1
|
Boichenko V, Noakes VM, Reilly-O’Donnell B, Luciani GB, Emanueli C, Martelli F, Gorelik J. Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity. Cells 2025; 14:553. [PMID: 40214506 PMCID: PMC11989213 DOI: 10.3390/cells14070553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide, representing a complex clinical syndrome in which the heart's ability to pump blood efficiently is impaired. HF can be subclassified into heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), each with distinct pathophysiological mechanisms and varying levels of severity. The progression of HF is significantly driven by cardiac fibrosis, a pathological process in which the extracellular matrix undergoes abnormal and uncontrolled remodelling. Cardiac fibrosis is characterized by excessive matrix protein deposition and the activation of myofibroblasts, increasing the stiffness of the heart, thus disrupting its normal structure and function and promoting lethal arrythmia. MicroRNAs, long non-coding RNAs, and circular RNAs, collectively known as non-coding RNAs (ncRNAs), have recently gained significant attention due to a growing body of evidence suggesting their involvement in cardiac remodelling such as fibrosis. ncRNAs can be found in the peripheral blood, indicating their potential as biomarkers for assessing HF severity. In this review, we critically examine recent advancements and findings related to the use of ncRNAs as biomarkers of HF and discuss their implication in fibrosis development.
Collapse
Affiliation(s)
- Veronika Boichenko
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Victoria Maria Noakes
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Benedict Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol 2025; 182:246-280. [PMID: 38773733 DOI: 10.1111/bph.16409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/19/2024] [Accepted: 03/14/2024] [Indexed: 05/24/2024] Open
Abstract
Vascular smooth muscle cell (vSMC) dysfunction is a critical contributor to cardiovascular diseases, including atherosclerosis, restenosis and vein graft failure. Recent advances have unveiled a fascinating range of non-coding RNAs (ncRNAs) that play a pivotal role in regulating vSMC function. This review aims to provide an in-depth analysis of the mechanisms underlying vSMC dysfunction and the therapeutic potential of various ncRNAs in mitigating this dysfunction, either preventing or reversing it. We explore the intricate interplay of microRNAs, long-non-coding RNAs and circular RNAs, shedding light on their roles in regulating key signalling pathways associated with vSMC dysfunction. We also discuss the prospects and challenges associated with developing ncRNA-based therapies for this prevalent type of cardiovascular pathology. LINKED ARTICLES: This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
MESH Headings
- Animals
- Humans
- Cardiovascular Diseases/drug therapy
- Cardiovascular Diseases/genetics
- Cardiovascular Diseases/metabolism
- Cardiovascular Diseases/pathology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- RNA, Circular/genetics
- RNA, Circular/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
- RNA, Untranslated/pharmacology
- RNA, Untranslated/therapeutic use
Collapse
Affiliation(s)
- Simon D Brown
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Eftychia Klimi
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Abdelaziz Beqqali
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Andrew H Baker
- BHF Centre for Cardiovascular Science, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
3
|
Chen Y, Luo X, Xu B, Bao X, Jia H, Yu B. Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis. Cardiovasc Drugs Ther 2024; 38:819-832. [PMID: 36522550 DOI: 10.1007/s10557-022-07414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Nowadays, as a type of orderly and active death determined by genes, programmed cell death (PCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis, has attracted much attention owing to its participation in numerous chronic cardiovascular diseases, especially atherosclerosis (AS), a canonical chronic inflammatory disease featured by lipid metabolism disturbance. Abundant researches have reported that PCD under distinct internal conditions fulfills different roles of atherosclerotic pathological processes, including lipid core expansion, leukocyte adhesion, and infiltration. Noteworthy, emerging evidence recently has also suggested that oxidative stress (OS), an imbalance of antioxidants and oxygen free radicals, has the potential to mediate PCD occurrence via multiple ways, including oxidization and deubiquitination. Interestingly, more recently, several studies have proposed that the mediating mechanisms could effect on the atherosclerotic initiation and progression significantly from variable aspects, so it is of great clinical importance to clarify how OS-mediated PCD and AS interact. Herein, with the aim of summarizing potential and sufficient atherosclerotic therapy targets, we seek to provide extensive analysis of the specific regulatory mechanisms of PCD mediated by OS and their multifaceted effects on the entire pathological atherosclerotic progression.
Collapse
Affiliation(s)
- Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| |
Collapse
|
4
|
Dai B, Liu C, Zhang S, Huang M, Yin S. Gastrodin Suppresses the Progression of Atherosclerosis and Vascular Inflammation by Regulating TLR4/NF-κB Pathway. Cell Biochem Biophys 2024; 82:697-703. [PMID: 38270835 DOI: 10.1007/s12013-024-01218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Elevated levels of plasma triglycerides (TG) and cholesterol have been shown to contribute to the pathogenesis of several cardiovascular risk factors, such as atherosclerosis, a primary cause of mortality. Gastrodin (Gas) is an effective polyphenol extracted from Chinese natural herbal Gastrodiae elata Blume, which has been documented to be effective against atherosclerosis. However, the related mechanisms remain largely unclear. The current investigation elucidated the involvement of Gas in the development of AS generated by a high-fat diet in mice lacking the apolipoprotein E gene (ApoE-/-). The findings of our study indicate that the administration of Gas had a beneficial effect on hyperlipidemia in mice that were given a high-fat diet and lacked the ApoE gene. Specifically, Gas supplementation resulted in a reduction in blood levels of oxidized low-density lipoprotein (ox-LDL), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor-alpha (TNF-α). Additionally, the administration of Gas resulted in the suppression of lesions in the en face aortas of ApoE KO mice, accompanied by a modest improvement in lipid profiles. The intervention demonstrated the capacity to impede the development of atherosclerotic lesions and promote characteristics associated with plaque stability. The administration of Gas prevented inflammation in the aorta by decreasing the expression of IL-6, TNF-α, and MCP-1. Additionally, Gas had a mitigating effect on TLR4/NF-κB pathway components in the aorta of ApoE-/- mice. Furthermore, it has been shown that Gas has the potential to mitigate the harm caused to human umbilical vein endothelial cells (HUVECs) by ox-LDL, perhaps via inhibiting inflammation through the TLR4/NF-κB pathway. This study shows that Gas may potentially mitigate the development of atherosclerosis via its pleiotropic effects, including improvements in lipid profiles and anti-inflammatory properties.
Collapse
Affiliation(s)
- Bing Dai
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China
| | - Cunfa Liu
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China
| | - Song Zhang
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China
| | - Mei Huang
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China
| | - Shugang Yin
- Department of vascular surgery, Tianjin University Tianjin Hospital, Tianjin, 300000, China.
| |
Collapse
|
5
|
Huang YZ, Wu JC, Lu GF, Li HB, Lai SM, Lin YC, Gui LX, Sham JSK, Lin MJ, Lin DC. Pulmonary Hypertension Induces Serotonin Hyperreactivity and Metabolic Reprogramming in Coronary Arteries via NOX1/4-TRPM2 Signaling Pathway. Hypertension 2024; 81:582-594. [PMID: 38174565 DOI: 10.1161/hypertensionaha.123.21345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 12/25/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Clinical evidence revealed abnormal prevalence of coronary artery (CA) disease in patients with pulmonary hypertension (PH). The mechanistic connection between PH and CA disease is unclear. Serotonin (5-hydroxytryptamine), reactive oxygen species, and Ca2+ signaling have been implicated in both PH and CA disease. Our recent study indicates that NOXs (NADPH [nicotinamide adenine dinucleotide phosphate] oxidases) and TRPM2 (transient receptor potential cation channel subfamily M member 2) are key components of their interplay. We hypothesize that activation of the NOX-TRPM2 pathway facilitates the remodeling of CA in PH. METHODS Left and right CAs from chronic hypoxia and monocrotaline-induced PH rats were collected to study vascular reactivity, gene expression, metabolism, and mitochondrial function. Inhibitors or specific siRNA were used to examine the pathological functions of NOX1/4-TRPM2 in CA smooth muscle cells. RESULTS Significant CA remodeling and 5-hydroxytryptamine hyperreactivity in the right CA were observed in PH rats. NOX1/4-mediated reactive oxygen species production coupled with TRPM2-mediated Ca2+ influx contributed to 5-hydroxytryptamine hyperresponsiveness. CA smooth muscle cells from chronic hypoxia-PH rats exhibited increased proliferation, migration, apoptosis, and metabolic reprogramming in an NOX1/4-TRPM2-dependent manner. Furthermore, the NOX1/4-TRPM2 pathway participated in mitochondrial dysfunction, involving mitochondrial DNA damage, reactive oxygen species production, elevated mitochondrial membrane potential, mitochondrial Ca2+ accumulation, and mitochondrial fission. In vivo knockdown of NOX1/4 alleviated PH and suppressed CA remodeling in chronic hypoxia rats. CONCLUSIONS PH triggers an increase in 5-hydroxytryptamine reactivity in the right CA and provokes metabolic reprogramming and mitochondrial disruption in CA smooth muscle cells via NOX1/4-TRPM2 activation. This signaling pathway may play an important role in CA remodeling and CA disease in PH.
Collapse
Affiliation(s)
- Yan-Zhen Huang
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Ji-Chun Wu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, China (J.-C.W.)
| | - Gui-Feng Lu
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Hui-Bin Li
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Su-Mei Lai
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Yi-Chen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Long-Xin Gui
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD (J.S.K.S.)
| | - Mo-Jun Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
| | - Da-Cen Lin
- Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Sciences (Y.-Z.H., G.-F.L., H.-B.L., S.-M.L., Y.-C.L., L.-X.G., M.-J.L., D.-C.L.), Fujian Medical University, Fuzhou, China
- Department of Epidemiology and Health Statistics, School of Public Health (D.-C.L.), Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Yin B, Wang YB, Li X, Hou XW. β‑aminoisobutyric acid ameliorates hypertensive vascular remodeling via activating the AMPK/SIRT1 pathway in VSMCs. Bioengineered 2022; 13:14382-14401. [PMID: 36694438 PMCID: PMC9995136 DOI: 10.1080/21655979.2022.2085583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Excessive proliferation and migration of vascular smooth muscle cells (VSMCs) play a fundamental role in the pathogenesis of hypertension-related vascular remodeling. β-aminoisobutyric acid (BAIBA) is a nonprotein β-amino acid with multiple pharmacological actions. Recently, BAIBA has been shown to attenuate salt‑sensitive hypertension, but the role of BAIBA in hypertension-related vascular remodeling has yet to be fully clarified. This study examined the potential roles and underlying mechanisms of BAIBA in VSMC proliferation and migration induced by hypertension. Primary VSMCs were cultured from the aortas of Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Our results showed that BAIBA pretreatment obviously alleviated the phenotypic transformation, proliferation, and migration of SHR-derived VSMCs. Exogenous BAIBA significantly inhibited the release of inflammatory cytokines by diminishing phosphorylation and nuclear translocation of p65 NFκB, retarding IκBα phosphorylation and degradation, as well as erasing STAT3 phosphorylation in VSMCs. Supplementation of BAIBA triggered Nrf2 dissociation from Keap1 and inhibited oxidative stress in VSMCs from SHR. Mechanistically, activation of the AMPK/sirtuin 1 (SIRT1) axis was required for BAIBA to cube hypertension-induced VSMC proliferation, migration, oxidative damage and inflammatory response. Most importantly, exogenous BAIBA alleviated hypertension, ameliorated vascular remodeling and fibrosis, abated vascular oxidative burst and inflammation in SHR, an effect that was abolished by deficiency of AMPKα1 and SIRT1. BAIBA might serve as a novel therapeutic agent to prevent vascular remodeling in the context of hypertension.
Collapse
Affiliation(s)
- Bo Yin
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yu-Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiang Li
- Department of General Surgery, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xu-Wei Hou
- Department of Human Anatomy, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
7
|
Fu Q, Wang F, Yang J, Sun W, Hu Z, Xu L, Chu H, Wang X, Zhang W. Long non-coding RNA-PCGEM1 contributes to prostate cancer progression by sponging microRNA miR-129-5p to enhance chromatin licensing and DNA replication factor 1 expression. Bioengineered 2022; 13:9411-9424. [PMID: 35412947 PMCID: PMC9162030 DOI: 10.1080/21655979.2022.2059936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/24/2022] Open
Abstract
PCGEM1 facilitates prostate cancer (PCa) progression. This study aimed to elucidate the mechanism of action of PCGEM1 in PCa. The expression of PCGEM1, microRNA miR-129-5p, chromatin licensing, and DNA replication factor 1 (CDT1) was detected by quantitative reverse transcription-PCR (qRT-PCR). A series of function experiments including cell counting kit-8 (CCK-8), caspase-3 activity, and cell cycle assays were performed to evaluate the influence of PCGEM1, miR-129-5p, and CDT1 on the biological processes of PCa cells. CyclinD1, cyclin dependent kinase 4 (CDK4), Bax, and Bcl-2 protein levels were measured by western blotting. Subcellular isolation revealed the distribution of PCa cells. The connections between PCGEM1, miR-129-5p, and CDT1 were evaluated by luciferase, RIP assay, and Pearson correlation analysis. Both PCGEM1 and CDT1 were upregulated in PCa, while miR-129-5p was downregulated and negatively correlated with PCGEM1 and CDT1. Downregulation of PCGEM1 or CDT1 inhibited the viability, promoted apoptosis and cycle arrest of PCa cells in vitro, and controlled tumor growth in vivo. PCGEM1 plays a crucial role in the progression of PCa by sponging miR-129-5p as a ceRNA of CDT1. PCGEM1 is a CDT1-dependent PCa promoter site that absorbs miR-129-5p.
Collapse
Affiliation(s)
- Qiao Fu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Fangfang Wang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Jun Yang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Wei Sun
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Zhi Hu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Lv Xu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Hao Chu
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Xiao Wang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| | - Wei Zhang
- Department of Urology, The Third Hospital of Wuhan, WuhanHubei, China
| |
Collapse
|
8
|
An F, Yin Y, Ju W. Long noncoding RNA DANCR expression and its predictive value in patients with atherosclerosis. Bioengineered 2022; 13:6919-6928. [PMID: 35235755 PMCID: PMC8974009 DOI: 10.1080/21655979.2022.2033408] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) act crucial roles in the progression of vascular diseases, including atherosclerosis. This study aims to investigate the expression levels of the atherosclerosis-associated lncRNA DANCR in patients diagnosed with atherosclerosis and whether its abnormal expression affects the progress of atherosclerosis. The expression of DANCR in the serum samples of all study participants was quantified using RT-qPCR. Then, the predictive capacities of DANCR for the detection of atherosclerosis patients were evaluated via receiver operating characteristic (ROC) curve analysis. The effects of DANCR on vascular smooth muscle cells (VSMCs) proliferation and migration were then explored using cell counting kit-8 (CCK-8) and Transwell migration assays. The DANCR exhibited increased expression trends in patients with atherosclerosis than healthy controls. Moreover, there were differences in the levels of low-density lipoprotein cholesterol (LDL-C), homocysteine (Hcy), and C-reactive protein (CRP) between the healthy controls and atherosclerosis patients. The DANCR expression was positively correlated with serum LDL-C, Hcy, and CRP levels. DANCR expression could distinguish patients with atherosclerosis from healthy individuals with a high area under the ROC curve (AUC), sensitivity, and specificity. Additionally, knockdown of DANCR weakened the proliferative abilities and migration capacities of VSMCs. It was also shown that DANCR could compete with miR-335-5p binding. Herein, it appears that the LncRNA DANCR was closely associated with the progression of atherosclerosis by targeting miR-335-5p, which might be a potential detective predictor and target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Fengxia An
- Department of Health, Dongying People's Hospital, Shandong, China
| | - Yanliang Yin
- Department of Health, Dongying People's Hospital, Shandong, China
| | - Weixian Ju
- Department of Health, Dongying People's Hospital, Shandong, China
| |
Collapse
|
9
|
Zhang T, Feng C, Zhang X, Sun B, Bian Y. Abnormal expression of long non-coding RNA rhabdomyosarcoma 2-associated transcript (RMST) participates in the pathological mechanism of atherosclerosis by regulating miR-224-3p. Bioengineered 2022; 13:2648-2657. [PMID: 35067166 PMCID: PMC8974166 DOI: 10.1080/21655979.2021.2023995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Study shows that long non-coding RNA (lncRNA) plays a regulatory role in cardiovascular diseases, and the mechanism of rhabdomyosarcoma 2-associated transcript (RMST) in atherosclerosis (AS) is still unclear. This study aimed to evaluate the expression of RMST and its possible role in the occurrence of AS. RMST and miR-224-3p level in serum and human umbilical vein endothelial cells (HUVECs) were determined by real-time quantitative PCR (RT-qPCR). In vitro atherosclerotic cell model was achieved by treating HUVECs with ox-LDL. Receiver operating characteristic (ROC) curve assessed the diagnostic value of RMST in AS, and Pearson correlation coefficient estimated the correlation of RMST with carotid intima-media thickness (CIMT) and carotid-femoral pulse wave velocity (cfPWV). Cell counting kit-8 (CCK-8) assay and Enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the effect of RMST on cell viability and inflammatory response. The luciferase analysis was used to validate the relationship between RMST and miR-224-3p. The results showed that in serum and HUVECs, RMST levels were increased, while miR-224-3p level was decreased. ROC curve suggested that RMST had clinical diagnostic value for AS. Besides, CIMT and cfPWV were positively correlated with RMST levels, respectively. In HUVECs, RMST-knockdown notably improved the cell viability and inhibited the production of inflammatory factors. Moreover, miR-224-3p was the target of RMST. In conclusion, RMST has the potential to be a diagnostic marker for AS. RMST-knockdown contributes to the enhancement of cell viability and the inhibition of inflammatory response, which may provide new insights into the conquest of AS.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Endocrinology, People’s Hospital of Rizhao, Shandong, China
| | - Cuina Feng
- Department of Cardiology, Affiliated Hospital of Hebei University, Hebei, China
| | - Xiang Zhang
- Department of Cardiology, People’s Hospital of Rizhao, Shandong, China
| | - Bin Sun
- Department of Emergency, Yidu Central Hospital of Weifang, Shandong, China
| | - Ying Bian
- Department of General Breast Surgery, Affiliated Hospital of Hebei University, Hebei, China
| |
Collapse
|
10
|
Zhang X, Sun Y. Chromodomain Helicase DNA Binding Protein 1-like, a negative regulator of Forkhead box O3a, promotes the proliferation and migration of Angiotensin II-induced vascular smooth muscle cells. Bioengineered 2022; 13:2597-2609. [PMID: 35001835 PMCID: PMC8974114 DOI: 10.1080/21655979.2021.2019869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Essential hypertension (EH) represents a major risk factor for stroke, myocardial infarction, and heart failure. Dysregulated proliferation and migration of vascular smooth muscle cells (VSMCs) play an important role in pathogenesis of EH. This study aims to investigate the effect of Chromodomain Helicase DNA Binding Protein 1-Like (CHD1L) on Angiotensin II (AngII)-induced VSMCs injury and reveal the underlying mechanism. The expression of CHD1L in EH patients was determined by bioinformatics analysis, and then it was silenced in AngII-induced VSMCs to detect the changes in cellular functions including proliferation, migration, invasion and phenotypic switching via CCK-8, EDU staining, wound healing, transwell and Western blot assays, respectively. Inflammation and oxidative stress were also measured by detecting related markers via commercial kits. After confirming the binding sites between forkhead box O3A (FOXO3a) and CHD1L and their negative association by bioinformatics analysis, FOXO3a was further silenced, and the cellular functions were assessed again to reveal the underlying mechanism. Results showed that CHD1L was highly expressed in EH, and interference of CHD1L suppressed the proliferation, migration, invasion and phenotypic switching in VSMCs. Inflammation and oxidative stress were also restrained by CHD1L knockdown. After validating the negative role of FOXO3a in regulating CHD1L, it was found that FOXO3a abrogated the effect of CHD1L knockdown on the cellular functions of AngII-induced VSMCs. In conclusion, FOXO3a suppresses the proliferation and migration of AngII-induced VSMCs by down-regulating CHD1L.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yingxian Sun
- Department of Cardiovascular Medicine, The First Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
11
|
Song Z, Wang J. LncRNA ASMTL-AS1/microRNA-1270 differentiate prognostic groups in gastric cancer and influence cell proliferation, migration and invasion. Bioengineered 2022; 13:1507-1517. [PMID: 34986743 PMCID: PMC8805870 DOI: 10.1080/21655979.2021.2021063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
The objective of this study was to determine the expression levels of ASMTL-AS1 and miR-1270 in gastric cancer, and to explore whether ASMTL-AS1 and miR-1270 is associated with cancer prognosis and progression or not. ASMTL-AS1 and miR-1270 expression were quantified in gastric cancer tissues and adjacent normal tissues (n = 167) and cell lines. The potential of ASMTL-AS1 and miR-1270 as prognostic biomarkers was evaluated by the receiver operating characteristic (ROC) curve, Kaplan-Meier, and multivariate Cox regression analyses. The binding between ASMTL-AS1 and miR-1270 was verified by the Luciferase reporter assay and RNA pull-down assay. Functional roles of ASMTL-AS1/miR-1270 on cells were investigated in HGC-27 and NCI-N87 cells by MTS viability, Transwell migration, and Matrigel invasion assay. ASMTL-AS1 was significantly downregulated while miR-1270 was upregulated in gastric cancer tissues as compared with normal tissue and cell lines. According to the studies, ASMTL-AS1 and miR-1270 were related to unfavorable clinical parameters, such as the advanced TNM stage. Downregulated ASMTL-AS1 and upregulated miR-1270 were associated with reduced 5-year overall survival. Functional studies suggested that ASMTL-AS1 inhibits proliferation, migration, and invasion of HGC-27 and NCI-N87 cells by regulation of miR-1270. In summary, ASMTL-AS1 and miR-1270 are associated with poor prognosis of patients with gastric cancer. ASMTL-AS1 inhibited gastric cancer progression by regulating miR-1270. Therefore, ASMTL-AS1/miR-1270 may be a potential prognostic biomarker and novel strategy for gastric cancer targeted therapy.
Collapse
Affiliation(s)
- Zhenhe Song
- Department of Gastroenterology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, Shandong, China
| | - Jian Wang
- Department of Laboratory, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| |
Collapse
|
12
|
Lu X, Zhao N, Duan G, Deng Z, Lu Y. Testis developmental related gene 1 promotes non-small-cell lung cancer through the microRNA-214-5p/Krüppel-like factor 5 axis. Bioengineered 2022; 13:603-616. [PMID: 34856848 PMCID: PMC8805868 DOI: 10.1080/21655979.2021.2012406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/25/2021] [Indexed: 10/29/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a frequent malignancy and has a high global incidence. Long noncoding RNAs (lncRNAs) are implicated in carcinogenesis and tumor progression. LncRNA testis developmental related gene 1 (TDRG1) plays a pivotal role in many cancers. This study researched the biological regulatory mechanisms of TDRG1 in NSCLC. Gene expression was assessed by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Changes in the NSCLC cell phenotypes were examined using 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8), wound healing, flow cytometry, and Transwell assays. The binding capacity between TDRG1, microRNA-214-5p (miR‑214-5p), and Krüppel-like factor 5 (KLF5) was tested using luciferase reporter and RNA immunoprecipitation (RIP) assays. In this study, we found that TDRG1 was upregulated in NSCLC samples. Functionally, TDRG1 depletion inhibited NSCLC cell growth, migration, and invasion and accelerated apoptosis. In addition, TDRG1 interacted with miR-214-5p, and miR-214-5p directly targeted KLF5. The suppressive effect of TDRG1 knockdown on NSCLC cellular processes was abolished by KLF5 overexpression. Overall, TDRG1 exerts carcinogenic effects in NSCLC by regulating the miR-214-5p/KLF5 axis.
Collapse
Affiliation(s)
- Xudong Lu
- Soochow University, Suzhou, Jiangsu, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Nian Zhao
- Department of Pulmonary and Critical Care Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Guangjun Duan
- Department of Pulmonary and Critical Care Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Zhiyong Deng
- Department of Science and Technology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| | - Yimin Lu
- Soochow University, Suzhou, Jiangsu, China
- Department of Pulmonary and Critical Care Medicine, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, Jiangsu, China
| |
Collapse
|
13
|
Liu A, Zhang Y, Xun S, Sun M. Trimethylamine N-oxide promotes atherosclerosis via regulating the enriched abundant transcript 1/miR-370-3p/signal transducer and activator of transcription 3/flavin-containing monooxygenase-3 axis. Bioengineered 2021; 13:1541-1553. [PMID: 34923910 PMCID: PMC8805905 DOI: 10.1080/21655979.2021.2010312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Atherosclerosis (AS) is one of the main causes of cardiovascular diseases (CVDs). Trimethylamine N-oxide (TMAO) exacerbates the development of AS. This study aimed to investigate the roles of TMAO in AS. In this study, mice were fed with high fat food (HF) and/or injected with TMAO. Oil red O staining was applied for histological analysis. ELISA, qRT-PCR, and Western blot were conducted to determine the TMAO, serum, mRNA, and protein levels. CCK-8, colony formation assay, and flow cytometry assays were performed to detect the functions of human aortic endothelial cells (HUVECs). The results showed that TMAO induced thick internal and external walls and intimal plaques in vivo, and HUVEC dysfunction in vitro. TMAO and lncRNA enriched abundant transcript 1 (NEAT1) were increased in AS clinical samples and TMAO-HUVECs. Downregulated NEAT1 inhibited proliferation and promoted the apoptosis of HUVECs. NEAT1 regulated the expression of signal transducer and activator of transcription 3 (STAT3) via sponging miR-370-3p. Overexpression of miR-370-3p facilitated the effects of NEAT1 on the cellular functions of HUVECs, while STAT3 exerted opposing effects. The activation of STAT3 promoted the expression of flavin-containing monooxygenase-3 (FMO3). Taken together, our results show that TMAO-NEAT1/miR-370-3p/STAT3/FMO3 forms a positive feedback loop to exacerbate the development of AS. This novel feedback loop may be a promising therapeutic target for AS.
Collapse
Affiliation(s)
- Aijun Liu
- Department of Cardiology, Binhai People's Hospital, Jiangsu 224500, China
| | - Yonglin Zhang
- Department of Cardiology, Binhai People's Hospital, Jiangsu 224500, China
| | - Shucan Xun
- Department of Cardiology, Binhai People's Hospital, Jiangsu 224500, China
| | - Minli Sun
- Department of Cardiology, Binhai People's Hospital, Jiangsu 224500, China
| |
Collapse
|
14
|
Ding Y, Yin R, Zhang S, Xiao Q, Zhao H, Pan X, Zhu X. The Combined Regulation of Long Non-coding RNA and RNA-Binding Proteins in Atherosclerosis. Front Cardiovasc Med 2021; 8:731958. [PMID: 34796209 PMCID: PMC8592911 DOI: 10.3389/fcvm.2021.731958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/07/2021] [Indexed: 12/31/2022] Open
Abstract
Atherosclerosis is a complex disease closely related to the function of endothelial cells (ECs), monocytes/macrophages, and vascular smooth muscle cells (VSMCs). Despite a good understanding of the pathogenesis of atherosclerosis, the underlying molecular mechanisms are still only poorly understood. Therefore, atherosclerosis continues to be an important clinical issue worthy of further research. Recent evidence has shown that long non-coding RNAs (lncRNAs) and RNA-binding proteins (RBPs) can serve as important regulators of cellular function in atherosclerosis. Besides, several studies have shown that lncRNAs are partly dependent on the specific interaction with RBPs to exert their function. This review summarizes the important contributions of lncRNAs and RBPs in atherosclerosis and provides novel and comprehensible interaction models of lncRNAs and RBPs.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Chen L, Huang Y, Yang R, Xiao J, Gao J, Zhang D, Cao D, Ke X. Preparation of controlled degradation of insulin-like growth factor 1/spider silk protein nanofibrous membrane and its effect on endothelial progenitor cell viability. Bioengineered 2021; 12:8031-8042. [PMID: 34670479 PMCID: PMC8806928 DOI: 10.1080/21655979.2021.1982270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The present study aimed to prepare a kind of controlled-releasing insulin-like growth factor 1 (IGF-1)/spider silk protein nanofibrous membrane using a electrostatic spinning method and evaluated its effect on the cell viability of endothelial progenitor cells (EPCs). Recombinant spidroin named as GMCDRSSP-IgF-1 was electro-spun into nanofibrous membrane which can be degraded by protease and be capable of sustained-release of IGF-1. The membrane can be degraded after being treated with thrombin. The release assay results showed that IGF-1 concentration could be maintained at 20 ng/ml for a long time with treatment of Tobacco Etch Virus (TEV) protease. The viability of EPCs on GMCDRSSP-IgF-1 nanofibrous membrane was significantly increased with the presence of TEV protease. The controlled and sustained release of IGF-1 from the nanofibrous membrane could promote the adhesion and viability of EPCs. In summary, the nanofibrous membrane that exhibits controlled degradation and sustained release of IGF-1 was prepared with electrostatic spinning from genetically modified recombinant spider silk protein. The nanofibrous membrane exhibited good blood compatibility and cytocompatibility. With the presence of TEV protease, the sustained-release of IGF-1 significantly promoted the adhesion and viability of EPCs. The new nanofibrous membrane can be potentially used as a scaffold for EPCs culture in vitro and future in vivo studies.
Collapse
Affiliation(s)
- Lifang Chen
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Yulang Huang
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Rongfeng Yang
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Jian Xiao
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Jiajia Gao
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China
| | - Debao Zhang
- Department of Cardiology, Shenzhen Nanshan District Shekou People' S Hospital, Shenzhen, China
| | - Duanwen Cao
- Clinical Trials Research Centre, The First Affiliated Hospital of Nanchang University, Nanchang China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-sen Cardiovascular Hospital, Shenzhen, China.,Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Ji J, Feng M, Niu X, Zhang X, Wang Y. Liraglutide blocks the proliferation, migration and phenotypic switching of Homocysteine (Hcy)-induced vascular smooth muscle cells (VSMCs) by suppressing proprotein convertase subtilisin kexin9 (PCSK9)/ low-density lipoprotein receptor (LDLR). Bioengineered 2021; 12:8057-8066. [PMID: 34666623 PMCID: PMC8806487 DOI: 10.1080/21655979.2021.1982304] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Liraglutide, a glucagon-like peptide 1 (GLP1) receptor agonist, is known to inhibit the atherosclerosis of apoE mice and suppress the cellular behaviors of VSMCs induced by AngII. This study aimed to explore whether liraglutide can reduce the proliferation, invasion and phenotypic transformation of VSMCs induced by Hcy and the underlying mechanism. Hcy was used to induce the proliferation of VSMCs, and liraglutide was then used to expose the cells for assessing cell proliferation. Afterward, the cell migration and phenotypic switch were evaluated to observe the effects of liraglutide. Meanwhile, the expression of PCSK9 and LDLR was detected. After overexpressing PCSK9, the changes in proliferation, cell migration and phenotypic switch were estimated again. Hcy promoted cell proliferation of VSMCs, whereas liraglutide blocked the proliferation, migration and phenotypic switch of Hcy-induced VSMCs. Furthermore, the expression of PCSK9 was downregulated and LDLR expression was upregulated after liraglutide administration in Hcy-induced VSMCs. After overexpressing PCSK9, the proliferation, migration and phenotypic switch of Hcy-induced VSMCs were enhanced. Liraglutide blocked the proliferation, migration and phenotypic switching of Hcy-induced VSMCs by suppressing PCSK9/LDLR. This finding provided the basis for the future application of liraglutide as an effective drug for therapeutic strategy in targeting AS.
Collapse
Affiliation(s)
- Jingquan Ji
- Department of Pathophysiology, Changzhi Medical College, Changzhi, Shanxi, China
| | - Ming Feng
- Department of Neurosurgery,Changzhi People's Hospital, Changzhi, Shanxi, China
| | - Xiaohong Niu
- Department of Endocrinology, The Heji Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi, China
| | - Xinyu Zhang
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yilei Wang
- Department of Basic Medicine, Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
17
|
Sun M, Chen Y, Liu X, Cui Y. LncRNACASC9 promotes proliferation, metastasis, and cell cycle inovarian carcinoma cells through cyclinG1/TP53/MMP7 signaling. Bioengineered 2021; 12:8006-8019. [PMID: 34595994 PMCID: PMC8806755 DOI: 10.1080/21655979.2021.1981795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ovarian cancer (OC) brings about serious physical and psychological burden for female patients. LncRNA CASC9 has been reported to be intimately linked with the occurrence and development of several tumors. However, the biological role of lncRNA CASC9 in OC still lacks sufficient evidence. The expressions of CASC9 and miR-488-3p in OC cell lines and xenograft mice were detected by qRT-PCR assay. Cell Counting Kit-8 (CCK-8) assay was used to assess cell inhibition rate and cell proliferation in OVCAR-3 and OVCAR-3/DDP cells. Wound healing assay and transwell assay were performed to evaluate the capacity of migration and invasion, respectively. In addition, cell apoptosis was measured by TUNEL assay and cell cycle was assessed by flow cytometric analysis. Moreover, western blotting was carried out to detect the cyclinG1 (CCNG1)/TP53/MMP7 signaling and apoptosis-related proteins. Furthermore, luciferase reporter assay was performed to verify the combination of CASC9 with CCNG1 and miR-488-3p. The results of our study revealed that CASC9 expression was upregulated while miR-488-3p and CCNG1 expression was downregulated in OC cells with significant higher TP53 and MMP7 protein levels compared with normal ovarian surface epithelial cells. Additionally, luciferase reporter assay confirmed CASC9 bond to miR-488-3p/CCNG1. CASC9 silencing inhibited cell proliferation, migration, and invasion whereas promoted cell inhibition rate and apoptosis in vitro and in vivo. However, CASC9 overexpression showed the opposite effects. In summary, LncRNA CASC9 played a regulative role in ovarian carcinoma by cyclinG1/TP53/MMP7 signaling via binding to miR-488-3p in vivo and in vitro.
Collapse
Affiliation(s)
- Min Sun
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an P.R.China
| | - Yanan Chen
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing P.R.China
| | - Xiaobei Liu
- Department of Medical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing P.R.China
| | - Yajie Cui
- Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an P.R.China
| |
Collapse
|
18
|
Wang S, Li J, Chen A, Song H. Differentiated expression of long non-coding RNA-small nucleolar RNA host gene 8 in atherosclerosis and its molecular mechanism. Bioengineered 2021; 12:7167-7176. [PMID: 34558393 PMCID: PMC8806704 DOI: 10.1080/21655979.2021.1979441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Atherosclerosis (AS) is one of the most common cardiovascular diseases, and the incidence is increasing year by year. Many studies have shown that long non-coding RNA plays a vital role in the pathogenesis of AS. This study aimed to explore the role and mechanism of lncRNA-small nucleolar RNA host gene 8 (SNHG8) in AS. The expressions of serum lncSNHG8 and miR-224-3p were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The diagnostic meaning of lncSNHG8 in AS was estimated by Receiver operating characteristic (ROC) curve. The correlation between lncSNHG8 and various clinical indicators, as well as miR-244-3p was evaluated by Pearson correlation coefficient analysis. Cell proliferation and migration were estimated by cell counting kit-8 (CCK-8) and Transwell assay. The interaction between lncSNHG8 and miR-224-3p was proved by luciferase reporter gene assay. The expression level of lncSNHG8 was increased in AS patients, while miR-224-3p expression was decreased. The ROC curve indicated that lncSNHG8 with high serum expression had the ability to distinguish AS. Pearson correlation coefficient exhibited that the level of miR-224-3p was negatively correlated with the level of lncSNHG8. The results of cell experiments indicated that inhibition of the expression of lncSNHG8 significantly inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs). Luciferase reporter gene experiments confirmed that there was a target relationship between lncSNHG8 and miR-224-3p. In conclusion, lncSNHG8 had high diagnostic value for AS. It promoted the proliferation and migration of VSMCs by adsorption and inhibition of miR-224-3p.
Collapse
Affiliation(s)
- Shuang Wang
- Department of Emergency Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - Jianchao Li
- Department of Emergency Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - Aimei Chen
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong China
| | - He Song
- Department of Emergency, Yidu Central Hospital of Weifang, Weifang, Shandong China
| |
Collapse
|
19
|
Sun L, Wei Y, Wang J. Circular RNA PIP5K1A (circPIP5K1A) accelerates endometriosis progression by regulating the miR-153-3p/Thymosin Beta-4 X-Linked (TMSB4X) pathway. Bioengineered 2021; 12:7104-7118. [PMID: 34546850 PMCID: PMC8806837 DOI: 10.1080/21655979.2021.1978618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As a common gynecologic disease, endometriosis (EM) poses a threat to the reproductive health of about 10% women globally. Recent studies have revealed that circular RNAs (circRNAs) are deeply implicated in EM pathogenesis. However, the functions of circPIP5K1A in EM have not been studied yet. Our study intended to uncover the molecular mechanism of circPIP5K1A in EM. In this work, gene and protein expressions were determined by RT-qPCR or Western blotting. CCK-8, wound healing, transwell, and flow cytometry assays were conducted to analyze cell viability, migration, invasion, cell cycle, and apoptosis. Additionally, bioinformatics analysis, dual-luciferase reporter assay, as well as RIP assay were performed to investigate the combination between miR-153-3p and circPIP5K1A or TMSB4X. Herein, we found remarkable high circPIP5K1A expression in EM tissues and cells. Silencing of circPIP5K1A suppressed proliferation, restrained cell cycle, increased cell apoptosis, and decreased migration and invasion in EM cells. In addition, miR-153-3p inhibition could abrogate the impacts of circPIP5K1A knockdown on EM progression in vitro. Also, we found that circPIP5K1A regulated TMSB4X level via interaction with miR-153-3p in EM cells. Besides, circPIP5K1A promoted EM progression via TMSB4X. Moreover, TMSB4X could activate the TGF-β signaling in hEM15A cells. To sum up, our study elucidated that circPIP5K1A accelerated EM progression in vitro by activating the TGF-β signaling pathway via the miR-153-3p/TMSB4X axis, providing a potential clinical target for EM treatment.
Collapse
Affiliation(s)
- Lin Sun
- Department of Gynecology, Maanshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui, P.R.China
| | - Yan Wei
- Department of Gynecology, The Affiliated Suzhou Science&Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R.China
| | - Junli Wang
- Department of Gynecology, Maanshan Maternal and Child Health Care Hospital, Ma'anshan, Anhui, P.R.China
| |
Collapse
|
20
|
Weng G, Gu M, Zhang Y, Zhao G, Gu Y. LINC01123 promotes cell proliferation and migration via regulating miR-1277-5p/KLF5 axis in ox-LDL-induced vascular smooth muscle cells. J Mol Histol 2021; 52:943-953. [PMID: 34403009 DOI: 10.1007/s10735-021-10010-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 08/09/2021] [Indexed: 11/25/2022]
Abstract
The pathophysiological mechanism of carotid atherosclerosis (CAS) involves endothelial cell dysfunction, vascular smooth muscle cells (VSMCs), and macrophage activation, which ultimately leads to fibrosis of the vessel wall. lncRNA works weightily in the formation of CAS, but the function and mechanism of lncRNA LINC01123 in stable plaque formation are still equivocal. We collected blood samples from 35 CAS patients as well as 33 healthy volunteers. VSMCs treated with oxidized low-density lipoprotein (ox-LDL) were utilized as the CAS cell models. We applied qRT-PCR for detecting LINC01123, miR-1277-5p and KLF5 mRNA expression, CCK-8 method and BrdU test for determining cell proliferation, Transwell test for measuring cell migration, as well as Western blot for assaying KLF5 protein expression. Dual-luciferase reporter experiment was adopted for assessing the interaction between LINC01123 and miR-1277-5p, as well as KLF5 and miR-1277-5p. LINC01123 and KLF5 expression were dramatically up-regulated, while miR-1277-5p expression was down-regulated in CAS patients and ox-LDL-induced CAS cell models. Overexpressed LINC01123 notedly promoted VSMCs migration and proliferation. LINC01123 knockdown repressed cell proliferation and migration. Also, LINC01123 targeted miR-1277-5p and down-regulated its expression, while miR-1277-5p could negatively regulate KLF5 expression. LINC01123 is highly expressed in CAS patients, and promotes cell proliferation and migration via regulating miR-1277-5p/KLF5 axis in ox-LDL-induced VSMCs. It might be involved in the fibrous plaque formation.
Collapse
Affiliation(s)
- Guohu Weng
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Minhua Gu
- Department of Cardiology, Hainan Provincial Hospital of Chinese Medicine, Haikou, 570203, Hainan, People's Republic of China
| | - Yifan Zhang
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Guangfeng Zhao
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China
| | - Yong Gu
- Department of Encephalopathy, Hainan Provincial Hospital of Chinese Medicine, 47# Heping North Road, Haikou, 570203, Hainan, People's Republic of China.
| |
Collapse
|
21
|
Nie S, Cui X, Guo J, Ma X, Zhi H, Li S, Li Y. Long non-coding RNA AK006774 inhibits cardiac ischemia-reperfusion injury via sponging miR-448. Bioengineered 2021; 12:4972-4982. [PMID: 34369259 PMCID: PMC8806428 DOI: 10.1080/21655979.2021.1954135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In recent years, the incidence and mortality of myocardial infarction (MI) have been increasing throughout the world, threatening public health. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), play critical roles in the progression of MI. The present study aimed to investigate the role of lncRNA AK006774 in the progression of myocardial infarction and find out novel therapeutic or diagnostic target of myocardial infarction. A mouse ischemia/reperfusion (I/R) model and 2,3,5-Triphenyte-trazoliumchloride (TTC) staining were performed to evaluate the effects of AK006774 on I/R injury in vivo. Hypoxia/reoxygenation (H/R) models using primary cardiomyocytes have been established. Flow cytometry and Terminal Deoxynucleotide Transferase dUTP Nick End Labeling (TUNEL) assays were performed to evaluate the effects of AK006774 on cardiomyocyte apoptosis. Luciferase and RNA pull-down assays were performed to verify the interaction between miR-448 and its targets. Western blotting and quantitative PCR were performed to determine protein and gene expression, respectively. We first found that AK006774 overexpression reduced I/R-induced infarct area and cardiomyocyte apoptosis in vivo. Accordingly, AK006774 inhibited apoptosis and oxidative stress in cardiomyocytes subjected to H/R treatment in vitro. Mechanistically, AK006774 modulated the expression of bcl-2 by sponging miR-448. Overexpression of miR-448 antagonized the effects of AK006774 on cardiomyocyte apoptosis. The AK006774/miR-448/bcl-2 signaling axis acts as a key regulator of I/R injury and may be a potential therapeutic or diagnostic target for the treatment of MI.
Collapse
Affiliation(s)
- Shen Nie
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Xiaoya Cui
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Jinping Guo
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Xiaohua Ma
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Haijun Zhi
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Shilei Li
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| | - Yong Li
- Department of Emergency, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
22
|
Zhang Q, Zhang W, Liu J, Yang H, Hu Y, Zhang M, Bai T, Chang F. Lysophosphatidylcholine promotes intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 expression in human umbilical vein endothelial cells via an orphan G protein receptor 2-mediated signaling pathway. Bioengineered 2021; 12:4520-4535. [PMID: 34346841 PMCID: PMC8806654 DOI: 10.1080/21655979.2021.1956671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The oxLDL-based bioactive lipid lysophosphatidylcholine (LPC) is a key regulator of physiological processes including endothelial cell adhesion marker expression. This study explored the relationship between LPC and the human umbilical vein endothelial cell expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) with a particular focus on the regulation of the LPC-G2A-ICAM-1/VCAM-1 pathway in this context. We explored the LPC-inducible role of orphan G protein receptor 2 (G2A) in associated regulatory processes by using human kidney epithelial (HEK293) cells that had been transfected with pET-G2A, human umbilical vein endothelial cells (HUVECs) in which an shRNA was used to knock down G2A, and western blotting and qPCR assays that were used to confirm changes in gene expression. For in vivo studies, a rabbit model of atherosclerosis was established, with serum biochemistry and histological staining approaches being used to assess pathological outcomes in these animals. The treatment of both HEK293 cells and HUVECs with LPC promoted ICAM-1 and VCAM-1 upregulation, while incubation at a pH of 6.8 suppressed such LPC-induced adhesion marker expression. Knocking down G2A by shRNA and inhibiting NF-κB activity yielded opposite outcomes. The application of a Gi protein inhibitor had no impact on LPC-induced ICAM-1/VCAM-1 expression. Atherosclerotic model exhibited high circulating LDL and LPC levels as well as high aortic wall ICAM-1/VCAM-1 expression. Overall, these results suggested that the LPC-G2A-ICAM-1/VCAM-1 pathway may contribute to the atherogenic activity of oxLDL, with NF-κB antagonists representing potentially viable therapeutic tools for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Qian Zhang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Wei Zhang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Jing Liu
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Haisen Yang
- First Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Yuxia Hu
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Mengdi Zhang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Tuya Bai
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Fuhou Chang
- The Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Hohhot, China.,The Center for New Drug Screening Engineering and Research of Inner Mongolia Autonomous Region, Inner Mongolia Medical University, Hohhot, China.,College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
23
|
Zhao J, He X, Zuo M, Li X, Sun Z. Anagliptin prevented interleukin 1β (IL-1β)-induced cellular senescence in vascular smooth muscle cells through increasing the expression of sirtuin1 (SIRT1). Bioengineered 2021; 12:3968-3977. [PMID: 34288819 PMCID: PMC8806542 DOI: 10.1080/21655979.2021.1948289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Vascular smooth muscle cell senescence plays a pivotal role in the pathogenesis of atherosclerosis. Anagliptin is a novel dipeptidyl peptidase-4 (DPP-4) inhibitor for the treatment of hyperglycemia. Recent progress indicates that DPP-4 inhibitors show a wide range of cardiovascular benefits. We hypothesize that Anagliptin plays a role in vascular smooth muscle cell senescence and this may imply its modulation of atherosclerosis. Here, the beneficial effect of Anagliptin against interleukin 1β (IL-1β)-induced cell senescence in vascular smooth muscle cells was studied to learn the promising therapeutic capacity of Anagliptin on atherosclerosis. Firstly, we found that Anagliptin treatment ameliorated the elevated secretions of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and macrophage chemoattractant protein-1 (MCP-1). Secondly, our findings indicate that exposure to IL-1β reduced telomerase activity from 26.7 IU/L to 15.8 IU/L, which was increased to 20.3 and 24.6 IU/L by 2.5 and 5 μM Anagliptin, respectively. In contrast, IL-1β stimulation increased senescence- associated β-galactosidase (SA-β-gal) staining to 3.1- fold compared to the control group, it was then reduced to 2.3- and 1.6- fold by Anagliptin dose-dependently. Thirdly, Anagliptin dramatically reversed the upregulated p16, p21, and downregulated sirtuin1 (SIRT1) in IL-1β-treated vascular smooth muscle cells. Lastly, the protective effect of Anagliptin against cellular senescence in vascular smooth muscle cells was abolished by silencing of SIRT1. In conclusion, Anagliptin protects vascular smooth muscle cells from cytokine-induced senescence, and the action of Anagliptin in vascular smooth muscle cells requires SIRT1 expression.
Collapse
Affiliation(s)
- Juan Zhao
- Department of Cardiovascular Medicine, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China
| | - Xinrong He
- Department of Cardiovascular Medicine, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China
| | - Mei Zuo
- Department of Cardiovascular Medicine, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China
| | - Xinguo Li
- Department of Cardiovascular Medicine, Xianyang Hospital of Yan'an University, Xianyang, Shaanxi, China
| | - Zhiming Sun
- Department of Cardiology, The Fourth People's Hospital of Shaanxi, Xi'an, Shaanxi, China
| |
Collapse
|
24
|
Fu D, Zang L, Li Z, Fan C, Jiang H, Men T. Long non-coding RNA CRNDE regulates the growth and migration of prostate cancer cells by targeting microRNA-146a-5p. Bioengineered 2021; 12:2469-2479. [PMID: 34232111 PMCID: PMC8806644 DOI: 10.1080/21655979.2021.1935402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The function of lncRNA CRNDE and its role in prostate cancer (PC) remains unclear. The aim of this study was to determine the expression level of lncRNA CRNDE in PC tissues and to elucidate its role in PC. The expression levels of lncRNA CRNDE were measured by quantitative reverse transcription polymerase chain reaction. The role of lncRNA CRNDE in PC cells was studied using loss-of-function assays in vitro. Cell proliferation, migration, invasion, and apoptosis were assessed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and transwell chamber assays. A luciferase reporter assay was used to characterize the interaction between lncRNA CRNDE and miR-146a-5p. In PC tissues, the expression level of lncRNA CRNDE was upregulated. Moreover, knockdown of lncRNA CRNDE suppressed PC cell proliferation and migration and induced apoptosis in vitro. miR-146a-5p was verified as a direct target of lncRNA CRNDE. Moreover, the inhibition of miR-146a-5p partially counteracted the effects of lncRNA CRNDE on PC cell proliferation, migration, and invasion. In conclusion, lncRNA CRNDE may serve as a cancer promoter in PC by targeting miR-146a-5p. Therefore, lncRNA CRNDE could be a promising target for the clinical treatment of PC.
Collapse
Affiliation(s)
- Dewang Fu
- Department of Urology Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li'e Zang
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhaowei Li
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chenghui Fan
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Huamao Jiang
- Department of Urology Surgery, The First Affiliate Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tongyi Men
- Department of Urology Surgery, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
25
|
Yao Y, Zhao J, Zhou X, Hu J, Wang Y. Potential role of a three-gene signature in predicting diagnosis in patients with myocardial infarction. Bioengineered 2021; 12:2734-2749. [PMID: 34130601 PMCID: PMC8806758 DOI: 10.1080/21655979.2021.1938498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this study, we evaluated the diagnostic value of key genes in myocardial infarction (MI) based on data from the Gene Expression Omnibus (GEO) database. We used data from GSE66360 to identify a set of significant differentially expressed genes (DEGs) between MI and healthy controls. Logistic regression, least absolute shrinkage and selection operator (LASSO) regression, support vector machine recursive feature elimination (SVM-RFE), and SignalP 3.0 server were used to identify the potential role of genes in predicting diagnosis in patients with MI. Principal component analysis (PCA), receiver operating characteristic (ROC) curve analyses, area under the curve (AUC) analyses, and C-index were used to estimate the diagnostic value of genes in patients with MI. The association was validated using six other independent data sets. Subsequently, bioinformatics analysis was conducted based on the aforementioned potential genes. A meta-analysis was performed to evaluate the diagnostic value of the genes in MI. Forty-four DEGs were selected from the GSE66360 dataset. A three-gene signature consisting of CCL20, IL1R2, and ITLN1 could effectively distinguish patients with MI. The three-gene signature was validated in seven independent cohorts. Functional enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to reveal the involvement of the three-gene signature in inflammation-related biological processes and pathways. Moreover, diagnostic meta-analysis results of the three-gene signature showed that the pooled sensitivity, specificity, and AUC for MI were 0.80, 0.90, and 0.93, respectively. These results suggest that the three-gene signature is a novel candidate biomarker for distinguishing MI from healthy controls.
Collapse
Affiliation(s)
- Yinhui Yao
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Jingyi Zhao
- Department of Functional Center, Chengde Medical College, Chengde, China
| | - Xiaohui Zhou
- School of Basic Medicine, Chengde Medical College, Chengde, China
| | - Junhui Hu
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical College, Chengde, China
| | - Ying Wang
- Department of Pharmacy, The Affiliated Hospital of Chengde Medical College, Chengde, China
| |
Collapse
|
26
|
Chen MY, Fan K, Zhao LJ, Wei JM, Gao JX, Li ZF. Long non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) sponges microRNA-124-3p to up-regulate phosphodiesterase 4B (PDE4B) to accelerate the progression of Parkinson's disease. Bioengineered 2021; 12:708-719. [PMID: 33522352 PMCID: PMC8806245 DOI: 10.1080/21655979.2021.1883279] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reportedly, long non-coding RNA (lncRNA) are crucial modulators in neurodegenerative diseases. Herein, we investigated the role of lncRNA nuclear enriched abundant transcript 1 (NEAT1) in Parkinson's disease (PD). In-vitro PD model was established based on SH-SY5Y cells treated with 1-methyl-4-phenylpyridinium (MPP+). NEAT1, microRNA (miR) -124-3p and phosphodiesterase 4B (PDE4B) expression levels were examined by qRT-PCR. CCK-8 assay and LDH release assay were adopted to delve into the cell viability and cytotoxicity, respectively. Besides, western blot was utilized to determine mTOR, p-mTOR and PDE4B expression levels. ELISA was executed to detect the levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6). Dual-luciferase reporter assay and RIP assay were used to probe the relationship between miR-124-3p and NEAT1 or PDE4B. We demonstrated that, in SH-SY5Y cells treated with MPP+, NEAT1 and PDE4B expression levels were raised, while miR-124-3p expression was repressed; NEAT1 depletion or miR-124-3p overexpression increased the cell viability and suppressed cell injury. Besides, miR-124-3p was confirmed as the direct target of NEAT1, and its down-regulation counteracted the impact of NEAT1 depletion on SH-SY5Y cells. PDE4B was as the downstream target of miR-124-3p, and its overexpression weakens the impact of miR-124-3p on SH-SY5Y cells. Additionally, NEAT1 decoyed miR-124-3p to modulate PDE4B expression. Collectively, in MPP+-induced SH-SY5Y cells, NEAT1 depletion increases cell viability, represses cytotoxicity and reduces inflammatory response by regulating miR-124-3p and PDE4B expression levels, suggesting that NEAT1 may be a promising target for treating PD.
Collapse
Affiliation(s)
- Ming-Yu Chen
- Department of Neurology, Linyi Central Hospital, Linyi City Shandong, China
| | - Kai Fan
- Department of Neurology, The Third People's Hospital of Linyi, Linyi City Shandong, China
| | - Lian-Jiang Zhao
- Department of Neurology, The Third People's Hospital of Linyi, Linyi City Shandong, China
| | - Jie-Mei Wei
- Department of Neurology, Linyi Central Hospital, Linyi City Shandong, China
| | - Ji-Xu Gao
- Department of Laboratory, Linyi Cancer Hospital, Linyi City Shandong, China
| | - Zhen-Fu Li
- Department of Neurology, Linyi Central Hospital, Linyi City Shandong, China
| |
Collapse
|
27
|
Mu D, Li D, Li J, Yu H, Chen W, Liang J, Wang D, Li A, Qing Z, Zhang B. Long non‐codingRNA HULCprotects against atherosclerosis via inhibition ofPI3K/AKTsignaling pathway. IUBMB Life 2020. [DOI: 10.1002/iub.2417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dan Mu
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Danyan Li
- Department of Radiology Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing China
| | - Jianhui Li
- Department of Cardiology Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University Nanjing China
| | - Hongming Yu
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Wenping Chen
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Jing Liang
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Dongmei Wang
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Aimei Li
- Department of Nuclear Medicine Drum Tower hospital Nanjing, Jiangsu China
| | - Zhao Qing
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| | - Bing Zhang
- Department of Radiology The Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
| |
Collapse
|
28
|
Wang H, Jiao H, Jiang Z, Chen R. Propofol inhibits migration and induces apoptosis of pancreatic cancer PANC-1 cells through miR-34a-mediated E-cadherin and LOC285194 signals. Bioengineered 2020; 11:510-521. [PMID: 32303144 PMCID: PMC7185861 DOI: 10.1080/21655979.2020.1754038] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
Propofol has exhibited potent antitumor activity in pancreatic cancer cells in vitro and in vivo. The study aimed to investigate the anti-tumor mechanisms of propofol on pancreatic cancer PANC-1 cells in vitro. PANC-1 cells were exposure to concentration 20 μg/ml of propofol for 72 h. Long non-coding RNA LOC285194 siRNA LOC285194 siRNA, E-cadherin siRNA and microRNA-34a (miR-34a) inhibitor were used to investigate the effect of propofol on PANC-1 cells. miR-34a and LOC285194 were analyzed by quantitative real-time PCR (qRT-PCR). Pro-apoptotic protein bax, cleaved-caspase-3 and anti-apoptotic protein bcl-2 were analyzed by Western blot. Cell viability and cell apoptosis were detected by MTT and TUNEL staining, respectively. Cell migration was detected by wound-healing assay. The results showed that propofol upregulated miR-34a expression, which, in turn, upregulated LOC285194 expression, resulting in PANC-1 cell apoptosis and growth inhibition. In addition, propofol upregulated miR-34a expression, which, in turn, upregulated E-cadherin expression, resulting in cell migration inhibition. Our research confirmed that propofol-induced cell apoptosis and inhibited cell migration in PANC-1 cells in vitro via promoting miR-34a-dependent LOC285194 and E-cadherin upregulation, respectively.
Collapse
Affiliation(s)
- Hongwei Wang
- Department of Anesthesia, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Hongmei Jiao
- Department of Anesthesia, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Ziru Jiang
- External Abdominal Section, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Renyi Chen
- Department of Anesthesia, Linyi Cancer Hospital, Linyi, Shandong, China
| |
Collapse
|
29
|
Wang S, Li P, Jiang G, Guan J, Chen D, Zhang X. Long non-coding RNA LOC285194 inhibits proliferation and migration but promoted apoptosis in vascular smooth muscle cells via targeting miR-211/PUMA and TGF-β1/S100A4 signal. Bioengineered 2020; 11:718-728. [PMID: 32619136 PMCID: PMC8291892 DOI: 10.1080/21655979.2020.1788354] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 01/21/2023] Open
Abstract
Long non-coding RNA LOC285194 (LOC285194) has reported to regulate vascular smooth muscle cells (VSMCs) proliferation and apoptosis in vitro and in vivo. Here we aimed to determine the role of LOC285194 in the proliferation, migration and apoptosis of VSMCs and its underlying mechanisms. A7r5 cells were transfected with Lv-LOC285194 or control Lv-NC for 24-72 h, or small interfering RNA targeting S100A4 (S100A4 siRNA) for 24-48 h, or co-transfected with Lv-LOC285194 and PUMA siRNA for 72 h, or treated with miR-211 inhibitor or co-transfected with Lv-LOC285194 and miR-211 mimics for 72 h. A7r5 cells were also treated with transforming growth factor - β(TGF-β) (5 ng/ml) after Lv-LOC285194 transfection for 24 h. The relationship between LOC285194 and TGF-β was confirmed using luciferase reporter assay. Cell proliferation and cell apoptosis were analyzed by Cell Counting Kit-8 (CCK-8) assay, ELISA and TUNEL staining. LOC285194 and miR-211 expression were detected by qPCR assay. S100A4, pro-apoptotic and anti-apoptotic protein were detected by Western blot assay. LOC285194 inhibited cell proliferation, invasion and migration and promoted cell apoptosis accompanied by upregulation of PUMA and downregulation of miR-211 and S100A4. Targeting PUMA reversed the effect of LOC285194 on cell apoptosis and proliferation. miR-211 mimic inhibited LOC285194-induced PUMA upregulation and decreased LOC285194-induced cell apoptosis. TGF-β (5 ng/ml) treatment reversed S100A4 siRNA or LOC285194-induced S100A4 expression. Luciferase reporter assay showed that TGF-β was the target of LOC285194. LOC285194 inhibits proliferation and promoted apoptosis in vascular smooth muscle cells via targeting miR-211/PUMA signal; In addition, LOC285194 decreased cell invasion and migration by targeting TGF-β1/S100A4 signal.
Collapse
Affiliation(s)
- Shaochun Wang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Ping Li
- Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Gang Jiang
- Radiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jinping Guan
- Emergency Surgery, Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Dong Chen
- General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xiaoying Zhang
- Department of Emergency Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
30
|
Fan J, Saft M, Sadanandan N, Gonzales-Portillo B, Park YJ, Sanberg PR, Borlongan CV, Luo Y. LncRNAs Stand as Potent Biomarkers and Therapeutic Targets for Stroke. Front Aging Neurosci 2020; 12:594571. [PMID: 33192490 PMCID: PMC7604318 DOI: 10.3389/fnagi.2020.594571] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022] Open
Abstract
Stroke is a major public health problem worldwide with a high burden of neurological disability and mortality. Long noncoding RNAs (lncRNAs) have attracted much attention in the past decades because of their newly discovered roles in pathophysiological processes in many diseases. The abundance of lncRNAs in the nervous system indicates that they may be part of a complex regulatory network governing physiology and pathology of the brain. In particular, lncRNAs have been shown to play pivotal roles in the pathogenesis of stroke. In this article, we provide a review of the multifaceted functions of lncRNAs in the pathogenesis of ischemic stroke and intracerebral hemorrhage, highlighting their promising use as stroke diagnostic biomarkers and therapeutics. To this end, we discuss the potential of stem cells in aiding lncRNA applications in stroke.
Collapse
Affiliation(s)
- Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Madeline Saft
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Nadia Sadanandan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Bella Gonzales-Portillo
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - You Jeong Park
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Paul R Sanberg
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Cesario V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, United States
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Ye M, Lu H, Tang W, Jing T, Chen S, Wei M, Zhang J, Wang J, Ma J, Ma D, Dong K. Downregulation of MEG3 promotes neuroblastoma development through FOXO1-mediated autophagy and mTOR-mediated epithelial-mesenchymal transition. Int J Biol Sci 2020; 16:3050-3061. [PMID: 33061817 PMCID: PMC7545718 DOI: 10.7150/ijbs.48126] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Our previous studies demonstrated that MEG3 was significantly downregulated in neuroblastoma (NB) and its expression was negatively associated with the INSS stage. Overexpression of MEG3 promoted apoptosis and inhibited proliferation in NB cells. In this study, we discovered more potential functions and molecular mechanisms of MEG3 in NB. According to the database, MEG3 positively correlated with the NB survival rate and was negatively associated with malignant clinical features. Moreover, we determined that MEG3 was mainly located in the nucleus by nuclear-cytoplasmic separation and RNA fish assays. Upregulation of MEG3 in stably transfected cell lines was accomplished, and CCK8, colony formation, and EDU assays were performed, which indicated that MEG3 significantly suppressed cell proliferation. Both wound healing and transwell experiments demonstrated that MEG3 decreased cell migration and invasion. CHIRP enrichments showed the anticancer effects of MEG3 were probably linked to autophagy and the mTOR signaling pathway. LC3 fluorescence dots and western blots showed that MEG3 attenuated autophagy by inhibiting FOXO1, but not the mTOR signaling pathway. Furthermore, MEG3 inhibited metastasis through epithelial-mesenchymal transition via the mTOR signaling pathway. Consistent with the above results, downregulation of MEG3 facilitated NB malignant phenotypes. Mechanistically, MEG3 and EZH2 regulated each other via a negative feedback loop and promoted NB progression together. In conclusion, our findings suggested that MEG3 was a tumor suppressor in NB and could be a potential target for NB treatment in the future.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| | - Hong Lu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Weitao Tang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| | - Tianrui Jing
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shiyu Chen
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Meng Wei
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001, China
| | - Jing Wang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| | - Jing Ma
- ENT institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Duan Ma
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, Collaborative Innovation Center of Genetics and Development, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, 201102, China.,Key Laboratory of Neonatal Disease, Ministry of Health, 201102, Shanghai, China
| |
Collapse
|
32
|
Zhang C, Zhang X, Gong Y, Li T, Yang L, Xu W, Dong L. Role of the lncRNA-mRNA network in atherosclerosis using ox-low-density lipoprotein-induced macrophage-derived foam cells. Mol Omics 2020; 16:543-553. [PMID: 32915179 DOI: 10.1039/d0mo00077a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Atherosclerosis (AS) is the leading cause of coronary heart disease, cerebral infarction, peripheral vascular disease, and other cardiovascular diseases, making it a major risk factor for high morbidity and mortality. Although long non-coding RNAs (lncRNAs) have been reported to play a role in AS, the specific effects of lncRNAs on AS remain largely unknown. Thus the purpose of this study was to explore the roles of mRNAs and lncRNAs in atherosclerosis via an ox-low-density lipoprotein induced macrophage-derived foam cell model. Microarray analysis identified a total of 50 688 mRNAs and 1514 lncRNAs, including 51 lncRNAs and 1730 mRNAs that were significantly dysregulated in the model group (p-adjust < 0.05 and |log 2FC| > 2). The results of gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses demonstrated that the dysregulated genes were associated with cell proliferation, cell apoptosis, and inflammatory responses. An lncRNA-mRNA co-expression network was created to further analyze the key regulatory genes. The lncRNAs Brip1os, Gm16586, AU020206, 9430034N14Rik, 2510016D11Rik, LNC_000709, Gm15472, Gm20703, and Dubr were identified as potential biomarkers in macrophage-derived foam cells. Based on 9 lncRNAs and 13 mRNAs, key genes influencing the degree of cell proliferation and cell apoptosis and the subsequent development of AS were identified. Q-PCR verified the key dysregulated genes. Thus, our results suggest potential therapeutic targets for AS and provide avenues for further research on AS pathogenesis.
Collapse
Affiliation(s)
- Caijuan Zhang
- School of Life Science, Beijing University of Chinese Medicine, Northeast Corner of Intersection of Sunshine South Street and Baiyang East Road, Fang-Shan District, Beijing, 102488, China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lippi M, Stadiotti I, Pompilio G, Sommariva E. Human Cell Modeling for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E6388. [PMID: 32887493 PMCID: PMC7503257 DOI: 10.3390/ijms21176388] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022] Open
Abstract
The availability of appropriate and reliable in vitro cell models recapitulating human cardiovascular diseases has been the aim of numerous researchers, in order to retrace pathologic phenotypes, elucidate molecular mechanisms, and discover therapies using simple and reproducible techniques. In the past years, several human cell types have been utilized for these goals, including heterologous systems, cardiovascular and non-cardiovascular primary cells, and embryonic stem cells. The introduction of induced pluripotent stem cells and their differentiation potential brought new prospects for large-scale cardiovascular experiments, bypassing ethical concerns of embryonic stem cells and providing an advanced tool for disease modeling, diagnosis, and therapy. Each model has its advantages and disadvantages in terms of accessibility, maintenance, throughput, physiological relevance, recapitulation of the disease. A higher level of complexity in diseases modeling has been achieved with multicellular co-cultures. Furthermore, the important progresses reached by bioengineering during the last years, together with the opportunities given by pluripotent stem cells, have allowed the generation of increasingly advanced in vitro three-dimensional tissue-like constructs mimicking in vivo physiology. This review provides an overview of the main cell models used in cardiovascular research, highlighting the pros and cons of each, and describing examples of practical applications in disease modeling.
Collapse
Affiliation(s)
- Melania Lippi
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| | - Ilaria Stadiotti
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Elena Sommariva
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (M.L.); (I.S.); (G.P.)
| |
Collapse
|
34
|
Wang J, Li P, Xu X, Zhang B, Zhang J. MicroRNA-200a Inhibits Inflammation and Atherosclerotic Lesion Formation by Disrupting EZH2-Mediated Methylation of STAT3. Front Immunol 2020; 11:907. [PMID: 32655542 PMCID: PMC7324475 DOI: 10.3389/fimmu.2020.00907] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Endothelial inflammation and dysfunction are critical to the process of atherosclerosis. Emerging evidence demonstrates that upregulation of miR-200a reduces VCAM-1 expression and prevents monocytic cell adhesion onto the aortic endothelium. However, limited information is available about the role of microRNA-200a (miR-200a) in facilitating atherosclerotic lesion formation. We investigated the anti-inflammatory and anti-atherosclerotic actions of miR-200a. Human umbilical vein endothelial cells (HUVECs) were cultured in the presence of oxidized low-density lipoprotein (ox-LDL), and their viability and apoptosis were evaluated using CCK-8 assays and flow cytometric analysis. The enhancer of zeste homolog 2 (EZH2) promoter activity was evaluated in the presence of miR-200a by dual luciferase reporter gene assay. EZH2-mediated methylation of signal transducer and activator of transcription 3 (STAT3) was validated by ChIP and IP assays. ApoE-/- mice were given a 12-week high-fat diet and developed as in vivo atherosclerotic models. miR-200a was downregulated but EZH2 and HMGB1 were upregulated in ox-LDL-treated HUVECs and the aorta tissues of atherosclerotic mouse models. Elevated miR-200a was shown to protect HUVECs against ox-LDL-induced apoptosis and inflammation. EZH2 was verified as a target of miR-200a. The protective effects of miR-200a were abrogated upon an elevation of EZH2. EZH2 methylated STAT3 and enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3, thereby increasing apoptosis and release of pro-inflammatory cytokines in ox-LDL-treated HUVECs. An anti-atherosclerotic role of miR-200a was also demonstrated in atherosclerotic mouse models. Our study demonstrates that miR-200a has anti-inflammatory and anti-atherosclerotic activities dependent on the EZH2/STAT3 signaling cascade.
Collapse
Affiliation(s)
- Jinpeng Wang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Ping Li
- Department of Developmental Pediatrics, The Second Hospital of Jilin University, Changchun, China
| | - Xiaofei Xu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| | - Beilin Zhang
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jing Zhang
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|