1
|
Colaço M, Cruz MT, de Almeida LP, Borges O. Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors. Pharmaceutics 2024; 16:1308. [PMID: 39458637 PMCID: PMC11510408 DOI: 10.3390/pharmaceutics16101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/24/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. METHODS This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. RESULTS While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. CONCLUSIONS With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health.
Collapse
Affiliation(s)
- Mariana Colaço
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria T. Cruz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Olga Borges
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (M.T.C.); (L.P.d.A.)
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
2
|
Snider CJ, Zaman K, Estivariz CF, Aziz AB, Yunus M, Haque W, Hendley WS, Weldon WC, Oberste MS, Pallansch MA, Wassilak SGF, Anand A. Assessing the mucosal intestinal and systemic humoral immunity of sequential schedules of inactivated poliovirus vaccine and bivalent oral poliovirus vaccine for essential immunization in Bangladesh: An open-label, randomized controlled trial. Vaccine 2024; 42:126216. [PMID: 39146859 PMCID: PMC11460026 DOI: 10.1016/j.vaccine.2024.126216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/30/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
In 2012, the Strategic Advisory Group of Experts on Immunization (SAGE) recommended introduction of at least one inactivated poliovirus vaccine (IPV) dose in essential immunization programs. We evaluated systemic humoral and intestinal mucosal immunity of a sequential IPV-bivalent oral poliovirus vaccine (bOPV) schedule compared with a co-administration IPV + bOPV schedule in an open-label, randomized, controlled, non-inferiority, inequality trial in Dhaka, Bangladesh. Healthy infants aged 6 weeks were randomized to either: (A) IPV and bOPV at 6 and bOPV at 10 and 14 weeks (IPV + bOPV-bOPV-bOPV); or (B) IPV at 6 and bOPV at 10 and 14 weeks (IPV-bOPV-bOPV). Of 456 participants enrolled and randomly assigned during May-August 2015, 428 (94%) were included in the modified intention-to-treat analysis (arm A: 211, arm B: 217). Humoral immune responses did not differ at 18 weeks between study arms: type 1 (98% versus 96%; p = 0.42), type 2 (37% versus 39%; p = 0.77), and type 3 (97% versus 93%; p = 0.07). Virus shedding one week after the bOPV challenge dose in arm B was non-inferior to arm A (type 1 difference = -3% [90% confidence interval: -6 - 0.4%]; type 3 difference: -3% [-6 to -0.2%]). Twenty-six adverse events including seven serious adverse events were reported among 25 participants including one death; none were attributed to study vaccines. An IPV-bOPV-bOPV sequential schedule induced comparable systemic humoral immunity to all poliovirus types and types 1 and 3 intestinal mucosal immunity as an IPV + bOPV-bOPV-bOPV co-administration schedule.
Collapse
MESH Headings
- Humans
- Poliovirus Vaccine, Inactivated/immunology
- Poliovirus Vaccine, Inactivated/administration & dosage
- Poliovirus Vaccine, Inactivated/adverse effects
- Poliovirus Vaccine, Oral/administration & dosage
- Poliovirus Vaccine, Oral/immunology
- Poliovirus Vaccine, Oral/adverse effects
- Bangladesh
- Male
- Female
- Infant
- Immunization Schedule
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Poliomyelitis/prevention & control
- Poliomyelitis/immunology
- Immunity, Mucosal
- Immunity, Humoral
- Poliovirus/immunology
- Intestinal Mucosa/immunology
Collapse
Affiliation(s)
- Cynthia J Snider
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| | - Khalequ Zaman
- icddr,b, 68 Shahid Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh
| | - Concepcion F Estivariz
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA.
| | - Asma Binte Aziz
- icddr,b, 68 Shahid Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh
| | - Mohammad Yunus
- icddr,b, 68 Shahid Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh
| | - Warda Haque
- icddr,b, 68 Shahid Tajuddin Ahmed Sarani, Dhaka 1212, Bangladesh
| | - William S Hendley
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| | - William C Weldon
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| | - M Steven Oberste
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| | - Mark A Pallansch
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| | - Steven G F Wassilak
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| | - Abhijeet Anand
- U.S. Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329, USA
| |
Collapse
|
3
|
Mejía LR, Mendez LP, Rüttimann RW, Gast C, Bandyopadhyay AS. Safety and Immunogenicity of Trivalent Oral Polio Vaccine in Vaccinated Children and Vaccine-Naïve Infants: A Phase 4 Study. Vaccines (Basel) 2024; 12:953. [PMID: 39339985 PMCID: PMC11436059 DOI: 10.3390/vaccines12090953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
In the context of polio eradication, novel oral polio vaccines for type 2 (nOPV2) were developed, and types 1 and 3 polioviruses are being developed. We aimed to generate trivalent oral poliovirus vaccine (tOPV) safety and immunogenicity data as a reference for comparing with novel OPV formulations. This was a single-center, open-label, phase 4 study in March 2016 in the Dominican Republic with healthy children previously vaccinated with ≥3 doses of tOPV receiving one dose of tOPV and vaccine-naïve infants receiving 3 doses of tOPV. Safety and immunogenicity were assessed. No serious adverse reactions or important medical reactions were reported. Seroconversion (SC) rates at Day 28 in children were 32.7%, 36.7%, and 46.9% for types 1, 2, and 3, respectively, and seroprotection (SP) rates 28 days after one dose increased from 89.8% at baseline to 93.9%, 98.0% to 100%, and 83.7% to 98.0% for types 1, 2, and 3, respectively. In infants, SC rates were 88.5%, 98.1%, and 96.2% for types 1, 2, and 3, respectively. SP rates at Day 84 were 93.3%, 100%, and 96.2% for types 1, 2, and 3, respectively. This information can be used as a reference to compare with novel monovalent or trivalent OPVs under development.
Collapse
Affiliation(s)
- Luis Rivera Mejía
- Hospital Universitario Maternidad Nuestra Señora de la Altagracia, Fundación Dominicana de Perinatología PROBEBE, Calle Pedro Henríquez Ureña #49, Santo Domingo 10205, Dominican Republic
| | - Lourdes Peña Mendez
- Clínica Cruz Jiminian, Av Ortega y Gasset 90, Santo Domingo 10501, Dominican Republic
| | - Ricardo W Rüttimann
- Fighting Infectious Diseases in Emerging Countries (FIDEC), 2050 Coral Way, Suite 407, Miami, FL 33145, USA
| | - Chris Gast
- Independent Biostatistician Consultant, Seattle, WA 98029, USA
| | | |
Collapse
|
4
|
Zhao T, Li J, Huang T, Ying ZF, Che YC, Zhao ZM, Fu YT, Tao JH, Yang QH, Wei DK, Li GL, Yi L, Zhao YP, Chen HB, Wang JF, Jiang RJ, Yu L, Cai W, Yang W, Xie MX, Yin QZ, Pu J, Shi L, Hong C, Deng Y, Cai LK, Zhou J, Wen Y, Li HS, Huang W, Mo ZJ, Li CG, Li QH, Yang JS. Immune persistence after different polio sequential immunization schedules in Chinese infants. NPJ Vaccines 2024; 9:50. [PMID: 38424078 PMCID: PMC10904800 DOI: 10.1038/s41541-024-00831-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Trivalent oral poliovirus vaccine (tOPV) has been withdrawn and instead an inactivated poliovirus vaccine (IPV) and bivalent type 1 and type 3 OPV (bOPV) sequential immunization schedule has been implemented since 2016, but no immune persistence data are available for this polio vaccination strategy. This study aimed to assess immune persistence following different polio sequential immunization schedules. Venous blood was collected at 24, 36, and 48 months of age from participants who had completed sequential schedules of combined IPV and OPV in phase III clinical trials. The serum neutralizing antibody titers against poliovirus were determined, and the poliovirus-specific antibody-positive rates were evaluated. A total of 1104 participants were enrolled in this study. The positive rates of poliovirus type 1- and type 3-specific antibodies among the sequential immunization groups showed no significant difference at 24, 36, or 48 months of age. The positive rates of poliovirus type 2-specific antibody in the IPV-IPV-tOPV group at all time points were nearly 100%, which was significantly higher than the corresponding rates in other immunization groups (IPV-bOPV-bOPV and IPV-IPV-bOPV). Immunization schedules involving one or two doses of IPV followed by bOPV failed to maintain a high positive rate for poliovirus type 2-specific antibody.
Collapse
Affiliation(s)
- Ting Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jing Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Teng Huang
- Guangxi Province Center for Disease Control and Prevention, Nanning, China
| | - Zhi-Fang Ying
- National Institutes for Food and Drug Control, Beijing, China
| | - Yan-Chun Che
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhi-Mei Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yu-Ting Fu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jun-Hui Tao
- Liujiang District Center for Disease Prevention and Control, Liuzhou, China
| | - Qing-Hai Yang
- Liucheng County Center for Disease Prevention and Control, Liuzhou, China
| | - Ding-Kai Wei
- Rongan County Center for Disease Prevention and Control, Liuzhou, China
| | - Guo-Liang Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Li Yi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yu-Ping Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hong-Bo Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jian-Feng Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Rui-Ju Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Lei Yu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wei Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ming-Xue Xie
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qiong-Zhou Yin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jing Pu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Chao Hong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yan Deng
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Lu-Kui Cai
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jian Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yu Wen
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hong-Sen Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wei Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhao-Jun Mo
- Guangxi Province Center for Disease Control and Prevention, Nanning, China.
| | - Chang-Gui Li
- National Institutes for Food and Drug Control, Beijing, China.
| | - Qi-Han Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| | - Jing-Si Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China.
| |
Collapse
|
5
|
Tang X, Xiao Y, Deng X, Zhou Y, Chen H, Yan R, Zhu Y, Wang S, Wang H, Zhu X, Luo L, Liu Y, Yin Z, Zhang G, Chen Z, Jiang J, Yang X, He H. Immuno-persistence of the different primary polio vaccine schedules and immunogenicity of the booster dose by sabin inactivated or bivalent oral poliovirus vaccine in children aged 4 years: an open-label, randomised, controlled phase 4 trial in China. THE LANCET REGIONAL HEALTH - WESTERN PACIFIC 2023. [DOI: 10.1016/j.lanwpc.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Xu Y, Liu Y, Wang J, Che X, Du J, Zhang X, Gu W, Zhang X, Jiang W. Cost-effectiveness of various immunization schedules with inactivated Sabin strain polio vaccine in Hangzhou, China. Front Public Health 2022; 10:990042. [PMID: 36211670 PMCID: PMC9545176 DOI: 10.3389/fpubh.2022.990042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/24/2022] [Indexed: 01/26/2023] Open
Abstract
Background It is necessary to select suitable inactivated poliovirus vaccine(IPV) and live, attenuated oral poliovirus vaccine (OPV) sequential immunization programs and configure the corresponding health resources. An economic evaluation was conducted on the sequential procedures of Sabin strain-based IPV (sIPV) and bivalent OPV (bOPV) with different doses to verify whether a cost-effectiveness target can be achieved. This study aimed to evaluate the cost-effectiveness of different sIPV immunization schedules, which would provide convincing evidence to further change the poliovirus vaccine (PV) immunization strategies in China. Methods Five strategies were included in this analysis. Based on Strategy 0(S0), the incremental cost (IC), incremental effect (IE), and incremental cost-effectiveness ratio (ICER) of the four different strategies (S1/S2/S3/S4) were calculated based on the perspective of the society. Seven cost items were included in this study. Results of field investigations and expert consultations were used to calculate these costs. Results The ICs of S1/S2/S3/S4 was Chinese Yuan (CNY) 30.77, 68.58, 103.82, and 219.82 million, respectively. The IE of vaccine-associated paralytic poliomyelitis (IEVAPP) cases of S1/S2/S3/S4 were 0.22, 0.22, 0.22, and 0.11, respectively, while the IE of disability-adjusted life-years (IEDALY) of S1/S2/S3/S4 were 8.98, 8.98, 8.98, and 4.49, respectively. The ICERVAPP of S1/S2/S3/S4 gradually increased to CNY 13.99, 31.17, 47.19, and 199.83 million/VAPP, respectively. The ICERDALY of S1/S2/S3/S4 also gradually increased to CNY 0.34, 0.76, 1.16, and 4.90 million/DALY, respectively. Conclusion ICERVAPP and ICERDALY were substantially higher for S3 (four-sIPV) and S4 (replacement of self-funded sIPV based on one-sIPV-three-bOPV). Two-sIPV-two-bOPV had a cost-effectiveness advantage, whereas S2/S3/S4 had no cost-effectiveness advantage.
Collapse
|
7
|
Gao J, Kang G, Hu R, Zhang L, Yu J, Wang Z, Tang F. Adverse events following immunization with bivalent oral poliovirus vaccine in Jiangsu, China. Br J Clin Pharmacol 2021; 87:4831-4838. [PMID: 34240463 DOI: 10.1111/bcp.14976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
AIMS The bivalent oral poliovirus vaccine (bOPV; Sabin types 1 and 3) replaced the trivalent OPV (Sabin types 1, 2 and 3) globally in April 2016. A routine schedule of 1 dose of inactivated poliovirus vaccine and 3 subsequent doses of bOPV was implemented in Jiangsu simultaneously. The schedule was changed to 2 inactivated poliovirus vaccines + 2 bOPV on 1 September 2019. Although OPV type 2 has been removed, challenges persist because of adverse events following immunization (AEFIs) with bOPV. Therefore, we analysed and evaluated the safety profile of bOPV administered in children based on passive postmarketing AEFI surveillance. METHODS We collected all bOPV-related AEFI reports in Jiangsu from the Chinese National AEFI Information System (CNAEFIS) between May 2016 and April 2020. We obtained the administered doses of bOPV from the Jiangsu Provincial Electronic Immunization Registries System. A descriptive analysis was performed. RESULTS In total, 2084 bOPV-related AEFIs were retrieved from the CNAEFIS. The overall reporting rate was 24.16 per 100 000 doses. Most AEFIs were nonserious. The most frequently reported symptoms were fever, rash and gastrointestinal disorders. Only 1.34% of AEFIs were serious, which thrombocytopenic purpura accounted for the largest category. Seventeen serious adverse events, including 2 vaccine-associated paralytic poliomyelitis (VAPP) cases, were considered to be related to bOPV vaccination. The rate of VAPP was 0.2 per million doses. CONCLUSION AEFI analysis showed that bOPV was well tolerated. The events most frequently reported were nonserious. However, bOPV can still cause VAPP. Attention should be given to risks related to bOPV.
Collapse
Affiliation(s)
- Jun Gao
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Guodong Kang
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Ran Hu
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lei Zhang
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jing Yu
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhiguo Wang
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Fenyang Tang
- Department of Expanded Program on Immunization, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
8
|
Xu J, Wang Q, Kuang S, Rong R, Zhang Y, Fu X, Tang W. Immunogenicity of sequential poliovirus vaccination schedules with different strains of poliomyelitis vaccines in Chongqing, China: a cross-sectional survey. Hum Vaccin Immunother 2021; 17:2125-2131. [PMID: 33759702 PMCID: PMC8189127 DOI: 10.1080/21645515.2020.1868269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A new vaccination schedule with one dose of inactivated polio vaccine (IPV) followed by three doses of bivalent oral attenuated live polio vaccine (bOPV) was introduced in China in 2016. Both Sabin IPV (sIPV) and Salk IPV (wIPV) sequentially with bOPV were accepted in the Chinese routine vaccination schedule. We intended to assess the immunogenicity of the current primary schedule (s/wIPV-bOPV-bOPV) and the schedule in the early stage of the switch (tOPV-bOPV-bOPV), and compare immunogenicity between the groups with different polio virus strains. Healthy infants aged 60–89 days were recruited in hospitals in Chongqing. Infants were assigned to one of three treatments (tOPV-bOPV-bOPV, sIPV-bOPV-bOPV or wIPV-bOPV-bOPV) by enrollment time. Polio neutralizing antibody (NA) assays were conducted to assess immunity. 1027 eligible infants were enrolled. Over 95% seroprotection rates against type I poliovirus (PV1) and type III poliovirus (PV3) were observed in all groups. Infants who received tOPV-bOPV-bOPV had higher antibody titers against type II poliovirus (PV2) than did the IPV-bOPV-bOPV. The geometric mean titers (GMTs) of PV2 were only ~20 in the IPV-bOPV-bOPV. GMTs of PV1 were higher than PV3 in s/wIPV-bOPV-bOPV. The primary schedule of s/wIPV-bOPV-bOPV is insufficient to protect children against PV2, and the NA titer to PV3 is lower. Higher antibody responses were induced in sIPV-bOPV-bOPV than that in wIPV-bOPV-bOPV. Supplementary vaccination with one dose of IPV is necessary for children who had no tOPV immune history or had only one IPV to induce higher levels of immunity against PV2 and PV3.
Collapse
Affiliation(s)
- Jiawei Xu
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Qing Wang
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Shanshan Kuang
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Rong Rong
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yuanyuan Zhang
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Xiaojuan Fu
- Department of Pharmaceutical Trade and Management, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Wenge Tang
- Expanded Program on Immunization, Chongqing Center for Disease Control and Prevention, Chongqing, China
| |
Collapse
|
9
|
He H, Wang Y, Deng X, Yue C, Tang X, Li Y, Liu Y, Yin Z, Zhang G, Chen Z, Xie S, Wen N, An Z, Chen Z, Wang H. Immunogenicity of three sequential schedules with Sabin inactivated poliovirus vaccine and bivalent oral poliovirus vaccine in Zhejiang, China: an open-label, randomised, controlled trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:1071-1079. [PMID: 32442523 DOI: 10.1016/s1473-3099(19)30738-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/25/2019] [Accepted: 12/02/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The globally synchronised introduction of inactivated poliovirus vaccine (IPV) and replacement of trivalent oral poliovirus vaccine (OPV) with bivalent OPV (bOPV) were successfully implemented in China's routine immunisation programme in May, 2016. In response to the global shortage of Salk-strain IPV, Sabin-strain IPV production was encouraged to develop and use in low-income and middle-income countries. We assessed the immunogenicity of the current routine poliovirus vaccination schedule in China and compared it with alternative schedules that use Sabin-strain IPV (sIPV) and bOPV. METHODS This open-label, randomised, controlled trial recruited healthy infants aged 60-75 days from two centres in Zhejiang, China. Eligible infants were full-term, due for their first polio vaccination, weighed more than 2·5 kg at birth, were healthy on physical examination with no obvious medical conditions, and had no contraindications to vaccination. Infants were randomly assigned (1:1:1) using permuted block randomisation (block size of 12) to one of three polio vaccination schedules, with the first, second, and third doses given at ages 2 months, 3 months, and 4 months, respectively: sIPV-bOPV-bOPV (1sIPV+2bOPV group; current regimen), sIPV-sIPV-bOPV (2sIPV+1bOPV group), or sIPV-sIPV-sIPV (3sIPV group). The primary endpoint was the proportion of infants with seroconversion to each of the three poliovirus serotypes 1 month after the third dose. Serious and medically important adverse events were monitored for up to 30 days after each vaccination. We assessed immunity in the per-protocol population (all children who completed all three vaccinations and had pre-vaccination and post-vaccination laboratory data) and safety in all children who received at least one dose of study vaccine. This trial is registered with Clinicaltrials.gov, NCT03147560. RESULTS Between May 1, 2016, and Dec 1, 2017, we enrolled and randomly assigned 528 eligible infants to one of the three treatment groups (176 in each group); 473 infants (158 in the 1sIPV+2bOPV group, 152 in the 2sIPV+1bOPV group, and 163 in the 3sIPV group) were included in the per-protocol population. 100% seroconversion against poliovirus types 1 and 3 was observed in all three groups. Infants who received an immunisation schedule containing bOPV had significantly higher antibody titres against poliovirus types 1 and 3 than did the sIPV-only group (2048 in all three treatment groups; p<0·0001). Seroconversion against type 2 poliovirus was observed in 98 (62%) infants in the 1sIPV+2bOPV group, 145 (95%) infants in the 2sIPV+1bOPV group, and 161 (99%) infants in the 3sIPV group. No serious adverse events occurred during the study; 14 minor, transient adverse events were observed, with no significant differences across study groups. INTERPRETATION All three study schedules were well tolerated and highly immunogenic against poliovirus types 1 and 3. Schedules containing two or three sIPV doses had higher seroconversion rates against poliovirus type 2 than did the schedule with a single dose of sIPV. Our findings support inclusion of two sIPV doses in the routine poliovirus vaccination schedule in China to provide better protection against poliovirus type 2 than provided by the current regimen. FUNDING Chinese Center for Disease Control and Prevention and China National Biotec Group Company.
Collapse
Affiliation(s)
- Hanqing He
- Immunisation Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yamin Wang
- National Immunisation Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuan Deng
- Immunisation Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Chenyan Yue
- National Immunisation Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuewen Tang
- Immunisation Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Yan Li
- National Immunisation Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Liu
- Immunisation Programme Department, Hangzhou Municipal Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhiying Yin
- Immunisation Programme Department, Quzhou Municipal Center for Disease Control and Prevention, Quzhou, Zhejiang, China
| | - Guoping Zhang
- Immunisation Programme Department, Chun'an County Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Zhongbing Chen
- Immunisation Programme Department, Longyou County Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Shuyun Xie
- Immunisation Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Ning Wen
- National Immunisation Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhijie An
- National Immunisation Programme, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiping Chen
- Immunisation Programme Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China.
| | - Huaqing Wang
- National Immunisation Programme, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
10
|
Xie J, Yang XH, Hu SQ, Zhan WL, Zhang CB, Liu H, Zhao HY, Chai HY, Chen KY, Du QY, Liu P, Yin AH, Luo MY. Co-circulation of coxsackieviruses A-6, A-10, and A-16 causes hand, foot, and mouth disease in Guangzhou city, China. BMC Infect Dis 2020; 20:271. [PMID: 32264839 PMCID: PMC7137261 DOI: 10.1186/s12879-020-04992-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/25/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hand, foot, and mouth disease (HFMD) is a common infectious disease occurring in children under 5 years of age worldwide, and Enterovirus A71 (EV-A71) and Coxsackievirus A16 (CVA-16) are identified as the predominant pathogens. In recent years, Coxsackievirus A6 (CVA-6) and Coxsackievirus A10 (CVA-10) have played more and more important role in a series of HFMD outbreaks. This study aimed to understand the epidemic characteristics associated with HFMD outbreak in Guangzhou, 2018. Methods The clinical and laboratory data of 1220 enterovirus-associated HFMD patients in 2018 were analysed in this study. Molecular diagnostic methods were performed to identify its serotypes. Phylogenetic analyses were depicted based on the complete VP1 gene. Results There were 21 enterovirus serotypes detected in Guangzhou in 2018. Three serotypes of enterovirus, CVA-6 (364/1220, 29.8%), CVA-10 (305/1220, 25.0%), and CVA-16 (397/1220, 32.5%), were identified as the causative pathogens and accounted for 87.3% among all 1220 HFMD patients. In different seasons, CVA-6 was the predominant pathogen of HFMD during autumn, and CVA-10 as well as CVA-16 were more prevalent in summer. Patients infected by CVA-6, CVA-10 or CVA-16 showed similar clinical features and laboratory characteristics, and the ratios of severe HFMD were 5.8, 5.9, and 1.5% in the three serotypes. Phylogenetic analyses of VP1 sequences showed that the CVA-6, CVA-10, and CVA-16 sequences belonged to the sub-genogroup E2, genogroup E, and genogroup B1, respectively. Conclusions CVA-6, CVA-10, and CVA-16 were the predominant and co-circulated serotypes in Guangzhou China, 2018, which should be the new target for prevention and control of HFMD. Our findings provide useful information for diagnosis, treatment, and prevention of HFMD.
Collapse
Affiliation(s)
- Jia Xie
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
| | - Xiao-Han Yang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Si-Qi Hu
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China
| | - Wen-Li Zhan
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Chang-Bin Zhang
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Hong Liu
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Hong-Yu Zhao
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Hui-Ying Chai
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Ke-Yi Chen
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Qian-Yi Du
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Pan Liu
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Ai-Hua Yin
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China.,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China
| | - Ming-Yong Luo
- Medical Genetic Centre, Guangdong Women and Children's Hospital, Guangzhou Medical University, Guangzhou, 511442, People's Republic of China. .,Medical Genetic Centre, Guangdong Women and Children Hospital, Guangzhou, 511442, People's Republic of China.
| |
Collapse
|
11
|
Ciapponi A, Bardach A, Rey Ares L, Glujovsky D, Cafferata ML, Cesaroni S, Bhatti A. Sequential inactivated (IPV) and live oral (OPV) poliovirus vaccines for preventing poliomyelitis. Cochrane Database Syst Rev 2019; 12:CD011260. [PMID: 31801180 PMCID: PMC6953375 DOI: 10.1002/14651858.cd011260.pub2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Poliomyelitis mainly affects unvaccinated children under five years of age, causing irreversible paralysis or even death. The oral polio vaccine (OPV) contains live attenuated virus, which can, in rare cases, cause a paralysis known as vaccine-associated paralytic polio (VAPP), and also vaccine-derived polioviruses (VDPVs) due to acquired neurovirulence after prolonged duration of replication. The incidence of poliomyelitis caused by wild polio virus (WPV) has declined dramatically since the introduction of OPV and later the inactivated polio vaccine (IPV), however, the cases of paralysis linked to the OPV are currently more frequent than those related to the WPV. Therefore, in 2016, the World Health Organization (WHO) recommended at least one IPV dose preceding routine immunisation with OPV to reduce VAPPs and VDPVs until polio could be eradicated. OBJECTIVES To assess the effectiveness, safety, and immunogenicity of sequential IPV-OPV immunisation schemes compared to either OPV or IPV alone. SEARCH METHODS In May 2019 we searched CENTRAL, MEDLINE, Embase, 14 other databases, three trials registers and reports of adverse effects on four web sites. We also searched the references of identified studies, relevant reviews and contacted authors to identify additional references. SELECTION CRITERIA Randomised controlled trials (RCTs), quasi-RCTs, controlled before-after studies, nationwide uncontrolled before-after studies (UBAs), interrupted time series (ITS) and controlled ITS comparing sequential IPV-OPV schedules (one or more IPV doses followed by one or more OPV doses) with IPV alone, OPV alone or non-sequential IPV-OPV combinations. DATA COLLECTION AND ANALYSIS We used standard methodological procedures expected by Cochrane. MAIN RESULTS We included 21 studies: 16 RCTs involving 6407 healthy infants (age range 96 to 975 days, mean 382 days), one ITS with 28,330 infants and four nationwide studies (two ITS, two UBA). Ten RCTs were conducted in high-income countries; five in the USA, two in the UK, and one each in Chile, Israel, and Oman. The remaining six RCTs were conducted in middle-income countries; China, Bangladesh, Guatemala, India, and Thailand. We rated all included RCTs at low or unclear risk of bias for randomisation domains, most at high or unclear risk of attrition bias, and half at high or unclear risk for conflict of interests. Almost all RCTs were at low risk for the remaining domains. ITSs and UBAs were mainly considered at low risk of bias for most domains. IPV-OPV versus OPV It is uncertain if an IPV followed by OPV schedule is better than OPV alone at reducing the number of WPV cases (very low-certainty evidence); however, it may reduce VAPP cases by 54% to 100% (three nationwide studies; low-certainty evidence). There is little or no difference in vaccination coverage between IPV-OPV and OPV-only schedules (risk ratio (RR) 1.01, 95% confidence interval (CI) 0.96 to 1.06; 1 ITS study; low-certainty evidence). Similarly, there is little or no difference between the two schedule types for the number of serious adverse events (SAEs) (RR 0.88, 95% CI 0.46 to 1.70; 4 studies, 1948 participants; low-certainty evidence); or the number of people with protective humoral response P1 (moderate-certainty evidence), P2 (for the most studied schedule; two IPV doses followed by OPV; low-certainty evidence), and P3 (low-certainty evidence). Two IPV doses followed by bivalent OPV (IIbO) may reduce P2 neutralising antibodies compared to trivalent OPV (moderate-certainty evidence), but may make little or no difference to P1 or P2 neutralising antibodies following an IIO schedule or OPV alone (low-certainty evidence). Both IIO and IIbO schedules may increase P3 neutralising antibodies compared to OPV (moderate-certainty evidence). It may also lead to lower mucosal immunity given increased faecal excretion of P1 (low-certainty evidence), P2 and P3 (moderate-certainty evidence) after OPV challenge. IPV-OPV versus IPV It is uncertain if IPV-OPV is more effective than IPV alone at reducing the number of WPV cases (very low-certainty evidence). There were no data regarding VAPP cases. There is no clear evidence of a difference between IPV-OPV and OPV schedules for the number of people with protective humoral response (low- and moderate-certainty evidence). IPV-OPV schedules may increase mean titres of P1 neutralising antibodies compared to OPV alone (low- and moderate-certainty evidence), but the effect on P2 and P3 titres is not clear (very low- and moderate-certainty evidence). IPV-OPV probably reduces the number of people with P3 poliovirus faecal excretion after OPV challenge with IIO and IIOO sequences (moderate-certainty evidence), and may reduce the number with P2 (low-certainty evidence), but not with P1 (very low-certainty evidence). There may be little or no difference between the schedules in number of SAEs (RR 0.92, 95% CI 0.60 to 1.43; 2 studies, 1063 participants, low-certainty evidence). The number of persons with P2 protective humoral immunity and P2 neutralising antibodies are probably lower with most sequential schemes without P2 components (i.e. bOPV) than with trivalent OPV or IVP alone (moderate-certainty evidence). IPV (3)-OPV versus IPV (2)-OPV One study (137 participants) showed no clear evidence of a difference between three IPV doses followed by OPV and two IPV doses followed by OPV, on the number of people with P1 (RR 0.98, 95% CI 0.93 to 1.03), P2 (RR 1.00, 95% CI 0.97 to 1.03), or P3 (RR 1.01, 95% CI 0.97 to 1.05) protective humoral and intestinal immunity; all moderate-certainty evidence. This study did not report on any other outcomes. AUTHORS' CONCLUSIONS IPV-OPV compared to OPV may reduce VAPPs without affecting vaccination coverage, safety or humoral response, except P2 with sequential schemes without P2 components, but increase poliovirus faecal excretion after OPV challenge for some polio serotypes. Compared to IPV-only schedules, IPV-OPV may have little or no difference on SAEs, probably has little or no effect on persons with protective humoral response, may increase neutralising antibodies, and probably reduces faecal excretion after OPV challenge of certain polio serotypes. Using three IPV doses as part of a IPV-OPV schedule does not appear to be better than two IPV doses for protective humoral response. Sequential schedules during the transition from OPV to IPV-only immunisation schedules seems a reasonable option aligned with current WHO recommendations. Findings could help decision-makers to optimise polio vaccination policies, reducing inequities between countries.
Collapse
Affiliation(s)
- Agustín Ciapponi
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Ariel Bardach
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Lucila Rey Ares
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Demián Glujovsky
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
- CEGYR (Centro de Estudios en Genética y Reproducción)Reproductive MedicineViamonte 1432,Buenos AiresArgentina
| | - María Luisa Cafferata
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Silvana Cesaroni
- Institute for Clinical Effectiveness and Health Policy (IECS‐CONICET)Argentine Cochrane CentreBuenos AiresArgentinaC1414CPV
| | - Aikant Bhatti
- World Health Organization1085, Sector‐B,Pocket‐1, Vasant KunjNew DelhiIndia110070
| | | |
Collapse
|
12
|
Bandyopadhyay AS, Modlin JF, Wenger J, Gast C. Immunogenicity of New Primary Immunization Schedules With Inactivated Poliovirus Vaccine and Bivalent Oral Polio Vaccine for the Polio Endgame: A Review. Clin Infect Dis 2019; 67:S35-S41. [PMID: 30376081 PMCID: PMC6206125 DOI: 10.1093/cid/ciy633] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In May 2016, countries using oral polio vaccine for routine immunization switched from trivalent oral poliovirus vaccine (tOPV) to bivalent type 1 and 3 OPV (bOPV). This was done in order to reduce risks from type 2 vaccine-derived polioviruses (VDPV2) and vaccine-associated paralytic poliomyelitis (VAPP) and to introduce ≥1 dose of inactivated poliovirus vaccine (IPV) to mitigate post-switch loss of type 2 immunity. We conducted a literature review of studies that assessed humoral and intestinal immunogenicity induced by the newly recommended schedules. Differences in seroconversion rates were closely associated with both timing of first IPV administration and number of doses administered. All studies demonstrated high levels of immunity for types 1 and 3 regardless of immunization schedule. When administered late in the primary series, a second dose of IPV closed the humoral immunity gap against polio type 2 associated with a single dose. IPV doses and administration schedules appear to have limited impact on type 2 excretion following challenge.
Collapse
Affiliation(s)
| | | | | | - Chris Gast
- Biostatistics Consultant, Seattle, Washington
| |
Collapse
|
13
|
Safety and immunogenicity of inactivated poliovirus vaccine made from Sabin strains: A phase II, randomized, dose-finding trial. Vaccine 2018; 36:6782-6789. [DOI: 10.1016/j.vaccine.2018.09.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/21/2022]
|