1
|
Montin D, Santilli V, Beni A, Costagliola G, Martire B, Mastrototaro MF, Ottaviano G, Rizzo C, Sgrulletti M, Miraglia Del Giudice M, Moschese V. Towards personalized vaccines. Front Immunol 2024; 15:1436108. [PMID: 39421749 PMCID: PMC11484009 DOI: 10.3389/fimmu.2024.1436108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
The emergence of vaccinomics and system vaccinology represents a transformative shift in immunization strategies, advocating for personalized vaccines tailored to individual genetic and immunological profiles. Integrating insights from genomics, transcriptomics, proteomics, and immunology, personalized vaccines offer the promise of enhanced efficacy and safety, revolutionizing the field of vaccinology. However, the development of personalized vaccines presents multifaceted challenges, including technical, ethical, economic, and regulatory considerations. Addressing these challenges is essential to ensure equitable access and safety of personalized vaccination strategies. Despite these hurdles, the potential of personalized vaccines to optimize responses and mitigate disease burden underscores the significance of ongoing research and collaboration in advancing precision medicine in immunization.
Collapse
Affiliation(s)
- Davide Montin
- Division of Pediatric Immunology and Rheumatology, “Regina Margherita” Children Hospital, Turin, Italy
| | - Veronica Santilli
- Research Unit of Clinical Immunology and Vaccinology, Academic Department of Pediatrics (DPUO), IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Alessandra Beni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Baldassarre Martire
- Unità Operativa Complessa (UOC) of Pediatrics and Neonatology, “Monsignor A.R. Dimiccoli” Hospital, Barletta, Italy
| | - Maria Felicia Mastrototaro
- Unità Operativa Complessa (UOC) of Pediatrics and Neonatology, “Monsignor A.R. Dimiccoli” Hospital, Barletta, Italy
| | - Giorgio Ottaviano
- Department of Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Zhang Y, Yao M, Guo X, Han S, Zhang S, Zhang J, Jiang X, Wang J, Fang M, Wang S, Pang B, Liu X, Kou Z, Jiang X. Humoral immunity and transcriptome differences of COVID-19 inactivated vacciane and protein subunit vaccine as third booster dose in human. Front Immunol 2022; 13:1027180. [PMID: 36341453 PMCID: PMC9634958 DOI: 10.3389/fimmu.2022.1027180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Under the background of the severe human health and world economic burden caused by COVID-19, the attenuation of vaccine protection efficacy, and the prevalence and immune escape of emerging variants of concern (VOCs), the third dose of booster immunization has been put on the agenda. Systems biology approaches can help us gain new perspectives on the characterization of immune responses and the identification of factors underlying vaccine-induced immune efficacy. We analyzed the antibody signature and transcriptional responses of participants vaccinated with COVID-19 inactivated vaccine and protein subunit vaccine as a third booster dose. The results from the antibody indicated that the third booster dose was effective, and that heterologous vaccination with the protein subunit vaccine as a booster dose induced stronger humoral immune responses than the homologous vaccination with inactivated vaccine, and might be more effective against VOCs. In transcriptomic analysis, protein subunit vaccine induced more differentially expressed genes that were significantly associated with many important innate immune pathways. Both the homologous and heterologous boosters could increase the effectiveness against COVID-19, and compared with the inactivated vaccine, the protein subunit vaccine, mediated a stronger humoral immune response and had a more significant correlation with the innate immune function module, which provided certain data support for the third booster immunization strategy.
Collapse
Affiliation(s)
- Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Mingxiao Yao
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xingyu Guo
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shanshan Han
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shu Zhang
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Jinzhong Zhang
- Institute of Immunization and Prevention, Liaocheng Center for Disease Control and Prevention, Liaocheng, Shandong, China
| | - Xiangkun Jiang
- Institute of Immunization and Prevention, Liaocheng Center for Disease Control and Prevention, Liaocheng, Shandong, China
| | - Jianxing Wang
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Ming Fang
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shuang Wang
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaolin Liu
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Zengqiang Kou
- Infectious Disease Prevention and Control Section, Shandong Provincial Center for Disease Control and Prevention, Jinan, Shandong, China
- *Correspondence: Zengqiang Kou, ; Xiaolin Jiang,
| | - Xiaolin Jiang
- School of Public Health and Health Management, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Provincial Center for Disease Control and Prevention, Jinan, China
- *Correspondence: Zengqiang Kou, ; Xiaolin Jiang,
| |
Collapse
|
3
|
Lin X, Lin F, Liang T, Ducatez MF, Zanin M, Wong SS. Antibody Responsiveness to Influenza: What Drives It? Viruses 2021; 13:v13071400. [PMID: 34372607 PMCID: PMC8310379 DOI: 10.3390/v13071400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 02/06/2023] Open
Abstract
The induction of a specific antibody response has long been accepted as a serological hallmark of recent infection or antigen exposure. Much of our understanding of the influenza antibody response has been derived from studying antibodies that target the hemagglutinin (HA) protein. However, growing evidence points to limitations associated with this approach. In this review, we aim to highlight the issue of antibody non-responsiveness after influenza virus infection and vaccination. We will then provide an overview of the major factors known to influence antibody responsiveness to influenza after infection and vaccination. We discuss the biological factors such as age, sex, influence of prior immunity, genetics, and some chronic infections that may affect the induction of influenza antibody responses. We also discuss the technical factors, such as assay choices, strain variations, and viral properties that may influence the sensitivity of the assays used to measure influenza antibodies. Understanding these factors will hopefully provide a more comprehensive picture of what influenza immunogenicity and protection means, which will be important in our effort to improve influenza vaccines.
Collapse
Affiliation(s)
- Xia Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Fangmei Lin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | - Tingting Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
| | | | - Mark Zanin
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Sook-San Wong
- State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, 195 Dongfengxi Rd, Guangzhou 510182, China; (X.L.); (F.L.); (T.L.); (M.Z.)
- School of Public Health, The University of Hong Kong, Hong Kong, China
- Correspondence: ; Tel.: +86-178-2584-6078
| |
Collapse
|
4
|
Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current Challenges in Vaccinology. Front Immunol 2020; 11:1181. [PMID: 32670279 PMCID: PMC7329983 DOI: 10.3389/fimmu.2020.01181] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines, which prime the immune system to respond to future infections, has led to global declines in morbidity and mortality from dreadful infectious communicable diseases. However, many pathogens of public health importance are highly complex and/or rapidly evolving, posing unique challenges to vaccine development. Several of these challenges include an incomplete understanding of how immunity develops, host and pathogen genetic variability, and an increased societal skepticism regarding vaccine safety. In particular, new high-dimensional omics technologies, aided by bioinformatics, are driving new vaccine development (vaccinomics). Informed by recent insights into pathogen biology, host genetic diversity, and immunology, the increasing use of genomic approaches is leading to new models and understanding of host immune system responses that may provide solutions in the rapid development of novel vaccine candidates.
Collapse
Affiliation(s)
- Richard B Kennedy
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| | - Peter Palese
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gregory A Poland
- Mayo Clinic Vaccine Research Group, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
5
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
6
|
Abstract
Seasonal influenza remains a major public health problem, responsible for hundreds of thousands of deaths every year, mostly of elderly people. Despite the wide availability of vaccines, there are multiple problems decreasing the effectiveness of vaccination programs. These include viral variability and hence the requirement to match strains by estimating which will become prevalent each season, problems associated with vaccine and adjuvant production, and the route of administration as well as the perceived lower vaccine efficiency in older adults. Clinical protection is still suboptimal for all of these reasons, and vaccine uptake remains too low in most countries. Efforts to improve the effectiveness of influenza vaccines include developing universal vaccines independent of the circulating strains in any particular season and stimulating cellular as well as humoral responses, especially in the elderly. This commentary assesses progress over the last 3 years towards achieving these aims. Since the beginning of 2020, an unprecedented international academic and industrial effort to develop effective vaccines against the new coronavirus SARS-CoV-2 has diverted attention away from influenza, but many of the lessons learned for the one will synergize with the other to mutual advantage. And, unlike the SARS-1 epidemic and, we hope, the SARS-CoV-2 pandemic, influenza will not be eliminated and thus efforts to improve influenza vaccines will remain of crucial importance.
Collapse
Affiliation(s)
- Graham Pawelec
- Department of Immunology, University of Tübingen, Tübingen, Germany.,Health Sciences North Research Institute, Ontario, Canada
| | | |
Collapse
|