1
|
Hwang YH, Min DH, Beom Park W. Limitations of neutralizing antibody titers in COVID-19 vaccine efficacy trials and a call for additional correlates of protection. Hum Vaccin Immunother 2025; 21:2473795. [PMID: 40051347 PMCID: PMC11901426 DOI: 10.1080/21645515.2025.2473795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 02/19/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The coronavirus disease (COVID-19) pandemic accelerated development of various vaccine platforms. Among them, mRNA vaccines played a crucial role in controlling the pandemic due to their swift development and efficacy against virus variants. Despite the success of these vaccines, recent studies highlight challenges in evaluating vaccine efficacy, especially in individuals with prior COVID-19 infection. Weakened neutralizing antibody responses after additional doses are observed in these populations, raising concerns about using neutralizing antibody titers as the sole immune correlate of protection. While neutralizing antibodies remain the primary endpoint in immunogenicity trials, they may not fully capture the immune response in populations with widespread prior infection or vaccination. This review explores reduced neutralizing antibody responses in previously infected individuals, and their impact on vaccine efficacy evaluation. It also offers recommendations for improving efficacy assessment, stressing incorporation of additional immune markers such as cell-mediated immunity to enable more comprehensive understanding of vaccine-induced immunity.
Collapse
Affiliation(s)
- Young Hoon Hwang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Wan Beom Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Hayati T, Kartinah NT, Wibowo H, Purwoko RY. Comparison of inflammatory mediator cytokine responses to inactivated virus platform COVID-19 vaccines between elderly and young adult populations. NARRA J 2024; 4:e1380. [PMID: 39816048 PMCID: PMC11731999 DOI: 10.1042/narra.v4i3.1380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/03/2024] [Indexed: 01/18/2025]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has encouraged global vaccine research, yet vaccine effectiveness in the elderly remains a concern due to immunosenescence. The aim of this study was to compare the cytokine response elicited by an inactivated virus-based COVID-19 vaccine between elderly and young adults, focusing on key cytokines involved in cellular and humoral immunity: tumor necrosis factor-alpha (TNF-α), interleukin (IL)-2, IL-6, IL-10, and interferon-gamma (IFN-γ). A cross-sectional study was conducted in the Jakarta-Bogor region of Indonesia from January 2023 to December 2023. The study population was divided into two age cohorts: elderly (60-85 years) and younger adults (30-40 years). Blood samples were collected twice, after the first booster dose and four weeks after the second booster dose. Serum cytokine concentrations were measured using Luminex assays with microparticles conjugated to monoclonal antibodies against TNF-α, IL-2, IL-6, IL-10, and IFN-γ. Comparisons of the cytokine levels were conducted using Student's t-tests or Mann- Whitney U tests as appropriate. A total of 74 individuals were included, with 37 each in the elderly and young adult groups. The results showed significant differences in cytokine responses between the two age groups. After the first booster, the levels of IL-6 and IFN- γ were significantly higher in young adults compared to the elderly. After the second booster, the levels of IL-6 were still significantly higher in the young adult group compared to the elderly group (p = 0.001). Data indicated that after the second booster dose, the levels of TNF-α increased significantly in the young adult group only (p = 0.004), while the levels of IL-2 (p = 0.040) and IFN-γ (p = 0.006) increased in the elderly group only compared to after the first dose. IL-10 levels increased in both groups (both had p = 0.020). This study highlights that young adults had stronger pro-inflammatory responses, while the elderly relied more on IL-2 and IFN-γ for T-cell immunity, suggesting the need for vaccination strategies for the elderly to optimize immune responses.
Collapse
Affiliation(s)
- Taureni Hayati
- Doctoral Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Department of Clinical Pathology, Faculty of Military Medicine, Universitas Pertahanan Indonesia, Bogor, Indonesia
| | - Neng T. Kartinah
- Department of Medical Physiology and Biophysics, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Heri Wibowo
- Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Reza Y. Purwoko
- Research Center for Pre-Clinical and Clinical Research, National Research and Innovation Agency Republic of Indonesia, Jakarta, Indonesia
- Regenerative Medicine Research Institute Mandaya Hospital Group, Tangerang, Indonesia
- Department of Dermatology, Venereology and Aesthetics, Faculty of Medicine, President University, Bekasi, Indonesia
| |
Collapse
|
3
|
Zhou C, Qiu Y, Wang J, Zhong X, Zhu X, Huang X, Yang L, Ji Q, Zhou F, Wu S, Yang M, Zhang J, Liu K, Ji L, Yang H, Li C, Zhao Y. The safety, immunogenicity, and efficacy of heterologous boosting with a SARS-CoV-2 mRNA vaccine (SYS6006) in Chinese participants aged 18 years or more: a randomized, open-label, active-controlled phase 3 trial. Emerg Microbes Infect 2024; 13:2320913. [PMID: 38860446 PMCID: PMC10906127 DOI: 10.1080/22221751.2024.2320913] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/14/2024] [Indexed: 06/12/2024]
Abstract
Continuous emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), enhanced transmissibility, significant immune escape, and waning immunity call for booster vaccination. We evaluated the safety, immunogenicity, and efficacy of heterologous booster with a SARS-CoV-2 mRNA vaccine SYS6006 versus an active control vaccine in a randomized, open-label, active-controlled phase 3 trial in healthy adults aged 18 years or more who had received two or three doses of SARS-CoV-2 inactivated vaccine in China. The trial started in December 2022 and lasted for 6 months. The participants were randomized (overall ratio: 3:1) to receive one dose of SYS6006 (N = 2999) or an ancestral receptor binding region-based, alum-adjuvanted recombinant protein SARS-CoV-2 vaccine (N = 1000), including 520 participants in an immunogenicity subgroup. SYS6006 boosting showed good safety profiles with most AEs being grade 1 or 2, and induced robust wild-type and Omicron BA.5 neutralizing antibody response on Days 14 and 28, demonstrating immunogenicity superiority versus the control vaccine and meeting the primary objective. The relative vaccine efficacy against COVID-19 of any severity was 51.6% (95% CI, 35.5-63.7) for any variant, 66.8% (48.6-78.5) for BA.5, and 37.7% (2.4-60.3) for XBB, from Day 7 through Month 6. In the vaccinated and infected hybrid immune participants, the relative vaccine efficacy was 68.4% (31.1-85.5) against COVID-19 of any severity caused by a second infection. All COVID-19 cases were mild. SYS6006 heterologous boosting demonstrated good safety, superior immunogenicity and high efficacy against BA.5-associated COVID-19, and protected against XBB-associated COVID-19, particularly in the hybrid immune population.Trial registration: Chinese Clinical Trial Registry: ChiCTR2200066941.
Collapse
MESH Headings
- Humans
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- COVID-19 Vaccines/adverse effects
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19/virology
- Adult
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- Female
- Male
- Immunization, Secondary
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Immunogenicity, Vaccine
- China
- Middle Aged
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- mRNA Vaccines
- Young Adult
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/adverse effects
- Adolescent
- Vaccine Efficacy
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Vaccines, Inactivated/adverse effects
- East Asian People
Collapse
Affiliation(s)
- Chunhua Zhou
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, Shijiazhuang, People’s Republic of China
| | - Yuanzheng Qiu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Jianxin Wang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
- The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, Shijiazhuang, People’s Republic of China
| | - Xiang Zhong
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Xiufang Zhu
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiaojing Huang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Lan Yang
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Qiaolei Ji
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Feifei Zhou
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Shunquan Wu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Mengjie Yang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jing Zhang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Kaili Liu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Li Ji
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Hanyu Yang
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Chunlei Li
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang, People’s Republic of China
| | - Yuanyuan Zhao
- Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, People’s Republic of China
| |
Collapse
|
4
|
Chen L, Shao C, Li J, Zhu F. Impact of Immunosenescence on Vaccine Immune Responses and Countermeasures. Vaccines (Basel) 2024; 12:1289. [PMID: 39591191 PMCID: PMC11598585 DOI: 10.3390/vaccines12111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/11/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
The biological progression of aging encompasses complex physiological processes. As individuals grow older, their physiological functions gradually decline, including compromised immune responses, leading to immunosenescence. Immunosenescence significantly elevates disease susceptibility and severity in older populations while concurrently compromising vaccine-induced immune responses. This comprehensive review aims to elucidate the implications of immunosenescence for vaccine-induced immunity and facilitate the development of optimized vaccination strategies for geriatric populations, with specific focus on COVID-19, influenza, pneumococcal, herpes zoster, and respiratory syncytial virus (RSV) vaccines. This review further elucidates the relationship between immunosenescence and vaccine-induced immunity. This review presents a systematic evaluation of intervention strategies designed to enhance vaccine responses in older populations, encompassing adjuvant utilization, antigen doses, vaccination frequency modification, inflammatory response modulation, and lifestyle interventions, including physical activity and nutritional modifications. These strategies are explored for their potential to improve current vaccine efficacy and inform the development of next-generation vaccines for geriatric populations.
Collapse
Affiliation(s)
- Li Chen
- School of Public Health, Southeast University, Nanjing 210096, China; (L.C.); (C.S.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Chengwei Shao
- School of Public Health, Southeast University, Nanjing 210096, China; (L.C.); (C.S.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Jingxin Li
- School of Public Health, Southeast University, Nanjing 210096, China; (L.C.); (C.S.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Fengcai Zhu
- School of Public Health, Southeast University, Nanjing 210096, China; (L.C.); (C.S.)
- Jiangsu Provincial Medical Innovation Center, National Health Commission Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| |
Collapse
|
5
|
Huang Y, Wang W, Liu Y, Wang Z, Cao B. COVID-19 vaccine updates for people under different conditions. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2323-2343. [PMID: 39083202 DOI: 10.1007/s11427-024-2643-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/06/2024] [Indexed: 10/22/2024]
Abstract
SARS-CoV-2 has caused global waves of infection since December 2019 and continues to persist today. The emergence of SARS-CoV-2 variants with strong immune evasion capabilities has compromised the effectiveness of existing vaccines against breakthrough infections. Therefore, it is important to determine the best utilization strategies for different demographic groups given the variety of vaccine options available. In this review, we will discuss the protective efficacy of vaccines during different stages of the epidemic and emphasize the importance of timely updates to target prevalent variants, which can significantly improve immune protection. While it is recognized that vaccine effectiveness may be lower in certain populations such as the elderly, individuals with chronic comorbidities (e.g., diabetes with poor blood glucose control, those on maintenance dialysis), or those who are immunocompromised compared to the general population, administering multiple doses can result in a strong protective immune response that outweighs potential risks. However, caution should be exercised when considering vaccines that might trigger an intense immune response in populations prone to inflammatory flare or other complications. In conclusion, individuals with special conditions require enhanced and more effective immunization strategies to prevent infection or reinfection, as well as to avoid the potential development of long COVID.
Collapse
Affiliation(s)
- Yijiao Huang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- School of Basic Medical Sciences, Tsinghua Medicine, Tsinghua University, Beijing, 100084, China
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weiyang Wang
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yan Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
- Department of Infectious Disease, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, 264000, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Bin Cao
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity; National Clinical Research Center for Respiratory Diseases; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.
- Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Changping Laboratory, Beijing, 102200, China.
- Department of Respiratory Medicine, Capital Medical University, Beijing, 100069, China.
- New Cornerstone Science Laboratory, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
6
|
Lokras AG, Bobak TR, Baghel SS, Sebastiani F, Foged C. Advances in the design and delivery of RNA vaccines for infectious diseases. Adv Drug Deliv Rev 2024; 213:115419. [PMID: 39111358 DOI: 10.1016/j.addr.2024.115419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
Collapse
Affiliation(s)
- Abhijeet Girish Lokras
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Thomas Rønnemoes Bobak
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Saahil Sandeep Baghel
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Federica Sebastiani
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark; Division of Physical Chemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
7
|
Huo H, Wang J, Li C, Xiao S, Wang H, Ge J, Zhong G, Wen Z, Wang C, Lang Q, Chen L, Wang Z, Wang J, Wang X, He X, Guan Y, Shuai L, Bu Z. Safety and immunogenicity of a SARS-CoV-2 mRNA vaccine (SYS6006) in minks, cats, blue foxes, and raccoon dogs. Front Cell Infect Microbiol 2024; 14:1468775. [PMID: 39364147 PMCID: PMC11446887 DOI: 10.3389/fcimb.2024.1468775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 10/05/2024] Open
Abstract
Minks, cats, and some other species of carnivores are susceptible of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have a high risk of transmitting SARS-CoV-2 to humans. The development of animal vaccines can be an effective measure to protect animals against SARS-CoV-2 and reduce the potential risk of human infection. We previously developed a messenger ribonucleic acid (mRNA) vaccine SYS6006 that has been proven to be an efficient coronavirus disease 2019 (COVID-19) vaccine widely used in humans. Here, we further evaluated the safety and immunogenicity of SYS6006 as an animal COVID-19 vaccine candidate for SARS-CoV-2 susceptible animals or wild animals. SYS6006 was safe and immunogenic in mice and completely protected mice against mouse-adapted SARS-CoV-2 infection in the upper and lower respiratory tracts. SYS6006 was able to induce neutralizing antibodies against the SARS-CoV-2 wild-type, Delta, and Omicron BA.2 strain on day 7 after prime immunization, and two doses of immunization could enhance the neutralizing antibody responses and produce long-lasting potent antibodies for more than 8 months in minks and cats, blue foxes, and raccoon dogs, while all immunized animals had no abnormal clinical signs during immunization. These results provided here warrant further development of this safe and efficacious mRNA vaccine platform against animal COVID-19.
Collapse
Affiliation(s)
- Hong Huo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinming Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chan Li
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Shuang Xiao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Han Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinying Ge
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Gongxun Zhong
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhiyuan Wen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chong Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qiaoling Lang
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Lili Chen
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Zilong Wang
- CSPC Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd., CSPC Pharmaceutical Group Co., Ltd., Shijiazhuang, Hebei, China
| | - Jinliang Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xijun He
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuntao Guan
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Lei Shuai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- National High Containment Laboratory for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Su YW, Qiu YZ, Wang YH, Xu Y, Huang CC, Zhang Q, Su C, Ma JH, Liu W, Liu Y, Zhao MS, Yang HY, Li CL, Lu X. Safety and immunogenicity of heterologous boosting with a bivalent SARS-CoV-2 mRNA vaccine (XBB.1.5/BQ.1) in Chinese participants aged 18 years or more: A randomised, double-blinded, active-controlled phase 1 trial. Vaccine 2024; 42:2438-2447. [PMID: 38461050 DOI: 10.1016/j.vaccine.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Continuous emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants urges the development of new vaccines. We assessed the safety and immunogenicity of SYS6006.32, a bivalent vaccine (XBB.1.5/BQ.1), in healthy adults who had received SARS-CoV-2 primary vaccination. In a randomised, double-blinded, active-controlled trial, 200 participants were randomised to receive one dose of SYS6006.32 (N = 100) or a prototype-based, monovalent control vaccine SYS6006 (N = 100). Adverse events (AEs) were collected through the study. Immunogenicity was assessed by live-virus neutralising antibody (Nab) and pseudovirus Nab. 61 (61.0 %) and 60 (60.0 %) participants reported AE in the SYS6006.32 and SYS6006 groups, respectively. Most AEs were grade 1 or 2. Pain and fever were the most common injection-site and systemic AEs, respectively. No serious AEs were observed. SYS6006.32 heterologous boosting induced robust Nab responses against BA.5, XBB.1.5 and EG.5 with live-virus Nab geometric mean titres (GMTs) increased by 17.1-, 34.0-, and 48.0-fold, and pseudovirus Nab GMTs increased by 12.2-, 32.0-, and 35.1-fold, respectively, 14 days after vaccination. SYS6006.32 demonstrated a superior immunogenicity to SYS6006. SYS6006.32 also induced robust pseudovirus Nab responses against XBB.1.16, XBB.2.3, and BA.2.86, with GMTs 3- to 6-fold higher than those induced by SYS6006. In conclusion, SYS6006.32 showed good safety profile and superior immunogenicity to the monovalent vaccine SYS6006.
Collapse
Affiliation(s)
- Yu-Wen Su
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Yuan-Zheng Qiu
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050011, Hebei Province, China
| | - Yuan-Hui Wang
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Yan Xu
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Chao-Chao Huang
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Qing Zhang
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Chang Su
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Jun-Heng Ma
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Wen Liu
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Yan Liu
- Institute for In Vitro Diagnostic Regents Control, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Mao-Sheng Zhao
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050011, Hebei Province, China
| | - Han-Yu Yang
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050011, Hebei Province, China
| | - Chun-Lei Li
- CSPC Megalith Biopharmaceutical Co. Ltd, Shijiazhuang 050011, Hebei Province, China.
| | - Xiang Lu
- National Vaccine Innovation Platform, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China; National Vaccine Innovation Platform, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China.
| |
Collapse
|