinogen and thrombin to form FibTS, which acts as a physical barrier and biochemical niche that restricts CD8+ T-cell and TAM penetration into the tumor. The FibTS impeded immune cell penetration from the tumor stroma into the tumor parenchyma. Selective inhibition of FibTS formation by genetic and pharmacological tools altered the infiltration patterns of CD8+ T-cells and TAMs, decelerating PDAC growth. This study demonstrates that the barrier function of FibTS is crucial for immune evasion, particularly against macrophage and T-cell activity, presenting a potential therapeutic strategy to reshape the immune landscape within PDAC and slow tumor progression.
Collapse
Affiliation(s)
- Mazharul Karim
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Seung Hyun Kim
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea, 02453
| | - Zulfikar Azam
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Riajul Wahab
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA
| | - Tamanna Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Farzana Alam
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| | - Yun-Jae Kim
- PrismCDX, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Dong-Jun Bae
- PrismCDX, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Sourav Roy
- Department of Biological Sciences, College of Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Paul Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Faraz Bishehsari
- Gastroenterology Research Center, Division of Gastroenterology, Hepatology & Nutrition, Department of Internal Medicine, University of Texas Houston, TX 77030, USA; MD Anderson Cancer Center-UTHealth Houston Graduate School of Biomedical Sciences, USA
| | - Jeong Uk Choi
- College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea, 02453.
| | - Taslim A Al-Hilal
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
2
|
Wang Y, Zhang H, Zhan Y, Li Z, Li S, Deng C, Guo S. Clinical significance and immune infiltration analyses of the coagulation factor V gene in brain lower grade glioma. Discov Oncol 2025; 16:535. [PMID: 40237931 PMCID: PMC12003246 DOI: 10.1007/s12672-025-02124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Coagulation factor V (FV) is an essential cofactor in the coagulation cascade. However, the precise function of FV in lower grade glioma (LGG) is little known. METHODS We first performed a pan-cancer investigation of FV expression and prognosis using TCGA and GTEx databases. Single-cell RNA sequencing confirmed FV expression in LGG tissues. We then investigated the mRNA expression level, prognostic value, and DNA methylation of FV in LGG using bioinformatics tools. The relationship between FV expression and tumor immune invasion was investigated using TIMER. RESULTS FV was highly expressed in a variety of tumors, including LGG, and was associated with tumor prognosis. By combining a series of in silico analysis (including expression and survival analysis), we found that the hsa-miR-665 was the most potent upstream miRNA of FV in LGG. Tumors with high FV expression had less infiltration of lymphocytes and myeloid cells, and FV level was negatively correlated with immune checkpoint expression. CONCLUSION Our findings suggest that FV was a potential biomarker for evaluating the prognosis and therapeutics in LGG.
Collapse
Affiliation(s)
- Yu Wang
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, 100020, People's Republic of China
| | - Haiyue Zhang
- Thrombosis Research Center, Beijing Jishuitan Hospital, Capital Medical University, Xicheng District, Beijing, 100035, China
| | - Yuanyuan Zhan
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China
| | - Zhuoran Li
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, 100020, People's Republic of China
| | - Sujing Li
- Department of Dermatology, Zhengzhou People's Hospital, Zhengzhou, China
| | - Changxu Deng
- Department of Endocrinology, Beijing Chao-yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
| | - Shubin Guo
- Emergency Medicine Clinical Research Center, Beijing Chao-yang Hospital, Capital Medical University, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing, 100020, People's Republic of China.
| |
Collapse
|
3
|
Jiao D, Dong X, Fan S, Liu X, Yu Y, Wei C. Gastric cancer genomics study using reference human pangenomes. Life Sci Alliance 2025; 8:e202402977. [PMID: 39870503 PMCID: PMC11772497 DOI: 10.26508/lsa.202402977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
A pangenome is the sum of the genetic information of all individuals in a species or a population. Genomics research has been gradually shifted to a paradigm using a pangenome as the reference. However, in disease genomics study, pangenome-based analysis is still in its infancy. In this study, we introduced a graph-based pangenome GGCPan from 185 patients with gastric cancer. We then systematically compared the cancer genomics study results using GGCPan, a linear pangenome GCPan, and the human reference genome as the reference. For small variant detection and microsatellite instability status identification, there is little difference in using three different genomes. Using GGCPan as the reference had a significant advantage in structural variant identification. A total of 24 candidate gastric cancer driver genes were detected using three different reference genomes, of which eight were common and five were detected only based on pangenomes. Our results showed that disease-specific pangenome as a reference is promising and a whole set of tools are still to be developed or improved for disease genomics study in the pangenome era.
Collapse
Affiliation(s)
- Du Jiao
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaorui Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiyu Fan
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xinyi Liu
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yingyan Yu
- Department of General Surgery of Ruijin Hospital, Shanghai Institute of Digestive Surgery, and Shanghai Key Laboratory for Gastric Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaochun Wei
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Zhang N, Yue W, Jiao B, Cheng D, Wang J, Liang F, Wang Y, Liang X, Li K, Liu J, Li Y. Unveiling prognostic value of JAK/STAT signaling pathway related genes in colorectal cancer: a study of Mendelian randomization analysis. Infect Agent Cancer 2025; 20:9. [PMID: 39920741 PMCID: PMC11806682 DOI: 10.1186/s13027-025-00640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) ranks among the frequently occurring malignant neoplasms affecting the gastrointestinal tract. This study aimed to explore JAK-STAT signaling pathway related genes in CRC and establish a new prognostic model. METHODS The data set used in this study is from a public database. JAK-STAT-differentially expressed genes (DEGs) were identified through differential expression analysis and weighted gene co-expression network analysis (WGCNA). Prognostic genes were selected from JAK-STAT-DEGs through Mendelian randomization (MR), univariate Cox regression, and least absolute shrinkage and selection operator (LASSO) analyses. The expressions of prognostic genes were verified by RT-qPCR. Then, a risk model was built and validated by the GSE39582. Independent prognostic factors were screened underlying risk scores and different clinical indicators, resulting in the construction of a nomogram. Additionally, immune infiltration, immune scores and immune checkpoint inhibitors analyses and gene set enrichment analysis (GSEA) were carried out. RESULTS The 3,668 JAK-STAT-DEGs were obtained by intersection of 5826 CRC-DEGs and 9766 JAK-STAT key module genes. Five prognostic genes were selected (ANK3, F5, FAM50B, KLHL35, MPP2), and their expressions were significantly different between CRC and control groups. A risk model was constructed according to prognostic genes and verified by GSE39582. In addition, the nomogram exhibited superior predictive accuracy for CRC. Furthermore, immune analysis results indicated a notable positive correlation between risk score and the scores of immune (R = 0.486), stromal (R = 0.309), and ESTIMATE (R = 0.422). Immune checkpoint inhibitor ADORA2A (Cor = 0.483263) exhibited the strongest positive correlation with risk score. And MPP2 exhibited the most potent activating influence on the cell cycle pathway, whereas ANK3 demonstrated the most significant inhibitory effect within the apoptosis pathway. CONCLUSIONS A new JAK-STAT related CRC prognostic model was constructed and validated, which possessed an underlying predictive potential for CRC patients' prognosis and could potentially enhance tailored guidance for immunotherapy.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China.
| | - Wenli Yue
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Bihang Jiao
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Duo Cheng
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Jingjing Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Fang Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Yingnan Wang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Xiyue Liang
- Department of Oncology and Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, No. 16 Tongbai North Road, Zhengzhou, Henan, China
| | - Kunkun Li
- Department of Gastroenterology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
- Medical Key Laboratory for Diagnosis and Treatment of Colorectal Cancer in Henan Province, Zhengzhou, Henan, China
| | - Junwei Liu
- Department of Anorectal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Yadong Li
- Department of Gastrointestinal Surgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Zhang Z, Ma X, La Y, Guo X, Chu M, Bao P, Yan P, Wu X, Liang C. Advancements in the Application of scRNA-Seq in Breast Research: A Review. Int J Mol Sci 2024; 25:13706. [PMID: 39769466 PMCID: PMC11677372 DOI: 10.3390/ijms252413706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Single-cell sequencing technology provides apparent advantages in cell population heterogeneity, allowing individuals to better comprehend tissues and organs. Sequencing technology is currently moving beyond the standard transcriptome to the single-cell level, which is likely to bring new insights into the function of breast cells. In this study, we examine the primary cell types involved in breast development, as well as achievements in the study of scRNA-seq in the microenvironment, stressing the finding of novel cell subsets using single-cell approaches and analyzing the problems and solutions to scRNA-seq. Furthermore, we are excited about the field's promising future.
Collapse
Affiliation(s)
- Zhenyu Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xiaoming Ma
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Yongfu La
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xian Guo
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Min Chu
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Pengjia Bao
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Ping Yan
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Xiaoyun Wu
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| | - Chunnian Liang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Gansu Provincial Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Lanzhou 730070, China; (X.M.); (Y.L.); (X.G.); (M.C.); (P.B.); (P.Y.); (X.W.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730070, China
| |
Collapse
|
6
|
Yun T, Hua J, Ye W, Chen L, Ni Z, Zhu Y, Zheng C, Zhang C. Single-cell transcriptional profiling reveals cell type-specific responses to duck reovirus infection in the Bursa of Fabricius of Cairna moschata. Int J Biol Macromol 2024; 281:136391. [PMID: 39414202 DOI: 10.1016/j.ijbiomac.2024.136391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/05/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Duck reovirus (DRV) is a universal waterfowl virus that causes significant economic losses in the duck industry. However, the role of the host innate immune response of the Bursa of Fabricius to DRV infection is largely unknown. In the present study, we constructed a single-cell resolution transcriptomic atlas of the Bursa of Fabricius of Cairna moschata after infection with HN10 (a novel DRV). Ten cell-type marker genes were used to annotate the cell type, indicating a high degree of cell heterogeneity in the Bursa of Fabricius. Most of the innate and adaptive immune system-related genes were highly expressed in T cells, B cells, neutrophils, macrophages, and DCs. In the Bursa of Fabricius, the proportions of DCs and macrophages were largely increased by HN10 infection at 14 d, suggesting that DCs and macrophages play important roles in the long-term viral response. Notably, a number of innate and adaptive immune system-related genes were highly expressed at 24 h after HN10 infection, indicating that the Bursa of Fabricius has a very strong immune function even in the early developmental stage. In the immune system, the NOD-like receptor signaling pathway and RIG-I-like receptor signaling pathway were significantly activated at the early stage of HN10 infection, while the Toll-like receptor signaling pathway was significantly activated at the late stage. Enrichment analysis suggested that different immune signaling pathways play roles in specific developmental stages. Our data provide an opportunity to reveal the immune response to DRV infection at the single-cell level.
Collapse
Affiliation(s)
- Tao Yun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jionggang Hua
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weicheng Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Liu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zheng Ni
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yinchu Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases University of Calgary, Calgary, Alberta, Canada.
| | - Cun Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Animal Husbandry and Veterinary Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
7
|
Tian Y, Liu X, Wang J, Zhang C, Yang W. Antitumor Effects and the Potential Mechanism of 10-HDA against SU-DHL-2 Cells. Pharmaceuticals (Basel) 2024; 17:1088. [PMID: 39204193 PMCID: PMC11357620 DOI: 10.3390/ph17081088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
10-hydroxy-2-decenoic acid (10-HDA), which is a unique bioactive fatty acid of royal jelly synthesized by nurse bees for larvae and adult queen bees, is recognized for its dual utility in medicinal and nutritional applications. Previous research has indicated that 10-HDA exerts antitumor effects on numerous tumor cell lines, including colon cancer cells, A549 human lung cancer cells, and human hepatoma cells. The present study extends this inquiry to lymphoma, specifically evaluating the impact of 10-HDA on the SU-DHL-2 cell line. Our findings revealed dose-dependent suppression of SU-DHL-2 cell survival, with an IC50 of 496.8 μg/mL at a density of 3 × 106 cells/well after 24 h. For normal liver LO2 cells and human fibroblasts (HSFs), the IC50 values were approximately 1000 μg/mL and over 1000 μg/mL, respectively. The results of label-free proteomics revealed 147 upregulated and 347 downregulated differentially expressed proteins that were significantly enriched in the complement and coagulation cascades pathway (adjusted p-value = 0.012), including the differentially expressed proteins prothrombin, plasminogen, plasminogen, carboxypeptidase B2, fibrinogen beta chain, fibrinogen gamma chain, and coagulation factor V. The top three hub proteins, ribosomal protein L5, tumor protein p53, and ribosomal protein L24, were identified via protein-protein interaction (PPI) analysis. This result showed that the complement and coagulation cascade pathways might play a key role in the antitumor process of 10-HDA, suggesting a potential therapeutic avenue for lymphoma treatment. However, the specificity of the effect of 10-HDA on SU-DHL-2 cells warrants further investigation.
Collapse
Affiliation(s)
- Yuanyuan Tian
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
- College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoqing Liu
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Jie Wang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Chuang Zhang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| | - Wenchao Yang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.T.); (X.L.); (J.W.); (C.Z.)
| |
Collapse
|
8
|
Messeha SS, Zarmouh NO, Maku H, Gendy S, Yedjou CG, Elhag R, Latinwo L, Odewumi C, Soliman KFA. Prognostic and Therapeutic Implications of Cell Division Cycle 20 Homolog in Breast Cancer. Cancers (Basel) 2024; 16:2546. [PMID: 39061186 PMCID: PMC11274456 DOI: 10.3390/cancers16142546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Cell division cycle 20 homolog (CDC20) is a well-known regulator of cell cycle progression. Abnormal expression of CDC20 leads to mitotic defects, which play a significant role in cancer development. In breast cancer (BC), CDC20 has been identified as a biomarker that has been linked to poor patient outcomes. In this study, we investigated the association of CDC20 with BC prognosis and immune cell infiltration by using multiple online databases, including UALCAN, KM plotter, TIMER2.0, HPA, TNM-plot, bc-GenExMiner, LinkedOmics, STRING, and GEPIA. The results demonstrate that BC patients have an elevated CDC20 expression in tumor tissues compared with the adjacent normal tissue. In addition, BC patients with overexpressed CDC20 had a median survival of 63.6 months compared to 169.2 months in patients with low CDC20 expression. Prognostic analysis of the examined data indicated that elevated expression of CDC20 was associated with poor prognosis and a reduction of overall survival in BC patients. These findings were even more prevalent in chemoresistance triple-negative breast cancer (TNBC) patients. Furthermore, the Gene Set Enrichment Analysis tool indicated that CDC20 regulates BC cells' cell cycle and apoptosis. CDC20 also significantly correlates with increased infiltrating B cells, CD4+ T cells, neutrophils, and dendritic cells in BC. In conclusion, the findings of this study suggest that CDC20 may be involved in immunomodulating the tumor microenvironment and provide evidence that CDC20 inhibition may serve as a potential therapeutic approach for the treatment of BC patients. In addition, the data indicates that CDC20 can be a reliable prognostic biomarker for BC.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| | - Najla O. Zarmouh
- Faculty of Medical Technology-Misrata, Libyan Ministry of Technical & Vocational Education, Misrata LY72, Libya;
| | - Henrietta Maku
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX 77030, USA;
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Clement G. Yedjou
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Rashid Elhag
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Lekan Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Caroline Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (C.G.Y.); (R.E.); (L.L.)
| | - Karam F. A. Soliman
- College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, New Pharmacy Building, 1520 ML King Blvd, Tallahassee, FL 32307, USA
| |
Collapse
|
9
|
Tavares V, Savva-Bordalo J, Rei M, Liz-Pimenta J, Assis J, Pereira D, Medeiros R. Haemostatic Gene Expression in Cancer-Related Immunothrombosis: Contribution for Venous Thromboembolism and Ovarian Tumour Behaviour. Cancers (Basel) 2024; 16:2356. [PMID: 39001418 PMCID: PMC11240748 DOI: 10.3390/cancers16132356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Ovarian cancer (OC) is the deadliest gynaecological malignancy. Identifying new prognostic biomarkers is an important research field. Haemostatic components together with leukocytes can drive cancer progression while increasing the susceptibility to venous thromboembolism (VTE) through immunothrombosis. Unravelling the underlying complex interactions offers the prospect of uncovering relevant OC prognostic biomarkers, predictors of cancer-associated thrombosis (CAT), and even potential targets for cancer therapy. Thus, this study evaluated the expression of F3, F5, F8, F13A1, TFPI1, and THBD in peripheral blood cells (PBCs) of 52 OC patients. Those with VTE after tumour diagnosis had a worse overall survival (OS) compared to their counterparts (mean OS of 13.8 ± 4.1 months and 47.9 ± 5.7 months, respectively; log-rank test, p = 0.001). Low pre-chemotherapy F3 and F8 expression levels were associated with a higher susceptibility for OC-related VTE after tumour diagnosis (χ2, p < 0.05). Regardless of thrombogenesis, patients with low baseline F8 expression had a shorter progression-free survival (PFS) than their counterparts (adjusted hazard ratio (aHR) = 2.54; p = 0.021). Among those who were not under platelet anti-aggregation therapy, low F8 levels were also associated with a shorter OS (aHR = 6.16; p = 0.006). Moving forward, efforts should focus on external validation in larger cohorts.
Collapse
Affiliation(s)
- Valéria Tavares
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
| | - Joana Savva-Bordalo
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Mariana Rei
- Department of Gynaecology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal;
| | - Joana Liz-Pimenta
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Department of Medical Oncology, Centro Hospitalar de Trás-os-Montes e Alto Douro (CHTMAD), 5000-508 Vila Real, Portugal
| | - Joana Assis
- Clinical Research Unit, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto. CCC), 4200-072 Porto, Portugal;
| | - Deolinda Pereira
- Department of Medical Oncology, Portuguese Institute of Oncology of Porto (IPO Porto), 4200-072 Porto, Portugal; (J.S.-B.); (D.P.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/Pathology and Laboratory Medicine Dep., Clinical Pathology SV/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto. CCC), 4200-072 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-072 Porto, Portugal;
- Faculty of Health Sciences, Fernando Pessoa University, 4200-150 Porto, Portugal
- Research Department, Portuguese League Against Cancer (NRNorte), 4200-172 Porto, Portugal
| |
Collapse
|
10
|
Lind SM, Sletten M, Hellenes M, Mathelier A, Tekpli X, Tinholt M, Iversen N. Coagulation factor V in breast cancer: a p53-regulated tumor suppressor and predictive marker for treatment response to chemotherapy. J Thromb Haemost 2024; 22:1569-1582. [PMID: 38382738 DOI: 10.1016/j.jtha.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 01/22/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Patients with cancer are at an increased risk of developing coagulation complications, and chemotherapy treatment increases the risk. Tumor progression is closely linked to the hemostatic system. Breast cancer tumors express coagulation factor V (FV), an essential factor in blood coagulation. The functional role of FV during treatment with chemotherapy is poorly understood and was explored in this study. OBJECTIVES We aimed to investigate the role of FV in breast cancer progression by exploring associations with treatment response, gene regulation, and the functional effects of FV. METHODS The receiver operating characteristic plotter was used to explore the predictive value of FV mRNA (F5) expression for treatment with FEC (5-fluorouracil, anthracycline, and cyclophosphamide). Breast cancer cohorts were analyzed to study treatment response to FEC. The effect of chemotherapy on F5 expression, the regulation of F5, and the functional effects of FV dependent and independent of chemotherapy were studied in breast cancer cell lines. RESULTS F5 tumor expression was significantly higher in responders to FEC than in nonresponders. In vitro experiments revealed that anthracycline treatment increased the expression of F5. Inhibition and knockdown of p53 reduced the anthracycline-induced F5 expression. Mutation of a p53 half-site (c.158+1541/158+1564) in a luciferase plasmid reduced luciferase activity, suggesting that p53 plays a role in regulating F5. FV overexpression increased apoptosis and reduced proliferation slightly during anthracycline treatment. CONCLUSION Our study identified F5 as a p53-regulated tumor suppressor candidate and a promising marker for response to chemotherapy. FV may have functional effects that are therapeutically relevant in breast cancer.
Collapse
Affiliation(s)
- Sara Marie Lind
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marit Sletten
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mona Hellenes
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway; Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mari Tinholt
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway.
| |
Collapse
|
11
|
Tinholt M, Tekpli X, Torland LA, Tahiri A, Geisler J, Kristensen V, Sandset PM, Iversen N. The breast cancer coagulome in the tumor microenvironment and its role in prognosis and treatment response to chemotherapy. J Thromb Haemost 2024; 22:1319-1335. [PMID: 38237862 DOI: 10.1016/j.jtha.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The procoagulant phenotype in cancer is linked to thrombosis, cancer progression, and immune response. A novel treatment that reduces the risk of both thrombosis and cancer progression without excess bleeding risk remains to be identified. OBJECTIVES Here, we aimed to broadly investigate the breast tumor coagulome and its relation to prognosis, treatment response to chemotherapy, and the tumor microenvironment. METHODS Key coagulation-related genes (n = 35) were studied in a Norwegian cohort with tumor (n = 134) and normal (n = 189) tissue and in the Cancer Genome Atlas (n = 1052) data set. We performed gene set variation analysis in the Norwegian cohort, and in the Cancer Genome Atlas cohort, associations with the tumor microenvironment and prognosis were evaluated. Analyses were performed with cBioPortal, Estimation of Stromal and Immune cells in Malignant Tumors Using Expression Data, Tumor Immune Estimation Resource, the integrated repository portal for tumor-immune system interactions, Tumor Immune Single-cell Hub 2, and the receiver operating characteristic plotter. Six independent breast cancer cohorts were used to study the tumor coagulome and treatment response to chemotherapy. RESULTS Twenty-two differentially expressed coagulation-related genes were identified in breast tumors. Several coagulome factors were correlated with tumor microenvironment characteristics and were expressed by nonmalignant cells in the tumor microenvironment. PLAT and F8 were independent predictors of better overall survival and progression-free survival, respectively. F12 and PLAU were predictors of worse progression-free survival. The PROCR-THBD-PLAT signature showed a promising predictive value (area under the curve, 0.75; 95% CI, 0.69-0.81; P = 3.6 × 10-17) for combination chemotherapy with fluorouracil, epirubicin, and cyclophosphamide. CONCLUSION The breast tumor coagulome showed potential in prediction of prognosis and chemotherapy response. Cells within the tumor microenvironment are sources of coagulome factors and may serve as therapeutic targets of coagulation factors.
Collapse
Affiliation(s)
- Mari Tinholt
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Haematology, Oslo University Hospital, Oslo, Norway.
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lilly Anne Torland
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Zhou X, Qian Y, Ling C, He Z, Shi P, Gao Y, Sui X. An integrated framework for prognosis prediction and drug response modeling in colorectal liver metastasis drug discovery. J Transl Med 2024; 22:321. [PMID: 38555418 PMCID: PMC10981831 DOI: 10.1186/s12967-024-05127-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/23/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most prevalent cancer globally, and liver metastasis (CRLM) is the primary cause of death. Hence, it is essential to discover novel prognostic biomarkers and therapeutic drugs for CRLM. METHODS This study developed two liver metastasis-associated prognostic signatures based on differentially expressed genes (DEGs) in CRLM. Additionally, we employed an interpretable deep learning model utilizing drug sensitivity databases to identify potential therapeutic drugs for high-risk CRLM patients. Subsequently, in vitro and in vivo experiments were performed to verify the efficacy of these compounds. RESULTS These two prognostic models exhibited superior performance compared to previously reported ones. Obatoclax, a BCL-2 inhibitor, showed significant differential responses between high and low risk groups classified by prognostic models, and demonstrated remarkable effectiveness in both Transwell assay and CT26 colorectal liver metastasis mouse model. CONCLUSIONS This study highlights the significance of developing specialized prognostication approaches and investigating effective therapeutic drugs for patients with CRLM. The application of a deep learning drug response model provides a new drug discovery strategy for translational medicine in precision oncology.
Collapse
Affiliation(s)
- Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Yuzhen Qian
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Ling
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Zhuoying He
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China
| | - Peishang Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China.
| | - Xinghua Sui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong Province, 518107, China.
| |
Collapse
|
13
|
Zhong Q, Sun R, Aref AT, Noor Z, Anees A, Zhu Y, Lucas N, Poulos RC, Lyu M, Zhu T, Chen GB, Wang Y, Ding X, Rutishauser D, Rupp NJ, Rueschoff JH, Poyet C, Hermanns T, Fankhauser C, Rodríguez Martínez M, Shao W, Buljan M, Neumann JF, Beyer A, Hains PG, Reddel RR, Robinson PJ, Aebersold R, Guo T, Wild PJ. Proteomic-based stratification of intermediate-risk prostate cancer patients. Life Sci Alliance 2024; 7:e202302146. [PMID: 38052461 PMCID: PMC10698198 DOI: 10.26508/lsa.202302146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
Gleason grading is an important prognostic indicator for prostate adenocarcinoma and is crucial for patient treatment decisions. However, intermediate-risk patients diagnosed in the Gleason grade group (GG) 2 and GG3 can harbour either aggressive or non-aggressive disease, resulting in under- or overtreatment of a significant number of patients. Here, we performed proteomic, differential expression, machine learning, and survival analyses for 1,348 matched tumour and benign sample runs from 278 patients. Three proteins (F5, TMEM126B, and EARS2) were identified as candidate biomarkers in patients with biochemical recurrence. Multivariate Cox regression yielded 18 proteins, from which a risk score was constructed to dichotomize prostate cancer patients into low- and high-risk groups. This 18-protein signature is prognostic for the risk of biochemical recurrence and completely independent of the intermediate GG. Our results suggest that markers generated by computational proteomic profiling have the potential for clinical applications including integration into prostate cancer management.
Collapse
Affiliation(s)
- Qing Zhong
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Rui Sun
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Adel T Aref
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Zainab Noor
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Asim Anees
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Yi Zhu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Natasha Lucas
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Rebecca C Poulos
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Mengge Lyu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tiansheng Zhu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Guo-Bo Chen
- Urology & Nephrology Center, Department of Urology, Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yingrui Wang
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xuan Ding
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dorothea Rutishauser
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Jan H Rueschoff
- Department of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Cédric Poyet
- Department of Urology, University Hospital Zürich, Zürich, Switzerland
| | - Thomas Hermanns
- Department of Urology, University Hospital Zürich, Zürich, Switzerland
| | - Christian Fankhauser
- Department of Urology, University Hospital Zürich, Zürich, Switzerland
- Department of Urology, Cantonal Hospital Lucerne, Lucerne, Switzerland
| | | | - Wenguang Shao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Marija Buljan
- Empa - Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | - Peter G Hains
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Roger R Reddel
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Phillip J Robinson
- ProCan, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
- Faculty of Science, University of Zürich, Zürich, Switzerland
| | - Tiannan Guo
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Peter J Wild
- Goethe University Frankfurt, Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Zeng HL, Li H, Yang Q, Li CX. Transcriptomic Characterization of Copper-Binding Proteins for Predicting Prognosis in Glioma. Brain Sci 2023; 13:1460. [PMID: 37891828 PMCID: PMC10605646 DOI: 10.3390/brainsci13101460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Copper and copper-binding proteins are key components of tumor progression as they play important roles in tumor invasion and migration, but their associations in gliomas remain unclear. METHODS Transcriptomic datasets of glioblastoma, low-grade glioma, and normal brain cortex were derived from the TCGA and GTEX databases. Differentially expressed genes (DEGs) of copper-binding proteins were screened and used to construct a prognostic model based on COX and LASSO regression, which was further validated by the CGGA datasets. The expressions of risk-model genes were selectively confirmed via anatomic feature-based expression analysis and immunohistochemistry. The risk score was stratified by age, gender, WHO grade, IDH1 mutation, MGMT promoter methylation, and 1p/19q codeletion status, and a nomogram was constructed and validated. RESULTS A total of 21 DEGs of copper-binding proteins were identified and a six-gene risk-score model was constructed, consisting of ANG, F5, IL1A, LOXL1, LOXL2, and STEAP3, which accurately predicted 1-, 3-, and 5-year overall survival rates, with the AUC values of 0.87, 0.88, and 0.82, respectively. The high-risk group had a significantly shorter OS (p < 0.0001) and was associated with old age, wild-type IDH1, a high WHO grade, an unmethylated MGMT promoter, and 1p/19q non-codeletion and had higher levels of immune cell infiltration, cancer-immunity suppressor, and immune checkpoint gene expression as well as a higher TMB. CONCLUSIONS The model based on the genes of copper-binding proteins could contribute to prognosis prediction and provide potential targets against gliomas.
Collapse
Affiliation(s)
- Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Huijun Li
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Qing Yang
- Institute of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China;
| | - Chao-Xi Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
15
|
Zhao B, Wang S, Xue L, Wang Q, Liu Y, Xu Q, Xue Q. EFHD1 expression is correlated with tumor-infiltrating neutrophils and predicts prognosis in gastric cancer. Heliyon 2023; 9:e21062. [PMID: 37876466 PMCID: PMC10590971 DOI: 10.1016/j.heliyon.2023.e21062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023] Open
Abstract
Background Gastric cancer (GC) ranks third in terms of mortality worldwide. The tumor microenvironment is critical for the progression of gastric cancer. This study investigated the association between EF-hand domain containing 1 (EFHD1) expression and its clinical significance in the tumor microenvironment (TME) of gastric cancer. Methods We used bioinformatic analyses to assess the relevance of EFHD1 mRNA in the TME of gastric carcinoma tissues and its relationship with clinical features. Therefore, we performed multiplex immunohistochemistry analyses to determine the potential role of the EFHD1 protein in the TME of gastric cancer. Results EFHD1 expression increased dramatically in gastric cancer tissues compared to levels in non-cancerous tissue samples (t = 6.246, P < 0.001). The EFHD1 protein presentation was associated with invasion depth (χ2 = 19.120, P < 0.001) and TNM stages (χ2 = 14.468, P = 0.002). Notably, EFHD1 protein expression was significantly related to CD66b + neutrophil infiltration of the intratumoral (r = 0.420, P < 0.001) and stromal (r = 0.367, P < 0.001) TME in gastric cancer. Additionally, Cox regression analysis revealed that EFHD1 was an independent prognostic predictor (hazard ratio [HR] = 2.262, P < 0.001) in patients with gastric cancer. Conclusions Our study revealed the pattern of EFHD1 overexpression in the TME of patients with gastric cancer and demonstrated its utility as a biomarker for unfavorable clinical outcomes, thereby providing a potential immunotherapy target.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Pathology, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| | - Shanshan Wang
- Department of General Surgery, The Affiliated Suqian Hospital of Xuzhou Medical University and Nanjing Drum Tower Hospital Group Suqian Hospital, Suqian, 223800, China
| | - Li Xue
- Department of Pathology, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| | - Qingqing Wang
- Department of General Surgery, Affiliated Hospital of Nantong University & Medical School of Nantong University, Jiangsu, 226001, China
| | - Yushan Liu
- Department of Pathology, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| | - Qiang Xu
- Department of Pathology, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| | - Qiu Xue
- Department of General Surgery, Nantong Tumor Hospital, Nantong Fifth People's Hospital, Affiliated Tumor Hospital of Nantong University, Jiangsu, 226361, China
| |
Collapse
|
16
|
Wahab R, Hasan MM, Azam Z, Grippo PJ, Al-Hilal TA. The role of coagulome in the tumor immune microenvironment. Adv Drug Deliv Rev 2023; 200:115027. [PMID: 37517779 PMCID: PMC11099942 DOI: 10.1016/j.addr.2023.115027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The rising incidence and persistent thrombosis in multiple cancers including those that are immunosuppressive highlight the need for understanding the tumor coagulome system and its role beyond hemostatic complications. Immunotherapy has shown significant benefits in solid organ tumors but has been disappointing in the treatment of hypercoagulable cancers, such as glioblastoma and pancreatic ductal adenocarcinomas. Thus, targeting thrombosis to prevent immunosuppression seems a clinically viable approach in cancer treatment. Hypercoagulable tumors often develop fibrin clots within the tumor microenvironment (TME) that dictates the biophysical characteristics of the tumor tissue. The application of systems biology and single-cell approaches highlight the potential role of coagulome or thrombocytosis in shaping the tumor immune microenvironment (TIME). In-depth knowledge of the tumor coagulome would provide unprecedented opportunities to better predict the hemostatic complications, explore how thrombotic stroma modulates tumor immunity, reexamine the significance of clinical biomarkers, and enable steering the stromal versus systemic immune response for boosting the effectiveness of immune checkpoint inhibitors in cancer treatment. We focus on the role of coagulation factors in priming a suppressive TIME and the huge potential of existing anticoagulant drugs in the clinical settings of cancer immunotherapy.
Collapse
Affiliation(s)
- Riajul Wahab
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Md Mahedi Hasan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zulfikar Azam
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Paul J Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, TX 79968, USA; Department of Environmental Science & Engineering, College of Science, University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
17
|
Sun D, Zhang H, Zhang C. Development of a novel copper metabolism-related risk model to predict prognosis and tumor microenvironment of patients with stomach adenocarcinoma. Front Pharmacol 2023; 14:1185418. [PMID: 37284310 PMCID: PMC10241246 DOI: 10.3389/fphar.2023.1185418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Stomach adenocarcinoma (STAD) is the fourth highest cause of cancer mortality worldwide. Alterations in copper metabolism are closely linked to cancer genesis and progression. We aim to identify the prognostic value of copper metabolism-related genes (CMRGs) in STAD and the characteristic of the tumor immune microenvironment (TIME) of the CMRG risk model. Methods: CMRGs were investigated in the STAD cohort from The Cancer Genome Atlas (TCGA) database. Then, the hub CMRGs were screened out with LASSO Cox regression, followed by the establishment of a risk model and validated by GSE84437 from the Expression Omnibus (GEO) database. The hub CMRGs were then utilized to create a nomogram. TMB (tumor mutation burden) and immune cell infiltration were investigated. To validate CMRGs in immunotherapy response prediction, immunophenoscore (IPS) and IMvigor210 cohort were employed. Finally, data from single-cell RNA sequencing (scRNA-seq) was utilized to depict the properties of the hub CMRGs. Results: There were 75 differentially expressed CMRGs identified, 6 of which were linked with OS. 5 hub CMRGs were selected by LASSO regression, followed by construction of the CMRG risk model. High-risk patients had a shorter life expectancy than those low-risk. The risk score independently predicted STAD survival through univariate and multivariate Cox regression analyses, with ROC calculation generating the highest results. This risk model was linked to immunocyte infiltration and showed a good prediction performance for STAD patients' survival. Furthermore, the high-risk group had lower TMB and somatic mutation counters and higher TIDE scores, but the low-risk group had greater IPS-PD-1 and IPS-CTLA4 immunotherapy prediction, indicating a higher immune checkpoint inhibitors (ICIs) response, which was corroborated by the IMvigor210 cohort. Furthermore, those with low and high risk showed differential susceptibility to anticancer drugs. Based on CMRGs, two subclusters were identified. Cluster 2 patients had superior clinical results. Finally, the copper metabolism-related TIME of STAD was concentrated in endothelium, fibroblasts, and macrophages. Conclusion: CMRG is a promising biomarker of prognosis for patients with STAD and can be used as a guide for immunotherapy.
Collapse
Affiliation(s)
- Dongjie Sun
- Department of Translational Medicine, The First Hospital of Jilin University, Changchun, China
- College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Haiying Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chi Zhang
- Department of Anesthesiology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
18
|
Li J, Qi G, Liu Y. Proteomics analysis of serum from thymoma patients. Sci Rep 2023; 13:5117. [PMID: 36991043 PMCID: PMC10060243 DOI: 10.1038/s41598-023-32339-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Thymoma is the most common malignant tumor in thymic epithelial tumors (TETS). This study aimed to identify the changes in serum proteomics in patients with thymoma. Proteins were extracted from twenty patients with thymoma serum and nine healthy controls and prepared for mass spectrometry (MS) analysis. Data independent acquisition (DIA) quantitative proteomics technique was used to examine the serum proteome. Differential proteins of abundance changes in the serum were identified. Bioinformatics was used to examine the differential proteins. Functional tagging and enrichment analysis were conducted using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The string database was used to assess the interaction of different proteins. In all, 486 proteins were found in all samples. There were differences in 58 serum proteins between patients and healthy blood donors, 35 up-regulated and 23 down-regulated. These proteins are primarily exocrine and serum membrane proteins involved in controlling immunological responses and antigen binding, according to GO functional annotation. KEGG functional annotation showed that these proteins play a significant role in the complement and coagulation cascade and the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signal pathway. Notably, the KEGG pathway (complement and coagulation cascade) is enriched, and three key activators were up-regulated: von willebrand factor (VWF), coagulation factor v (F5) and vitamin k-dependent protein c (PC). Protein-protein interaction (PPI) analysis showed that six proteins ((VWF, F5, thrombin reactive protein 1 (THBS1), mannose-binding lectin-associated serine protease 2 (MASP2), apolipoprotein B (APOB), and apolipoprotein (a) (LPA)) were up-regulated and two proteins (Metalloproteinase inhibitor 1(TIMP1), ferritin light chain (FTL)) were down-regulated. The results of this study showed that several proteins involved in complement and coagulation cascades were up-regulated in the serum of patients.
Collapse
Affiliation(s)
- Jiaduo Li
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| | - Guoyan Qi
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Yaling Liu
- People's Hospital of Shijiazhuang Affiliated to Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
19
|
Dutta P, Keung MY, Wu Y, Vadgama JV. Genetic variants in African-American and Hispanic patients with breast cancer. Oncol Lett 2023; 25:51. [PMID: 36644153 PMCID: PMC9811638 DOI: 10.3892/ol.2022.13637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a disease with significant health disparity affecting mortality in minority women. The present study examined the genetic makeup of breast cancers in African-American and Hispanic/Latinx patients to determine specific genetic mutations associated with breast cancer in the minority population from South Los Angeles, United States. Whole-exome sequencing was performed on DNA extracted from breast cancer tumor biopsies collected from 13 African-American and 15 Hispanic women and 8 matched-normal samples for each ethnic category. The results were analyzed using Ensemble Variant Effect Predictor and Mutation Significance. Additionally, a comparative analysis with The Cancer Genome Atlas data was provided. Our data revealed somatic mutations in genes such as SET domain containing (lysine methyltransferase) 8, serine protease 1 and AT-rich interaction domain 1B (ARID1B) and known breast cancer genes, such as BRCA1/2, TP53 and the DNA damage response genes across all ethnicities. Additionally, Hispanic patients had BRCA1 associated RING domain 1B (BARD1) variants, while African-American patients had higher numbers of nonsynonymous variants in the RAD51 paralog B (RAD51B), ARID1B and X-ray repair cross complementing 3 (XRCC3) genes. In addition, our patients exhibited mutational signature enrichment that indicated DNA homologous recombination repair deficiencies. Therefore, African-American and Hispanic breast cancer samples showed considerable overlap in breast cancer genetic mutations. However, there are differences in specific genetic variants in TP53, BRCA1/2, BARD1 or ARID1B, which will require further study of their role in tumorigenesis.
Collapse
Affiliation(s)
- Pranabananda Dutta
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Man Y. Keung
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| | - Yanyuan Wu
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- David Geffen UCLA School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- David Geffen UCLA School of Medicine, Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
20
|
Liu S, Ortiz A, Stavrou A, Talusan AR, Costa M. Extracellular Vesicles as Mediators of Nickel-Induced Cancer Progression. Int J Mol Sci 2022; 23:ijms232416111. [PMID: 36555753 PMCID: PMC9785150 DOI: 10.3390/ijms232416111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Emerging evidence suggests that extracellular vesicles (EVs), which represent a crucial mode of intercellular communication, play important roles in cancer progression by transferring oncogenic materials. Nickel (Ni) has been identified as a human group I carcinogen; however, the underlying mechanisms governing Ni-induced carcinogenesis are still being elucidated. Here, we present data demonstrating that Ni exposure generates EVs that contribute to Ni-mediated carcinogenesis and cancer progression. Human bronchial epithelial (BEAS-2B) cells and human embryonic kidney-293 (HEK293) cells were chronically exposed to Ni to generate Ni-treated cells (Ni-6W), Ni-transformed BEAS-2B cells (Ni-3) and Ni-transformed HEK293 cells (HNi-4). The signatures of EVs isolated from Ni-6W, Ni-3, HNi-4, BEAS-2B, and HEK293 were analyzed. Compared to their respective untreated cells, Ni-6W, Ni-3, and HNi-4 released more EVs. This change in EV release coincided with increased transcription of the EV biogenesis markers CD82, CD63, and flotillin-1 (FLOT). Additionally, EVs from Ni-transformed cells had enriched protein and RNA, a phenotype also observed in other studies characterizing EVs from cancer cells. Interestingly, both epithelial cells and human umbilical vein endothelial (HUVEC) cells showed a preference for taking up Ni-altered EVs compared to EVs released from the untreated cells. Moreover, these Ni-altered EVs induced inflammatory responses in both epithelial and endothelial cells and increased the expression of coagulation markers in endothelial cells. Prolonged treatment of Ni-alerted EVs for two weeks induced the epithelial-to-mesenchymal transition (EMT) in BEAS-2B cells. This study is the first to characterize the effect of Ni on EVs and suggests the potential role of EVs in Ni-induced cancer progression.
Collapse
Affiliation(s)
| | | | | | | | - Max Costa
- Correspondence: ; Tel.: +1-646-754-9443
| |
Collapse
|
21
|
Xia Y, Lin X, Cheng Y, Xu H, Zeng J, Xie W, Wang M, Sun Y. Characterization of Platelet Function-Related Gene Predicting Survival and Immunotherapy Efficacy in Gastric Cancer. Front Genet 2022; 13:938796. [PMID: 35836573 PMCID: PMC9274243 DOI: 10.3389/fgene.2022.938796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Immunotherapy is widely used to treat various cancers, but patients with gastric cancer (GC), which has a high mortality rate, benefit relatively less from this therapy. Platelets are closely related to GC progression and metastasis. This study aimed to find novel potential biomarkers related to platelet function to predict GC and immunotherapy efficacy. First, based on platelet activation, signaling, and aggregation (abbreviation: function)-related genes (PFRGs), we used the least absolute shrinkage and selection operator (Lasso) regression method to construct a platelet-function-related genes prognostic score (PFRGPS). PRFGPS was verified in three independent external datasets (GSE26901, GSE15459, and GSE84437) for its robustness and strong prediction performance. Our results demonstrate that PRFGPS is an independent prognostic indicator for predicting overall survival in patients with GC. In addition, prognosis, potential pathogenesis mechanisms, and the response to immunotherapy were defined via gene set enrichment analysis, tumor mutational burden, tumor microenvironment, tumor immune dysfunction and exclusion (TIDE), microsatellite instability, and immune checkpoint inhibitors. We found that the high-PRFGPS subgroup had a cancer-friendly immune microenvironment, a high TIDE score, a low tumor mutational burden, and relatively low microsatellite instability. In the immunophenoscore model, the therapeutic effect on anti-PD-1 and anti-CTLA-4 in the high-PRFGPS subgroup was relatively low. In conclusion, PRFGPS could be used as a reference index for GC prognosis to develop more successful immunotherapy strategies.
Collapse
Affiliation(s)
- Yan Xia
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
- Scientific Research Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Lin
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yangyang Cheng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Huimin Xu
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jingya Zeng
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wanlin Xie
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Mingzhu Wang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yihua Sun
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Yihua Sun,
| |
Collapse
|
22
|
The Immunological Contribution of a Novel Metabolism-Related Signature to the Prognosis and Anti-Tumor Immunity in Cervical Cancer. Cancers (Basel) 2022; 14:cancers14102399. [PMID: 35626004 PMCID: PMC9139200 DOI: 10.3390/cancers14102399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Cervical cancer is the most frequently diagnosed malignancy in the female reproductive system. Conventional stratification of patients based on clinicopathological characters has gradually been outpaced by a molecular profiling strategy. Our study aimed to identify a reliable metabolism-related predictive signature for the prognosis and anti-tumor immunity in cervical cancer. In this study, we extracted five metabolism-related hub genes, including ALOX12B, CA9, FAR2, F5 and TDO2, for the establishment of the risk score model. The Kaplan-Meier curve suggested that patients with a high-risk score apparently had a worse prognosis in the cervical cancer training cohort (TCGA, n = 304, p < 0.0001), validation cohort (GSE44001, n = 300, p = 0.0059) and pan-cancer cohorts (including nine TCGA tumors). Using a gene set enrichment analysis (GSEA), we observed that the model was correlated with various immune-regulation-related pathways. Furthermore, pan-cancer cohorts and immunohistochemical analysis showed that the infiltration of tumor infiltrating lymphocytes (TILs) was lower in the high-score group. Additionally, the model could also predict the prognosis of patients with cervical cancer based on the expression of immune checkpoints (ICPs) in both the discovery and validation cohorts. Our study established and validated a metabolism-related prognostic model, which might improve the accuracy of predicting the clinical outcome of patients with cervical cancer and provide guidance for personalized treatment.
Collapse
|
23
|
Wrzeszcz K, Słomka A, Zarychta E, Rhone P, Ruszkowska-Ciastek B. Tissue Plasminogen Activator as a Possible Indicator of Breast Cancer Relapse: A Preliminary, Prospective Study. J Clin Med 2022; 11:jcm11092398. [PMID: 35566525 PMCID: PMC9104124 DOI: 10.3390/jcm11092398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: The fundamental causes of breast cancer mortality are the cancer spread and hypercoagulability state. The study aimed to evaluate the prognostic efficacy of the fibrinolytic profile concerning 5-year follow-up. (2) Methods: We investigated the predictive potential of the plasma activity of urokinase plasminogen activator (u-PA) and plasminogen activator inhibitor type 1 (PAI-1) as well as antigen of tissue plasminogen activator (t-PA), u-PA, PAI-1, and PAI-1/t-PA and PAI-1/u-PA complexes in 41 breast cancer patients. The median follow-up was 66 months, with full evidence of the first event. (3) Results: A significantly lower level of PAI-1 antigen was noted in IBrC patients with lymph node involvement (N1) than in patients with free lymph node metastases (N0). According to ROC curve analysis, a t-PA antigen was the strongest predictor of disease relapse (the area under the curve, AUC = 0.799; p < 0.0006). Patients with PAI-1 activity < 3.04 U/mL had significantly better disease-free survival (DFS) compared to those with PAI-1 activity > 3.04 U/mL. Patients with both t-PA antigen lower than 1.41 ng/mL (cut-off according to median value) and lower than 1.37 ng/mL (cut-off according to ROC curve) had significantly shorter DFS (p = 0.0086; p = 0.0029). (4) Conclusions: The results suggest that a higher plasma t-PA antigen level or lower PAI-1 activity are linked to better outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Katarzyna Wrzeszcz
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (K.W.); (A.S.); (E.Z.)
| | - Artur Słomka
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (K.W.); (A.S.); (E.Z.)
| | - Elżbieta Zarychta
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (K.W.); (A.S.); (E.Z.)
| | - Piotr Rhone
- Clinical Ward of Breast Cancer and Reconstructive Surgery, Oncology Centre Prof. F. Łukaszczyk Memorial Hospital, 85-796 Bydgoszcz, Poland;
| | - Barbara Ruszkowska-Ciastek
- Department of Pathophysiology, Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, 85-094 Bydgoszcz, Poland; (K.W.); (A.S.); (E.Z.)
- Correspondence:
| |
Collapse
|
24
|
Sloan AR, Lee-Poturalski C, Hoffman HC, Harris PL, Elder TE, Richardson B, Kerstetter-Fogle A, Cioffi G, Schroer J, Desai A, Cameron M, Barnholtz-Sloan J, Rich J, Jankowsky E, Sen Gupta A, Sloan AE. Glioma stem cells activate platelets by plasma-independent thrombin production to promote glioblastoma tumorigenesis. Neurooncol Adv 2022; 4:vdac172. [PMID: 36452274 PMCID: PMC9700385 DOI: 10.1093/noajnl/vdac172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The interaction between platelets and cancer cells has been underexplored in solid tumor models that do not metastasize, for example, glioblastoma (GBM) where metastasis is rare. Histologically, it is known that glioma stem cells (GSCs) are found in perivascular and pseudsopalisading regions of GBM, which are also areas of platelet localization. High platelet counts have been associated with poor clinical outcomes in many cancers. While platelets are known to promote the progression of other tumors, mechanisms by which platelets influence GBM oncogenesis are unknown. Here, we aimed to understand how the bidirectional interaction between platelets and GSCs drives GBM oncogenesis. Methods Male and female NSG mice were transplanted with GSC lines and treated with antiplatelet and anti-thrombin inhibitors. Immunofluorescence, qPCR, and Western blots were used to determine expression of coagulation mechanism in GBM tissue and subsequent GSC lines. Results We show that GSCs activate platelets by endogenous production of all the factors of the intrinsic and extrinsic coagulation cascades in a plasma-independent manner. Therefore, GSCs produce thrombin resulting in platelet activation. We further demonstrate that the endogenous coagulation cascades of these cancer stem cells are tumorigenic: they activate platelets to promote stemness and proliferation in vitro and pharmacological inhibition delays tumor growth in vivo. Conclusions Our findings uncover a specific preferential relationship between platelets and GSCs that drive GBM malignancies and identify a therapeutically targetable novel interaction.
Collapse
Affiliation(s)
- Anthony R Sloan
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christine Lee-Poturalski
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harry C Hoffman
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peggy L Harris
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Theresa E Elder
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Brian Richardson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amber Kerstetter-Fogle
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gino Cioffi
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Julia Schroer
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| | - Ansh Desai
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Cameron
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jill Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland, USA
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeremy Rich
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Eckhard Jankowsky
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anirban Sen Gupta
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland, Ohio, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Piedmont Health, Atlanta Georgia, USA
| |
Collapse
|
25
|
Andresen M, Sletten M, Sandset PM, Iversen N, Stavik B, Tinholt M. Coagulation factor 5 (F5) is an estrogen-responsive gene in breast cancer cells. Thromb Haemost 2021; 122:1288-1295. [PMID: 34826880 DOI: 10.1055/a-1707-2130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Most breast cancers express estrogen receptor (ER) where estrogen signaling plays an important role. Cancer contributes to activation of the coagulation system leading to an imbalance in the hemostatic system, and Coagulation factor (F) V, which is a key regulator of blood coagulation, has been shown to be increased in breast tumors. Thus, the molecular association between estrogens and FV was explored. Stimulation with 17-β-estradiol (E2) or 17-β-ethinylestradiol (EE2) resulted in a time- and dose-dependent increase in F5 mRNA and FV protein in ERα positive MCF-7 cells. Pre-treatment with the ER antagonist fulvestrant or knockdown of ERα prior to stimulation with E2 counteracted this effect. Three ERα binding half-sites were identified in the promoter region of the F5 gene in silico. Reporter gene analysis showed that all three half-sites were involved in the estrogen-induced gene regulation in vitro, as the effect was abolished only when all half-sites were mutated. High F5 levels in ER positive breast tumors were associated with increased relapse-free survival of breast cancer patients.
Collapse
Affiliation(s)
- Marianne Andresen
- Department of Haematology and Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | | | | | - Nina Iversen
- medical genetics, Oslo university hospital, Oslo, Norway
| | - Benedicte Stavik
- Department of Hematology, Oslo University Hospital, Oslo, Norway.,Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Mari Tinholt
- Department of Genetics, Oslo universitetssykehus Ulleval, Oslo, Norway.,Department of Haematology, Oslo University Rikshospitalet, Oslo, Norway
| |
Collapse
|
26
|
Polypeptide-GalNAc-Transferase-13 Shows Prognostic Impact in Breast Cancer. Cancers (Basel) 2021; 13:cancers13225616. [PMID: 34830771 PMCID: PMC8616257 DOI: 10.3390/cancers13225616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 11/17/2022] Open
Abstract
Breast cancer is a public health concern and is currently the fifth cause of mortality worldwide. Identification of different biological subtypes is essential for clinical management; therefore, the role of pathologists is essential and useful tools for immunohistochemistry diagnosis are needed. Polypeptide-GalNAc-transferases are emerging novel biomarkers related to cancer behavior and GalNAc-T13, correlated with aggressiveness in some tumors, is an interesting candidate. Few monoclonal antibodies reacting with native proteins, and not affected by fixation and paraffin embedding, have been reported. The aim of this work was to develop a useful monoclonal antibody anti-GalNAc-T13 and to assess its potential significance in breast cancer diagnosis. We evaluated 6 human breast cancer cell lines, 338 primary breast tumors and 48 metastatic lymph nodes and looked for clinical significance correlating GalNAc-T13 expression with patients' clinical features and survival. We found high GalNAc-T13 expression in 43.8% of the cases and observed a significant higher expression in metastatic lymph nodes, correlating with worse overall survival. We hypothesized several possible molecular mechanisms and their implications. We conclude that GalNAc-T13 may be a novel biomarker in breast cancer, useful for routine pathological diagnosis. Elucidation of molecular mechanisms related to aggressiveness should contribute to understand the role of GalNAc-T13 in breast cancer biology.
Collapse
|
27
|
Construction of Potential Gene Expression and Regulation Networks in Prostate Cancer Using Bioinformatics Tools. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8846951. [PMID: 34512870 PMCID: PMC8426106 DOI: 10.1155/2021/8846951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/18/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023]
Abstract
Objective To identify the key genes involved in prostate cancer and their regulatory network. Methods The dataset of mRNA/miRNA transcriptome sequencing was downloaded from The Cancer Genome Atlas/the Gene Expression Omnibus database for analysis. The “edgeR” package in the R environment was used to normalize and analyze differentially expressed genes (DEGs) and miRNAs (DEmiRNAs). First, the PANTHER online tool was used to analyze the function enrichment of DEGs. Next, a protein-protein interaction (PPI) network was constructed using STRING and Cytoscape tools. Finally, miRNA-gene regulatory networks were constructed using the miRTarBase. Results We identified 4339 important DEGs, of which 2145 were upregulated (Up-DEGs) and 2194 were downregulated (Down-DEGs). Functional enrichment analysis showed that the Up-DEGs were related to the immune system and the cell cycle in prostate cancer, whereas the Down-DEGs were related to the nucleic acid metabolic process and metabolism pathways. Twelve core protein clusters were found in the PPI network. Further, the constructed miRNA-gene interaction network showed that 11 downregulated miRNAs regulated 16 Up-DEGs and 22 upregulated miRNAs regulated 22 Down-DEGs. Conclusion We identified 4339 genes and 70 miRNAs that may be involved in immune response, cell cycle, and other key pathways of the prostate cancer regulatory network. Genes such as BUB1B, ANX1A1, F5, HTR4, and MUC4 can be used as biomarkers to assist in the diagnosis and prognosis of prostate cancer.
Collapse
|