1
|
Jian N, Yu L, Ma L, Zheng B, Huang W. BCG therapy in bladder cancer and its tumor microenvironment interactions. Clin Microbiol Rev 2025:e0021224. [PMID: 40111053 DOI: 10.1128/cmr.00212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
SUMMARYBacillus Calmette-Guérin (BCG) has been the standard treatment for non-muscle-invasive bladder cancer for over 30 years. Despite its proven efficacy, challenges persist, including unclear mechanisms of action, resistance in 30%-50% of patients, and significant side effects. This review presents an updated and balanced discussion of the antitumor mechanisms of BCG, focusing on its direct effects on bladder cancer and its interactions with various cell types within the bladder tumor microenvironment. Notably, recent research on the interactions between BCG and the bladder microbiome is also incorporated. We further summarize and analyze the latest preclinical and clinical studies regarding both intrinsic and adaptive resistance to BCG in bladder cancer. Based on the current understanding of BCG's therapeutic principles and resistance mechanisms, we systematically explore strategies to improve BCG-based tumor immunotherapy. These include the development of recombinant BCG, combination therapy with different drugs, optimization of therapeutic regimens and management, and the exploration of new approaches by targeting changes in the bladder microbiota and its metabolites. These measures aim to effectively address the BCG resistance in bladder cancer, reduce its toxicity, and ultimately enhance the clinical anti-tumor efficacy. Bacterial therapy, represented by genetically engineered oncolytic bacteria, has gradually emerged in the field of cancer treatment in recent years. As the only bacterial drug successfully approved for oncology use, BCG has provided decades of clinical experience. By consolidating lessons from BCG's successes and limitations, we hope to provide valuable insights for the development and application of bacterial therapies in cancer treatment.
Collapse
Affiliation(s)
- Ni Jian
- Synthetic Biology Research Center, Institute for Advanced Study, International Cancer Center of Shenzhen University, Shenzhen, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Lei Yu
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lijuan Ma
- State Key Laboratory of Quality Research in Chinese Medicine & School of Pharmacy Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Binbin Zheng
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Synthetic Biology Research Center, Institute for Advanced Study, International Cancer Center of Shenzhen University, Shenzhen, China
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
2
|
Naqvi N, Ahuja Y, Zarin S, Alam A, Ali W, Shariq M, Hasnain SE, Ehtesham NZ. BCG's role in strengthening immune responses: Implications for tuberculosis and comorbid diseases. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2025; 127:105703. [PMID: 39667418 DOI: 10.1016/j.meegid.2024.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/20/2024] [Accepted: 12/06/2024] [Indexed: 12/14/2024]
Abstract
The BCG vaccine represents a significant milestone in the prevention of tuberculosis (TB), particularly in children. Researchers have been developing recombinant BCG (rBCG) variants that can trigger lasting memory responses, thereby enhancing protection against TB in adults. The breakdown of immune surveillance is a key link between TB and other communicable and non-communicable diseases. Notably, TB is more prevalent among people with comorbidities such as HIV, diabetes, cancer, influenza, COVID-19, and autoimmune disorders. rBCG formulations have the potential to address both TB and HIV co-pandemics. TB increases the risk of lung cancer and immunosuppression caused by cancer can reactivate latent TB infections. Moreover, BCG's efficacy extends to bladder cancer treatment and blood glucose regulation in patients with diabetes and TB. Additionally, BCG provides cross-protection against unrelated pathogens, emphasizing the importance of BCG-induced trained immunity in COVID-19 and other respiratory diseases. Furthermore, BCG reduced the severity of pulmonary TB-induced influenza virus infections. Recent studies have proposed innovations in BCG delivery, revaccination, and attenuation techniques. Disease-centered research has highlighted the immunomodulatory effects of BCG on TB, HIV, cancer, diabetes, COVID-19, and autoimmune diseases. The complex relationship between TB and comorbidities requires a nuanced re-evaluation to understand the shared attributes regulated by BCG. This review assessed the interconnected relationships influenced by BCG administration in TB and related disorders, recommending the expanded use of rBCG in healthcare. Collaboration among vaccine research stakeholders is vital to enhance BCG's efficacy against global health challenges.
Collapse
Affiliation(s)
- Nilofer Naqvi
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Yashika Ahuja
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Sheeba Zarin
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Anwar Alam
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Waseem Ali
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Hyderabad Campus, Telangana 502329, India
| | - Seyed E Hasnain
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India; Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi 110 016, India..
| | - Nasreen Z Ehtesham
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh 201306, India.
| |
Collapse
|
3
|
Junqueira-Kipnis AP, Leite LCDC, Croda J, Chimara E, Carvalho ACC, Arcêncio RA. Advances in the development of new vaccines for tuberculosis and Brazil's role in the effort forward the end TB strategy. Mem Inst Oswaldo Cruz 2024; 119:e240093. [PMID: 39383403 PMCID: PMC11452070 DOI: 10.1590/0074-02760240093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024] Open
Abstract
Tuberculosis (TB) continues to be the world's leading killer of infectious diseases. Despite global efforts to gradually reduce the number of annual deaths and the incidence of this disease, the coronavirus disease 19 (COVID-19) pandemic caused decreased in TB detection and affected the prompt treatment TB which led to a setback to the 2019 rates. However, the development and testing of new TB vaccines has not stopped and now presents the possibility of implanting in the next five years a new vaccine that is affordable and might be used in the various key vulnerable populations affected by TB. Then, this assay aimed to discuss the main vaccines developed against TB that shortly could be selected and used worldwide, and additionally, evidence the Brazilian potential candidates' vaccines in developing in Brazil that could be considered among those in level advanced to TB end.
Collapse
Affiliation(s)
- Ana Paula Junqueira-Kipnis
- Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Rede Goiana de Pesquisa em Tuberculose, Goiânia, GO, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Luciana Cesar de Cerqueira Leite
- Instituto Butantan, Laboratório de Desenvolvimento de Vacinas, São Paulo, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Júlio Croda
- Universidade Federal do Mato Grosso do Sul, Faculdade de Medicina, Mato Grosso do Sul, MS, Brasil
- Fundação Oswaldo Cruz-Fiocruz, Mato Grosso do Sul, MS, Brasil
- Yale School of Public Health, New Haven, CT, USA
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Erica Chimara
- Instituto Adolfo Lutz, Núcleo de Tuberculose e Micobacterioses, São Paulo, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Anna Cristina C Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Rio de Janeiro, RJ, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Ricardo Alexandre Arcêncio
- Universidade de São Paulo, Escola de Enfermagem de Ribeirão Preto, Ribeirão Preto, SP, Brasil
- Rede Brasileira de Pesquisas em Tuberculose - REDE TB, Parque Tecnológico da Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
4
|
Santos LC, Fernandes AMS, Alves IA, Serafini MR, Silva LDSE, de Freitas HF, Leite LCC, Santos CC. Trends in Viral Vector-Based Vaccines for Tuberculosis: A Patent Review (2010-2023). Vaccines (Basel) 2024; 12:876. [PMID: 39204002 PMCID: PMC11359462 DOI: 10.3390/vaccines12080876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Tuberculosis (TB) is an ancient global public health problem. Several strategies have been applied to develop new and more effective vaccines against TB, from attenuated or inactivated mycobacteria to recombinant subunit or genetic vaccines, including viral vectors. This review aimed to evaluate patents filed between 2010 and 2023 for TB vaccine candidates. It focuses on viral vector-based strategies. A search was carried out in Espacenet, using the descriptors "mycobacterium and tuberculosis" and the classification A61K39. Of the 411 patents preliminarily identified, the majority were related to subunit vaccines, with 10 patents based on viral vector platforms selected in this study. Most of the identified patents belong to the United States or China, with a concentration of patent filings between 2013 and 2023. Adenoviruses were the most explored viral vectors, and the most common immunodominant Mycobacterium tuberculosis (Mtb) antigens were present in all the selected patents. The majority of patents were tested in mouse models by intranasal or subcutaneous route of immunization. In the coming years, an increased use of this platform for prophylactic and/or therapeutic approaches for TB and other diseases is expected. Along with this, expanding knowledge about the safety of this technology is essential to advance its use.
Collapse
Affiliation(s)
- Lana C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Antônio Márcio Santana Fernandes
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | - Izabel Almeida Alves
- Departamento do Medicamento, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil;
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade do Estado da Bahia, Salvador 41150-000, BA, Brazil
| | - Mairim Russo Serafini
- Departamento de Farmácia, Universidade Federal do Sergipe, São Cristóvão 49100-000, SE, Brazil;
| | - Leandra da Silva e Silva
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
| | | | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, SP, Brazil;
| | - Carina C. Santos
- Serviço de Imunologia das Doenças Infecciosas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil; (L.C.S.); (A.M.S.F.); (L.d.S.e.S.)
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Salvador 40170-115, BA, Brazil
| |
Collapse
|
5
|
Shaku MT, Um PK, Ocius KL, Apostolos AJ, Pires MM, Bishai WR, Kana BD. A modified BCG with depletion of enzymes associated with peptidoglycan amidation induces enhanced protection against tuberculosis in mice. eLife 2024; 13:e89157. [PMID: 38639995 PMCID: PMC11132681 DOI: 10.7554/elife.89157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/17/2024] [Indexed: 04/20/2024] Open
Abstract
Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.
Collapse
Affiliation(s)
- Moagi Tube Shaku
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory ServiceJohannesburgSouth Africa
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Peter K Um
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Karl L Ocius
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - Alexis J Apostolos
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - Marcos M Pires
- Department of Chemistry, University of VirginiaCharlottesvilleUnited States
| | - William R Bishai
- Center for Tuberculosis Research, Department of Medicine, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, Faculty of Health Sciences, University of the Witwatersrand, National Health Laboratory ServiceJohannesburgSouth Africa
| |
Collapse
|
6
|
Barrera-Rosales A, Rodríguez-Sanoja R, Hernández-Pando R, Moreno-Mendieta S. The Use of Particulate Systems for Tuberculosis Prophylaxis and Treatment: Opportunities and Challenges. Microorganisms 2023; 11:1988. [PMID: 37630548 PMCID: PMC10459556 DOI: 10.3390/microorganisms11081988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
The use of particles to develop vaccines and treatments for a wide variety of diseases has increased, and their success has been demonstrated in preclinical investigations. Accurately targeting cells and minimizing doses and adverse side effects, while inducing an adequate biological response, are important advantages that particulate systems offer. The most used particulate systems are liposomes and their derivatives, immunostimulatory complexes, virus-like particles, and organic or inorganic nano- and microparticles. Most of these systems have been proven using therapeutic or prophylactic approaches to control tuberculosis, one of the most important infectious diseases worldwide. This article reviews the progress and current state of the use of particles for the administration of TB vaccines and treatments in vitro and in vivo, with a special emphasis on polymeric particles. In addition, we discuss the challenges and benefits of using these particulate systems to provide researchers with an overview of the most promising strategies in current preclinical trials, offering a perspective on their progress to clinical trials.
Collapse
Affiliation(s)
- Alejandra Barrera-Rosales
- Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México;
| | - Romina Rodríguez-Sanoja
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Delegación Tlalpan, Ciudad de México 14080, México
| | - Silvia Moreno-Mendieta
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México; (R.R.-S.)
- CONAHCyT, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), A.P. 70228, Ciudad Universitaria, Ciudad de México 04510, México
| |
Collapse
|
7
|
Marques-Neto LM, Trentini MM, Kanno AI, Rodriguez D, Leite LCDC. Recombinant BCG expressing the LTAK63 adjuvant increased memory T cells and induced long-lasting protection against Mycobacterium tuberculosis challenge in mice. Front Immunol 2023; 14:1205449. [PMID: 37520577 PMCID: PMC10374402 DOI: 10.3389/fimmu.2023.1205449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/29/2023] [Indexed: 08/01/2023] Open
Abstract
Vaccine-induced protection against Mycobacterium tuberculosis (Mtb) is usually ascribed to the induction of Th1, Th17, and CD8+ T cells. However, protective immune responses should also involve other immune cell subsets, such as memory T cells. We have previously shown improved protection against Mtb challenge using the rBCG-LTAK63 vaccine (a recombinant BCG strain expressing the LTAK63 adjuvant, a genetically detoxified derivative of the A subunit from E. coli heat-labile toxin). Here we show that mice immunized with rBCG-LTAK63 exhibit a long-term (at least until 6 months) polyfunctional Th1/Th17 response in the draining lymph nodes and in the lungs. This response was accompanied by the increased presence of a diverse set of memory T cells, including central memory, effector memory and tissue-resident memory T cells. After the challenge, the T cell phenotype in the lymph nodes and lungs were characterized by a decrease in central memory T cells, and an increase in effector memory T cells and effector T cells. More importantly, when challenged 6 months after the immunization, this group demonstrated increased protection in comparison to BCG. In conclusion, this work provides experimental evidence in mice that the rBCG-LTAK63 vaccine induces a persistent increase in memory and effector T cell numbers until at least 6 months after immunization, which correlates with increased protection against Mtb. This improved immune response may contribute to enhance the long-term protection.
Collapse
|
8
|
Gong W, Xie J, Li H, Aspatwar A. Editorial: Research advances of tuberculosis vaccine and its implication on COVID-19. Front Immunol 2023; 14:1147704. [PMID: 36845104 PMCID: PMC9948598 DOI: 10.3389/fimmu.2023.1147704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Affiliation(s)
- Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8Medical Center of PLA General Hospital, Beijing, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
9
|
Recent Developments in Mycobacteria-Based Live Attenuated Vaccine Candidates for Tuberculosis. Biomedicines 2022; 10:biomedicines10112749. [PMID: 36359269 PMCID: PMC9687462 DOI: 10.3390/biomedicines10112749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 02/08/2023] Open
Abstract
Vaccination is an excellent approach to stimulating the host immune response and reducing human morbidity and mortality against microbial infections, such as tuberculosis (TB). Bacillus Calmette-Guerin (BCG) is the most widely administered vaccine in the world and the only vaccine approved by the World Health Organization (WHO) to protect against TB. Although BCG confers "protective" immunity in children against the progression of Mycobacterium tuberculosis (Mtb) infection into active TB, this vaccine is ineffective in protecting adults with active TB manifestations, such as multiple-, extensive-, and total-drug-resistant (MDR/XDR/TDR) cases and the co-existence of TB with immune-compromising health conditions, such as HIV infection or diabetes. Moreover, BCG can cause disease in individuals with HIV infection or other immune compromises. Due to these limitations of BCG, novel strategies are urgently needed to improve global TB control measures. Since live vaccines elicit a broader immune response and do not require an adjuvant, developing recombinant BCG (rBCG) vaccine candidates have received significant attention as a potential replacement for the currently approved BCG vaccine for TB prevention. In this report, we aim to present the latest findings and outstanding questions that we consider worth investigating regarding novel mycobacteria-based live attenuated TB vaccine candidates. We also specifically discuss the important features of two key animal models, mice and rabbits, that are relevant to TB vaccine testing. Our review emphasizes that the development of vaccines that block the reactivation of latent Mtb infection (LTBI) into active TB would have a significant impact in reducing the spread and transmission of Mtb. The results and ideas discussed here are only based on reports from the last five years to keep the focus on recent developments.
Collapse
|
10
|
Trentini MM, Kanno AI, Rodriguez D, Marques-Neto LM, Eto SF, Chudzinki-Tavassi AM, Leite LCDC. Recombinant BCG expressing the LTAK63 adjuvant improves a short-term chemotherapy schedule in the control of tuberculosis in mice. Front Immunol 2022; 13:943558. [PMID: 36119106 PMCID: PMC9471321 DOI: 10.3389/fimmu.2022.943558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) is one of the deadliest infectious diseases around the world. Prevention is based on the prophylactic use of BCG vaccine, effective in infants but as protection wanes with time, adults are less protected. Additionally, chemotherapy requires the use of many antibiotics for several months to be effective. Immunotherapeutic approaches can activate the immune system, intending to assist chemotherapy of TB patients, improving its effectiveness, and reducing treatment time. In this work, the recombinant BCG expressing LTAK63 (rBCG-LTAK63) was evaluated for its immunotherapeutic potential against TB. Bacillary load, immune response, and lung inflammation were evaluated in mice infected with Mycobacterium tuberculosis (Mtb) and treated either with BCG or rBCG-LTAK63 using different routes of administration. Mice infected with Mtb and treated intranasally or intravenously with rBCG-LTAK63 showed a reduced bacillary load and lung inflammatory area when compared to the group treated with BCG. In the spleen, rBCG-LTAK63 administered intravenously induced a higher inflammatory response of CD4+ T cells. On the other hand, in the lungs there was an increased presence of CD4+IL-10+ and regulatory T cells. When combined with a short-term chemotherapy regimen, rBCG-LTAK63 administered subcutaneously or intravenously decreases the Mtb bacillary load, increases the anti-inflammatory response, and reduces tissue inflammation. These findings highlight the potential of rBCG-LTAK63 in assisting chemotherapy against Mtb.
Collapse
Affiliation(s)
| | - Alex Issamu Kanno
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | | | - Silas Fernandes Eto
- Laboratory Center of Excellence in New Target Discovery (CENTD) Special Laboratory, Instituto Butantan, São Paulo, Brazil
- Center of Innovation and Development, Laboratory of Development and Innovation, Instituto Butantan, São Paulo, Brazil
| | - Ana Marisa Chudzinki-Tavassi
- Laboratory Center of Excellence in New Target Discovery (CENTD) Special Laboratory, Instituto Butantan, São Paulo, Brazil
- Center of Innovation and Development, Laboratory of Development and Innovation, Instituto Butantan, São Paulo, Brazil
| | | |
Collapse
|
11
|
dos Santos CC, Walburg KV, van Veen S, Wilson LG, Trufen CEM, Nascimento IP, Ottenhoff THM, Leite LCC, Haks MC. Recombinant BCG-LTAK63 Vaccine Candidate for Tuberculosis Induces an Inflammatory Profile in Human Macrophages. Vaccines (Basel) 2022; 10:vaccines10060831. [PMID: 35746439 PMCID: PMC9227035 DOI: 10.3390/vaccines10060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Tuberculosis (TB) is one of the top 10 leading causes of death worldwide. The recombinant BCG strain expressing the genetically detoxified A subunit of the thermolabile toxin from Escherichia coli (LTAK63) adjuvant (rBCG-LTAK63) has previously been shown to confer superior protection and immunogenicity compared to BCG in a murine TB infection model. To further investigate the immunological mechanisms induced by rBCG-LTAK63, we evaluated the immune responses induced by rBCG-LTAK63, BCG, and Mycobacterium tuberculosis (Mtb) H37Rv strains in experimental infections of primary human M1 and M2 macrophages at the transcriptomic and cytokine secretion levels. The rBCG-LTAK63-infected M1 macrophages more profoundly upregulated interferon-inducible genes such as IFIT3, OAS3, and antimicrobial gene CXCL9 compared to BCG, and induced higher levels of inflammatory cytokines such as IL-12(p70), TNF-β, and IL-15. The rBCG-LTAK63-infected M2 macrophages more extensively upregulated transcripts of inflammation-related genes, TAP1, GBP1, SLAMF7, TNIP1, and IL6, and induced higher levels of cytokines related to inflammation and tissue repair, MCP-3 and EGF, as compared to BCG. Thus, our data revealed an important signature of immune responses induced in human macrophages by rBCG-LTAK63 associated with increased inflammation, activation, and tissue repair, which may be correlated with a protective immune response against TB.
Collapse
Affiliation(s)
- Carina C. dos Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
- Department of Clinical and Toxicological Analysis, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-115, Brazil
- Correspondence: (C.C.d.S.); (L.C.C.L.)
| | - Kimberley V. Walburg
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Suzanne van Veen
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Louis G. Wilson
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | | | - Ivan P. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| | - Luciana C. C. Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo 05503-900, Brazil;
- Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo 05508-900, Brazil
- Correspondence: (C.C.d.S.); (L.C.C.L.)
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; (K.V.W.); (S.v.V.); (L.G.W.); (T.H.M.O.); (M.C.H.)
| |
Collapse
|
12
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
13
|
Marques-Neto LM, Piwowarska Z, Kanno AI, Moraes L, Trentini MM, Rodriguez D, Silva JLSC, Leite LCC. Thirty years of recombinant BCG: new trends for a centenary vaccine. Expert Rev Vaccines 2021; 20:1001-1011. [PMID: 34224293 DOI: 10.1080/14760584.2021.1951243] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Global perception of the potential for Bacille Calmette-Guérin (BCG), and consequently recombinant BCG (rBCG), in a variety of prophylactic and therapeutic applications has been increasing. A century of information on BCG, and three decades of experience with rBCG, has generated solid knowledge in this field.Area covered: Here, we review the current state of knowledge of BCG and rBCG development. Molecular tools have facilitated the expression of a variety of molecules in BCG, with the aim of improving its efficacy as a tuberculosis vaccine, generating polyvalent vaccines against other pathogens, including viruses, bacteria, and parasites, and developing immunotherapy approaches against noninvasive bladder cancer. BCG's recently appraised heterologous effects and prospects for expanding its application to other diseases are also addressed.Expert opinion: There are high expectations for new tuberculosis vaccines currently undergoing advanced clinical trials, which could change the prospects of the field. Systems biology could reveal effective biomarkers of protection, which would greatly support vaccine development. The development of appropriate large-scale production processes would further support implementation of new vaccines and rBCG products. The next few years should consolidate the broader applications of BCG and produce insights into improvements using the recombinant BCG technology.
Collapse
Affiliation(s)
| | - Zuzanna Piwowarska
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,UnivLyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Alex I Kanno
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luana Moraes
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Monalisa M Trentini
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Jose L S C Silva
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa De Pós-Graduação Interunidades Em Biotecnologia USP-Instituto Butantan-IPT, São Paulo, Brazil
| | - Luciana C C Leite
- Laboratório De Desenvolvimento De Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
14
|
Whitlow E, Mustafa AS, Hanif SNM. An Overview of the Development of New Vaccines for Tuberculosis. Vaccines (Basel) 2020; 8:vaccines8040586. [PMID: 33027958 PMCID: PMC7712106 DOI: 10.3390/vaccines8040586] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022] Open
Abstract
Currently, there is only one licensed vaccine against tuberculosis (TB), the Bacillus Calmette–Guérin (BCG). Despite its protective efficacy against TB in children, BCG has failed to protect adults against pulmonary TB, lacks therapeutic value, and causes complications in immunocompromised individuals. Furthermore, it compromises the use of antigens present in the purified protein derivate of Mycobacterium tuberculosis in the diagnosis of TB. Many approaches, e.g., whole-cell organisms, subunit, and recombinant vaccines are currently being explored for safer and more efficacious TB vaccines than BCG. These approaches have been successful in developing a large number of vaccine candidates included in the TB vaccine pipeline and are at different stages of clinical trials in humans. This paper discusses current vaccination strategies, provides directions for the possible routes towards the development of new TB vaccines and highlights recent findings. The efforts for improved TB vaccines may lead to new licensed vaccines capable of replacing/supplementing BCG and conferring therapeutic value in patients with active/latent TB.
Collapse
Affiliation(s)
- E. Whitlow
- Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA;
| | - A. S. Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait;
| | - S. N. M. Hanif
- Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, Pikeville, KY 41501, USA;
- Correspondence:
| |
Collapse
|