1
|
Zhang R, Wu Z, Wang H, Ji M, Shen T, Yang L, Li Y, Yu J, Huang Y, Li L, Xu Z, Sheng Y, Li X, Wang F, Xiao W. Structural optimization and pharmacological evaluation of diphenyl amine esters as anti-hepatocellular carcinoma agents by targeting TAR RNA-binding protein 2. Eur J Med Chem 2025; 291:117676. [PMID: 40279767 DOI: 10.1016/j.ejmech.2025.117676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Hepatocellular Carcinoma (HCC), a leading cause of cancer-related death in the world, urgently requires novel therapeutic strategies and drug targets. The TRBP-Dicer complex plays a critical role in miRNA biosynthesis, which can be regulated by small molecules to exert anti-cancer effects. This study presented the structural modification of the natural product (-)-Gomisin M1(GM), resulting in the synthesis of 37 derivatives with a diphenyl amine ester scaffold. Several of these derivatives exhibited enhanced modulation of miRNA biogenesis compared to GM. Notably, derivative 13j displayed improved binding affinity to TRBP and greater efficacy in modulating miRNA biosynthesis, as well as anti-HCC activity in vitro and in vivo. Further investigation revealed that 13j induced apoptosis and pyroptosis while inhibiting the epithelial-to-mesenchymal transition process in HCC cells. In terms of druggability, 13j possesses favorable drug-likeness and a promising safety profile. These findings provide a promising scaffold with potent activity and low toxicity, offering a foundation for the development of miRNA-based therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Zhao Wu
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Minghui Ji
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Linhan Yang
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Jialing Yu
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinqiao Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Lingyu Li
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihan Xu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Yuwen Sheng
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China
| | - Fei Wang
- Center for the Utilization of Biological Resources, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education; Yunnan Characteristic Plant Extraction Laboratory; Yunnan Key Laboratory of Research and Development for Natural Products; School of Chemical Science and Technology; School of Pharmacy, Yunnan University, Kunming, 650500, China.
| |
Collapse
|
2
|
Wang S, He S, Hu X, Liu F, Fang X, Huang P. Nrf2 mediated signaling axis in sepsis-induced cardiomyopathy: potential Pharmacological receptor. Inflamm Res 2025; 74:76. [PMID: 40299042 DOI: 10.1007/s00011-025-02037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Sepsis has emerged as the most pressing health concerns globally in emergency and intensive care unit. Sepsis-Induced Cardiomyopathy (SIC) represents an acute cardiac insufficiency syndrome secondary to sepsis, characterized by a high incidence and a significant increase in mortality among sepsis patients. To date, no specific treatment exists for this condition. In recent years, mounting evidence has indicated that Nrf2 plays a critical protective role in SIC and may represent a potential therapeutic target. METHODS Pubmed database literature was searched for studies pertaining to the role of Nrf2 in sepsis, from the inception of the database to October 1, 2024. Biorender software was performed to draw the corresponding mechanism diagram. RESULTS Using the keywords "Nrf2 and Sepsis", we initially identified 454 articles. To refine our search, we employed "Nrf2 and Sepsis and Cardiac" as keywords, yielding 63 articles. Upon reviewing the full texts, we selected 26 studies for inclusion in our review. Nrf2 is implicated in various protective aspects against cardiomyocyte injury stemming from sepsis, including its inhibitory effects on inflammation, apoptosis, mitochondrial dysfunction, pyroptosis, and ferroptosis. 23 natural compounds under investigation for this application were identified. CONCLUSION The Nrf2-mediated signaling pathway plays a critical role in sepsis-induced myocardial injury. Given the complex, systemic, and multifactorial nature of sepsis, these natural compounds should be regarded as adjunctive therapeutic options for scholarly investigation rather than standalone therapeutic interventions. Substantial future research will still be required to validate their clinical efficacy and mechanistic roles.
Collapse
Affiliation(s)
- Sumei Wang
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Affiliated with Capital Medical University, Beijing, China
- Beijing Institute of Traditional Chinese Medicine, Beijing, China
| | - Xiao Hu
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Fusheng Liu
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Xiaolei Fang
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China.
| | - Po Huang
- Dongfang Hospital, Beijing University of Traditional Chinese Medicine, Beijing, China.
| |
Collapse
|
3
|
Gyöngyösi M, Guthrie J, Hasimbegovic E, Han E, Riesenhuber M, Hamzaraj K, Bergler-Klein J, Traxler D, Emmert MY, Hackl M, Derdak S, Lukovic D. Critical analysis of descriptive microRNA data in the translational research on cardioprotection and cardiac repair: lost in the complexity of bioinformatics. Basic Res Cardiol 2025:10.1007/s00395-025-01104-1. [PMID: 40205177 DOI: 10.1007/s00395-025-01104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025]
Abstract
The unsuccessful translation of cardiac regeneration and cardioprotection from animal experiments to clinical applications in humans has raised the question of whether microRNA bioinformatics can narrow the gap between animal and human research outputs. We reviewed the literature for the period between 2000 and 2024 and found 178 microRNAs involved in cardioprotection and cardiac regeneration. On analyzing the orthologs and annotations, as well as downstream regulation, we observed species-specific differences in the diverse regulation of the microRNAs and related genes and transcriptomes, the influence of the experimental setting on the microRNA-guided biological responses, and database-specific bioinformatics results. We concluded that, in addition to reducing the number of in vivo experiments, following the 3R animal experiment rules, the bioinformatics approach allows the prediction of several currently unknown interactions between pathways, coding and non-coding genes, proteins, and downstream regulatory elements. However, a comprehensive analysis of the miRNA-mRNA-protein networks needs a profound bioinformatics and mathematical education and training to appropriately design an experimental study, select the right bioinformatics tool with programming language skills and understand and display the bioinformatics output of the results to translate the research data into clinical practice. In addition, using in-silico approaches, a risk of deviating from the in vivo processes exists, with adverse consequences on the translational research.
Collapse
Affiliation(s)
- Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| | - Julia Guthrie
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Ena Hasimbegovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Emilie Han
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Martin Riesenhuber
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Kevin Hamzaraj
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Denise Traxler
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Maximilian Y Emmert
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charite (DHZC), Berlin, Germany
| | | | - Sophia Derdak
- Core Facilities, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Bamahel AS, Sun X, Wu W, Mu C, Liu J, Bi S, Xu H. Regulatory Roles and Therapeutic Potential of miR-122-5p in Hypoxic-Ischemic Brain Injury: Comprehensive Review. Cell Biochem Biophys 2025:10.1007/s12013-025-01686-6. [PMID: 40016565 DOI: 10.1007/s12013-025-01686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/01/2025]
Abstract
In the regulation of gene expression, epigenetic factors, including non-coding RNAs (ncRNAs) play a role in genetics. Among the ncRNA family, microRNAs (miRNAs) have gained significant attention for their involvement in post-transcriptional gene regulation, with profound implications for both normal and pathological processes including neurological diseases such as hypoxic-ischemic brain injury. A specific miRNA, called miR-122-5p, has gained attention in hypoxic-ischemic conditions, where it modulates critical pathways such as inflammation, oxidative stress, and neuronal survival. The purpose of this review is to highlight recent advances in the biogenesis, expression, and regulation of miR-122-5p, focusing on its role in hypoxic-ischemic conditions and its potential as a therapeutic target. We first studied the therapeutic strategies and potential clinical applications of miR-122-5p, our research showing it interacts with key transcription factors, such as HIF-1α and NF-κB, influencing cellular responses to low oxygen levels. Our findings revealed that miR-122-5p plays a vital role in hypoxic-ischemic brain injury, with its abnormal levels strongly associated with increased brain damage and neuroinflammation, suggesting its potential as a promising therapeutic target. Furthermore, miR-122-5p influences various biological processes in the brain, such as metabolism and blood vessel formation. The use of miR-122-5p inhibitor has been shown to increase autophagy, reduce apoptosis, and decrease oxidative stress and inflammation, thereby protecting neurons and improving outcomes in hypoxic encephalopathy by targeting multiple genes related to these processes. Conversely, miR-122-5p mimics exacerbate oxidative stress and reduce autophagy. These findings highlight the therapeutic potential of miR-122-5p inhibition in reducing brain injury and promoting recovery in hypoxic-ischemic encephalopathy through enhanced neuroprotective mechanisms and the suppression of harmful cellular processes. However, further experimental studies are needed to fully understand the therapeutic potential of targeting miR-122-5p and its related genes in hypoxic-ischemic encephalopathy.
Collapse
Affiliation(s)
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Wei Wu
- Public Health College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Jia Liu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Sheng Bi
- Clinical Medical College, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Hui Xu
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang, China.
| |
Collapse
|
5
|
Han J, Leppik L, Sztulman L, De Rosa R, Pfeiffer V, Busse LC, Kontaxi E, Adam E, Henrich D, Marzi I, Weber B. Dual Roles of Plasma miRNAs in Myocardial Injuries After Polytrauma: miR-122-5p and miR-885-5p Reflect Inflammatory Response, While miR-499a-5p and miR-194-5p Contribute to Cardiomyocyte Damage. Cells 2025; 14:300. [PMID: 39996771 PMCID: PMC11854772 DOI: 10.3390/cells14040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/15/2025] [Indexed: 02/26/2025] Open
Abstract
Cardiac injury after severe trauma is associated with higher mortality in polytrauma patients. Recent evidence suggests that miRNAs play a key role in cardiac pathophysiology and could serve as potential markers of cardiac damage after polytrauma. To explore this hypothesis, plasma miRNA profiles from polytrauma patients (ISS ≥ 16) with and without cardiac injury, stratified by troponin T levels (TnT, > 50 pg/mL vs. < 12 pg/mL), were analysed using NGS and validated via RT-qPCR. Five miRNAs (miR-122-5p, miR-424-5p, miR-885-5p, miR-194-5p, and miR-499a-5p) were found to be significantly upregulated in polytrauma patients with elevated TnT levels. miR-122-5p was associated with markers of right ventricular dysfunction (TAPSE) and left ventricular hypertrophy (IVS/LVPW), while miR-885-5p correlated with left ventricular hypertrophy (IVS/LVPW) and diastolic dysfunction (E/E' ratio). In vitro, miR-194-5p mimic and miR-499a-5p mimic exhibited more active roles in cardiomyocyte injury by increasing caspase-3/7 activity and/or enhancing caspase-1 activity. Notably, the miR-194-5p mimic significantly enhanced the cytotoxic effects of the polytrauma cocktail, while miR-499a-5p boosted effects of LPS/nigericin stimulation in cardiomyocytes. Our findings identify miR-122-5p and miR-885-5p as potential biomarkers reflecting the cardiomyocyte response to polytrauma-induced inflammation, while miR-499a-5p and miR-194-5p appear to play a direct role in myocardial injury after polytrauma.
Collapse
Affiliation(s)
- Jiaoyan Han
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (L.L.); (L.S.); (L.-C.B.); (E.K.); (D.H.); (I.M.); (B.W.)
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (L.L.); (L.S.); (L.-C.B.); (E.K.); (D.H.); (I.M.); (B.W.)
| | - Larissa Sztulman
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (L.L.); (L.S.); (L.-C.B.); (E.K.); (D.H.); (I.M.); (B.W.)
| | - Roberta De Rosa
- Department of Cardiology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (R.D.R.); (V.P.)
| | - Victoria Pfeiffer
- Department of Cardiology, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (R.D.R.); (V.P.)
| | - Lewin-Caspar Busse
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (L.L.); (L.S.); (L.-C.B.); (E.K.); (D.H.); (I.M.); (B.W.)
| | - Elena Kontaxi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (L.L.); (L.S.); (L.-C.B.); (E.K.); (D.H.); (I.M.); (B.W.)
| | - Elisabeth Adam
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany;
| | - Dirk Henrich
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (L.L.); (L.S.); (L.-C.B.); (E.K.); (D.H.); (I.M.); (B.W.)
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (L.L.); (L.S.); (L.-C.B.); (E.K.); (D.H.); (I.M.); (B.W.)
| | - Birte Weber
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt, Germany; (L.L.); (L.S.); (L.-C.B.); (E.K.); (D.H.); (I.M.); (B.W.)
| |
Collapse
|
6
|
Liu Z, Li F, Li N, Chen Y, Chen Z. MicroRNAs as regulators of cardiac dysfunction in sepsis: pathogenesis and diagnostic potential. Front Cardiovasc Med 2025; 12:1517323. [PMID: 40041174 PMCID: PMC11876399 DOI: 10.3389/fcvm.2025.1517323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Introduction Sepsis, a life-threatening condition arising from an uncontrolled immune response to infection, can lead to organ dysfunction, with severe inflammation potentially causing multiple organ failures. Sepsis-induced cardiac dysfunction (SIMD) is a common and severe complication of sepsis, significantly increasing patient mortality. Understanding the pathogenesis of SIMD is crucial for improving treatment, and microRNAs (miRNAs) have emerged as important regulators in this process. Methods A comprehensive literature search was conducted in PubMed, Science Direct, and Embase databases up to September 2024. The search terms included ["miRNA" or "microRNA"] and ["Cardiac" or "Heart"] and ["Sepsis" or "Septic"], with the language limited to English. After initial filtering by the database search engine, Excel software was used to further screen references. Duplicate articles, those without abstracts or full texts, and review/meta-analyses or non-English articles were excluded. Finally, 106 relevant research articles were included for data extraction and analysis. Results The pathogenesis of SIMD is complex and involves mitochondrial dysfunction, oxidative stress, cardiomyocyte apoptosis and pyroptosis, dysregulation of myocardial calcium homeostasis, myocardial inhibitory factors, autonomic nervous regulation disorders, hemodynamic changes, and myocardial structural alterations. miRNAs play diverse roles in SIMD. They are involved in regulating the above-mentioned pathological processes. Discussion Although significant progress has been made in understanding the role of miRNAs in SIMD, there are still challenges. Some studies on the pathogenesis of SIMD have limitations such as small sample sizes and failure to account for confounding factors. Research on miRNAs also faces issues like inconsistent measurement techniques and unclear miRNA-target gene relationships. Moreover, the translation of miRNA-based research into clinical applications is hindered by problems related to miRNA stability, delivery mechanisms, off-target effects, and long-term safety. In conclusion, miRNAs play a significant role in the pathogenesis of SIMD and have potential as diagnostic biomarkers. Further research is needed to overcome existing challenges and fully exploit the potential of miRNAs in the diagnosis and treatment of SIMD.
Collapse
Affiliation(s)
- Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Feiyang Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yong Chen
- Department of Critical Care Medicine, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
7
|
GAO C, DING S, Shadi AM, LU F, LIU C, TENG Z, XU P, LIU S. Cardioprotective mechanism of Qixuan Yijianing formula in Graves' disease mice using miRNA sequencing approach. J TRADIT CHIN MED 2024; 44:1127-1136. [PMID: 39617698 PMCID: PMC11589547 DOI: 10.19852/j.cnki.jtcm.20240927.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2024]
Abstract
OBJECTIVE To investigate the mechanism of Qixuan Yijianing (,QYN) in minimizing cardiac injury in Graves' disease (GD) mice using microRNA (miRNA) sequencing analysis. METHODS Female BALB/c mice were randomly divided into the modeling and control groups (CG). The modeling group was established with Ad-TSHR289. Following 10 weeks of successful modeling, the mice were randomly assigned to four groups: model (MG), methimazole (MMI), QYN low-dose (LD), and high-dose (HD). After four weeks of treatment, the heart rate, heart volume, and heart index were measured, and the levels of aspartate aminotransferase (AST), lactate dehydrogenase (LDH), α-hydroxybutyrate dehydrogenase (α-HBD), creatine kinase (CK), and creatine kinase MB isoenzyme (CK-MB) in the serum were detected using a biochemical analyzer. Hematoxylin-eosin and Masson staining were used to determine histological changes in cardiac tissue. The heart tissues in the CG, MG, and HD groups were selected, and miRNA sequencing was used to identify differentially expressed miRNAs. A bioinformatics database was used to predict the target genes of differential miRNAs, and Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were conducted on the predicted target genes. RESULTS As compared to the CG group, the MG group's heart rate, heart volume, heart index, AST, CK, CK-MB, LDH, α-HBD, myocardial fiber thickness, and collagen fiber significantly increased, all P < 0.01, while following QYN, these indicators improved in the HD group, all P < 0.01 or P < 0.05. Compared to the CG group, the MG group identified 151 differentially expressed miRNAs, with 42 miRNAs downregulated and 109 miRNAs upregulated; compared to the MG group, the HD group identified 70 differentially expressed miRNAs, 40 were downregulated, and 30 were upregulated. The GO functions of differential miRNA target genes are mostly enriched in cardiac development regulation, cardiac contraction control, heart rate regulation, and so on. The most enriched KEGG pathways include the mitogen-activated protein kinase, ErbB, Hippo, forkhead box protein O, and Wnt signaling pathways. CONCLUSION QYN may protect the cardiac structure and function and minimize cardiac damage caused by GD by regulating relevant target genes and signaling pathways through miRNAs which include miR-206-3p, miR-122-5p, and miR-200a-3p.
Collapse
Affiliation(s)
- Changjiu GAO
- 1 School of Pharmacy, Mudanjiang Medical University, Mudanjiang 157011, China
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Song DING
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - A.D. Mohammed Shadi
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
- 4 School of Pharmacy, Lebanese International University, Sana’a 18644, Yemen
| | - Fang LU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Changfeng LIU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Zhan TENG
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Peng XU
- 3 Graduate School, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Shumin LIU
- 2 Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
8
|
Wang Y, Feng W, Li S, Liu C, Jia L, Wang P, Li L, Du H, Yu W. Oxycodone attenuates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidation and pyroptosis via Nrf2/HO-1 signalling pathway. Clin Exp Pharmacol Physiol 2024; 51:e13910. [PMID: 39073215 DOI: 10.1111/1440-1681.13910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024]
Abstract
Myocardial injury and cardiovascular dysfunction are the most common complications of sepsis, and effective therapeutic candidate is still lacking. This study aims to investigate the protective effect of oxycodone in myocardial injury of lipopolysaccharide-induced sepsis and its related signalling pathways. Wild-type and nuclear factor erythroid 2-related factor 2 (Nrf2)-knockout mice, as well as H9c2 cardiomyocytes cultures treated with lipopolysaccharide (LPS) were used as models of septic myocardial injury. H9c2 cardiomyocytes culture showed that oxycodone protected cells from pyroptosis induced by LPS. Mice model confirmed that oxycodone pretreatment significantly attenuated myocardial pathological damage and improved cardiac function demonstrated by increased ejection fraction (EF) and fractional shortening (FS), as well as decreased cardiac troponin I (cTnI) and creatine kinase isoenzymes MB (CK-MB). Oxycodone also reduced the levels of inflammatory factors and oxidative stress damage induced by LPS, which involves pyroptosis-related proteins including: Nod-like receptor protein 3 (NLRP3), Caspase 1, Apoptosis-associated speck-like protein contain a CARD (ASC), and Gasdermin D (GSDMD). These changes were mediated by Nrf2 and heme oxygenase-1 (HO-1) because Nrf2-knockout mice or Nrf2 knockdown in H9c2 cells significantly reversed the beneficial effect of oxycodone on oxidative stress, inflammatory responses and NLRP3-mediated pyroptosis. Our findings yielded that oxycodone therapy reduces LPS-induced myocardial injury by suppressing NLRP3-mediated pyroptosis via the Nrf2/HO-1 signalling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Yanting Wang
- The First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Wei Feng
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaona Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cuicui Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Pei Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Linlin Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongyin Du
- Tianjin Municipal Health Commission, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Sun Y, Sun K, Ma Z, Zhang X, Du X, Jia Y, Zhu Y, Inam M, Gao Y, Basang W. miR-122-5p Promotes Cowshed Particulate Matter2.5-Induced Apoptosis in NR8383 by Targeting COL4A1. TOXICS 2024; 12:386. [PMID: 38922066 PMCID: PMC11209608 DOI: 10.3390/toxics12060386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024]
Abstract
It is well known that Particulate Matter2.5 (PM2.5) has a major adverse effect on the organism. However, the health hazards of livestock farm PM2.5 to humans and animals are not yet known, and the role of miRNAs in the cellular damage induced by livestock farm PM2.5 is also unclear. Therefore, our study used cowshed PM2.5 to stimulate rat alveolar macrophage NR8383 to construct an in vitro injury model to investigate the effect of miR-122-5p on PM2.5-induced apoptosis in the NR8383. The level of apoptosis was quantified by flow cytometry and Hoechst 33342/PI double staining. Furthermore, the potential target gene Collagen type IV alpha (COL4A1) of miR-122-5p was identified through the use of bioinformatics methods. The results demonstrated a decline in cell viability and an increase in apoptosis with rising PM2.5 concentrations and exposure durations. The transfection of miR-122-5p mimics resulted in an upregulation of the pro-apoptotic protein Bcl-xL/Bcl-2 and activation of cleaved caspase-3 while inhibiting the anti-apoptotic protein B-cell lymphoma-2. The experimental data indicate that miR-122-5p is involved in the apoptotic process by targeting COL4A1. Furthermore, the overexpression of COL4A1 was observed to enhance the PM2.5-activated PI3K/AKT/NF-κB signaling pathway, which contributed to the inhibition of apoptosis. This finding offers a promising avenue for the development of therapeutic strategies aimed at mitigating cellular damage induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Yize Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Ke Sun
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Zhenhua Ma
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Xiqing Zhang
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Xiaohui Du
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Yunna Jia
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Yanbin Zhu
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| | - Muhammad Inam
- Department of Zoology, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18050, Pakistan
| | - Yunhang Gao
- Department of Veterinary Medicine, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; (Y.S.)
| | - Wangdui Basang
- Institute of Animal Husbandry and Veterinary Medicine, Tibet Academy of Agricultural and Animal Husbandry Science, Lhasa 850009, China
| |
Collapse
|
10
|
Fang Z, Wang G, Huang R, Liu C, Yushanjiang F, Mao T, Li J. Astilbin protects from sepsis-induced cardiac injury through the NRF2/HO-1 and TLR4/NF-κB pathway. Phytother Res 2024; 38:1044-1058. [PMID: 38153125 DOI: 10.1002/ptr.8093] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Cardiac dysfunction and arrhythmia are severe complications of sepsis-induced cardiomyopathy and are associated with an increased risk of morbidity and mortality. Currently, the precise mechanism for sepsis-induced myocardial damage remains unclear. Astilbin, a flavonoid, is reported to have anti-inflammatory, antioxidative, and antiapoptotic properties. However, the effects of astilbin on sepsis-induced cardiomyopathy have not been studied so far. This study aims to investigate the effect of astilbin in sepsis-induced myocardial injury and elucidate the underlying mechanism. In vivo and in vitro sepsis models were created using lipopolysaccharide (LPS) as an inducer in H9C2 cardiomyocytes and C57BL/6 mice, respectively. Our results demonstrated that astilbin reduced myocardial injury and improved cardiac function. Moreover, astilbin prolonged the QT and corrected QT intervals, attenuated myocardial electrical remodeling, and promoted gap junction protein (Cx43) and ion channels expression, thereby reducing the susceptibility of ventricular fibrillation. In addition, astilbin alleviated LPS-induced inflammation, oxidative stress, and apoptosis. Astilbin suppressed the toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) pathway in vivo and in vitro models. Astilbin remarkedly upregulated the nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HO-1) expression. The in vitro treatment with an NRF2 inhibitor reversed the inhibition of the TLR4/NF-κB pathway and antioxidant properties of astilbin. Astilbin attenuated LPS-induced myocardial injury, cardiac dysfunction, susceptibility to VF, inflammation, oxidative stress, and apoptosis by activating the NRF2/HO-1 pathway and inhibiting TLR4/ NF-κB pathway. These results suggest that astilbin could be an effective and promising therapeutics target for the treatment of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Zhao Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Guangji Wang
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Huang
- Cardiovascular Disease Center, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
- Hubei Provincial Key Lab of Selenium Resources and Bioapplications, Enshi, China
| | - Chengyin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Feierkaiti Yushanjiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tuohua Mao
- Department of Endocrinology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
11
|
Yu N, Tian W, Liu C, Zhang P, Zhao Y, Nan C, Jin Q, Li X, Liu Y. miR-122-5p Promotes Peripheral and Central Nervous System Inflammation in a Mouse Model of Intracerebral Hemorrhage via Disruption of the MLLT1/PI3K/AKT Signaling. Neurochem Res 2023; 48:3665-3682. [PMID: 37594575 DOI: 10.1007/s11064-023-04014-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023]
Abstract
Intracerebral hemorrhage (ICH) is a recognized central nervous system inflammation complication. Several microRNAs (miRNAs or miRs) have been documented to be vital modulators in peripheral and central nervous system inflammation. Based on whole transcriptome sequencing and bioinformatics analysis, this study aims to reveal the possible molecular mechanisms by which miR-122-5p affects the inflammatory response in the peripheral and central nervous system in a mouse model of ICH. Differentially expressed ICH-related miRNAs were screened. Adeno-associated viral vectors were used to knock down miR-122-5p in mice to evaluate the effect of miR-122-5p on peripheral and central nervous system inflammation. The downstream target gene of miR-122-5p was analyzed. Neurons were isolated from mice and treated with hemin to construct an in vitro model of ICH, followed by transduction with miR-122-5p mimic or combined with oe-MLLT1. The neurons were then co-cultured with microglia BV2 to assess their activation. It was found that miR-122-5p was highly expressed in ICH, and MLLT1 was lowly expressed. In vivo experiments showed that miR-122-5p knockdown decreased neurological deficits, BBB permeability, and inflammation in the peripheral and central nervous system in ICH mice. It involved its binding to MLLT1 and downregulation of the activity of the PI3K/AKT pathway. In vitro data exhibited that miR-122-5p stimulated the generation of inflammatory factors and microglia activation by targeting MLLT1 and inhibiting the PI3K/AKT pathway. Collectively, our work reveals a novel miR-122-5p/MLLT1-mediated regulatory network in ICH that may be a viable target for neuroinflammation alleviation.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Wenbin Tian
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Chao Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Pei Zhang
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Yinlong Zhao
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Chengrui Nan
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China
| | - Qianxu Jin
- Department of Neurosurgery, Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Xiaopeng Li
- Department of Neurosurgery, The First Hospital of Handan City, Handan, 056000, P.R. China
| | - Ya Liu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, Hebei Province, 050000, P.R. China.
| |
Collapse
|
12
|
Wang J, Ma X, Si X, Han W. Sweroside functionalized with Mesenchymal Stem cells derived exosomes attenuates sepsis-induced myocardial injury by modulating oxidative stress and apoptosis in rats. J Biomater Appl 2023; 38:381-391. [PMID: 37563958 DOI: 10.1177/08853282231194317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Sepsis is a life-threatening problem by organ dysfunction influenced by negative inflammatory responses and stimulated oxidative stress, which most of sepsis patients about 40-60% are accompanied with myocardial injury. Recently, stem cells derived exosomes could effectively apply in the numerous diseases by combined with natural therapeutic agents. In the present investigation, Sweroside functionalized with exosomes to control inflammatory responses by sepsis and significantly proved the function of depreciated myocardial injury-induced by LPS. The sweroside could have effectively delivered to cardiomyocytes cells via exosome carriers. The induced-SMI rats exhibited severe myocardial injury and apoptosis by in vivo experiments and treatment of sweroside-functionalized exosomes (SWO/EX) reassured the phenotypes. Importantly, SWO/EX significantly downregulated the ROS generation in the SMI rat models. The SOD and GSH activity were also suppressed in SMI rat models, and treated models with SWO/EXO could have effective liberating activity in the Rats. Meanwhile, SWO/EXO treated LPS-induced cardiomyocytes displayed that significant reduction of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) levels and also increasing cell survival and prevented apoptosis. Thus, we demonstrate that MS-cells derived exosome with sweroside could have effectively impede sepsis-induced myocardial injury. SWO/EX formulations might be applied as a potent therapeutic agent for SMI therapy.
Collapse
Affiliation(s)
- Jianghai Wang
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Xiaochen Ma
- Department of Emergency, Dongying People's Hospital, Dongying, China
| | - Xuepeng Si
- Department of Obstetrics, Dongying People's Hospital, Dongying, China
| | - Wang Han
- Department of Emergency, Dongying People's Hospital, Dongying, China
| |
Collapse
|
13
|
Zhang J, Wang M, Hu X, Li N, Loh P, Gong Y, Chen Y, Wang L, Lin X, Xu Z, Liu Y, Guo Y, Chen Z, Chen B. Electroacupuncture-driven endogenous circulating serum exosomes as a potential therapeutic strategy for sepsis. Chin Med 2023; 18:106. [PMID: 37635258 PMCID: PMC10463748 DOI: 10.1186/s13020-023-00816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Sepsis poses a serious threat to human life and health, with limited options for current clinical treatments. Acupuncture plays an active role in treating sepsis. However, previous studies have focused on the neuromodulatory effect of acupuncture, neglecting its network modulatory effect. Exosomes, as a new way of intercellular communication, may play an important role in transmitting acupuncture information. This paper explores the possibility of electroacupuncture-driven endogenous circulating serum exosomes and their carried miRNAs as a potential treatment for sepsis. METHODS The sepsis mouse model was established by intraperitoneal injection of lipopolysaccharide (LPS) (12 mg/kg, 24 mg/kg), and EA (continuous wave, 10 Hz, intensity 5) or intraperitoneal injection of Acupuncture Exosomes (Acu-exo) were performed before the model establishment. The therapeutic effect was evaluated by survival rate, ELISA, H&E staining and lung wet/dry weight ration (W/D). In vivo imaging of small animals was used to observe the accumulation of Acu-exo in various organs of sepsis mice. LPS was used to induce macrophages in cell experiments, and the effect of Acu-exo on macrophage inflammatory cytokines was observed. In addition, The miRNA sequencing method was further used to detect the serum exosomes of normal and EA-treated mice, and combined with network biology analysis methods to screen possible key targets. RESULTS EA and Acu-exo reduced the W/D and lung tissue damage in sepsis mice, down-regulated the expression of serum inflammatory cytokines TNF-α and IL-6, and increased the survival rate of sepsis mice. In vivo imaging of small animals found that Acu-exo were accumulated in the lungs of sepsis mice. Cell experiments proved that Acu-exo down-regulated the expression of inflammatory cytokines TNF-α, IL-6 and IL-1β to alleviate the inflammatory response induced by LPS in macrophages. MiRNA sequencing revealed 53 differentially expressed miRNAs, and network biology analysis revealed the key targets of Acu-exo in sepsis treatment. CONCLUSION Electroacupuncture-driven endogenous circulating serum exosomes and their carried miRNAs may be a potential treatment for sepsis.
Collapse
Affiliation(s)
- Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Meijuan Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Ningcen Li
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - PeiYong Loh
- School of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yong Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Lifen Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xiaowei Lin
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
- Tianjin Binhai New Area Hospital of Traditional Chinese Medicine, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300451, People's Republic of China.
| |
Collapse
|
14
|
Zhang J, Fu L, Zhang J, Zhou B, Tang Y, Zhang Z, Gu T. Inhibition of MicroRNA-122-5p Relieves Myocardial Ischemia-Reperfusion Injury via SOCS1. Hamostaseologie 2023; 43:271-280. [PMID: 36882114 DOI: 10.1055/a-2013-0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
OBJECTIVE Evidence has shown that microRNA (miR)-122-5p is a diagnostic biomarker of acute myocardial infarction. Here, we aimed to uncover the functions of miR-122-5p in the pathological process of myocardial ischemia-reperfusion injury (MI/RI). METHODS An MI/RI model was established by left anterior descending coronary artery ligation in mice. The levels of miR-122-5p, suppressor of cytokine signaling-1 (SOCS1), phosphorylation of Janus kinase 2 (p-JAK2), and signal transducers and activators of transcription (p-STAT3) in the myocardial tissues of mice were measured. Downregulated miR-122-5p or upregulated SOCS1 recombinant adenovirus vectors were injected into mice before MI/RI modeling. The cardiac function, inflammatory response, myocardial infarction area, pathological damage, and cardiomyocyte apoptosis in the myocardial tissues of mice were evaluated. Cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) injury and cardiomyocyte biological function was tested upon transfection of miR-122-5p inhibitor. The target relation between miR-122-5p and SOCS1 was evaluated. RESULTS miR-122-5p expression and p-JAK2 and p-STAT3 expression were high, and SOCS1 expression was low in the myocardial tissues of MI/RI mice. Decreasing miR-122-5p or increasing SOCS1 expression inactivated the JAK2/STAT3 pathway to alleviate MI/RI by improving cardiac function and reducing inflammatory reaction, myocardial infarction area, pathological damage, and cardiomyocyte apoptosis in mice. Silencing of SOCS1 reversed depleted miR-122-5p-induced cardioprotection for MI/RI mice. In vitro experiments revealed that the downregulation of miR-122-5p induced proliferative, migratory, and invasive capabilities of H/R cardiomyocytes while inhibiting apoptosis. Mechanically, SOCS1 was a target gene of miR-122-5p. CONCLUSION Our study summarizes that inhibition of miR-122-5p induces SOCS1 expression, thereby relieving MI/RI in mice.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Li Fu
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Jing Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Bo Zhou
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Yanrong Tang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Zhenzhen Zhang
- Department of Cardiology, Chengdu First People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Tongqing Gu
- School of Foreign Languages, Chengdu University of Information Technology, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
15
|
Joshi S, Kundu S, Priya VV, Kulhari U, Mugale MN, Sahu BD. Anti-inflammatory activity of carvacrol protects the heart from lipopolysaccharide-induced cardiac dysfunction by inhibiting pyroptosis via NLRP3/Caspase1/Gasdermin D signaling axis. Life Sci 2023; 324:121743. [PMID: 37120013 DOI: 10.1016/j.lfs.2023.121743] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Abstract
AIMS Lipopolysaccharide (LPS) is a well-known agent to induce septic conditions. Sepsis-induced cardiomyopathy has an overwhelming death rate. Carvacrol (CVL), a monoterpene phenol, has anti-inflammatory and antioxidant properties. The research aimed to investigate the effect of CVL on LPS-induced dysfunction in the heart. In this study, we evaluated the effect of CVL in LPS-stimulated H9c2 cardiomyoblast cells and Balb/c mice. MAIN METHODS LPS was used to induce septic conditions in H9c2 cardiomyoblast cells in vitro and in Balb/C mice. A survival study was conducted to assess the survival rate of mice after LPS and/or CVL treatment. KEY FINDINGS In vitro studies indicated that CVL inhibits reactive oxygen species (ROS) generation and abates pyroptosis mediated by NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in H9c2 cells. In mice, CVL intervention improved the survival rate in septic conditions. The CVL administration markedly improved the echocardiographic parameters and alleviated the LPS-induced reduction in the ejection fraction (%) and fraction shortening (%). The CVL intervention restored the myocardial antioxidants and histopathological alterations and decreased the pro-inflammatory cytokine contents in the heart. Further findings disclosed that CVL reduced the protein levels of NLRP3, apoptosis-associated speck-like protein (ASC), caspase 1, interleukin (IL)-18, IL-1β, and the pyroptosis-indicative protein, gasdermin-D (GSDMD) in the heart. The autophagy-indicative proteins, beclin 1, and p62, in the heart were also restored in the CVL-treated group. SIGNIFICANCE Altogether, our findings demonstrated that CVL has a beneficial effect and can be a potential molecule against sepsis-induced myocardial dysfunction.
Collapse
Affiliation(s)
- Shubhang Joshi
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Sourav Kundu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Vikram Vamsi Priya
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Uttam Kulhari
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India
| | - Madhav Nilakanth Mugale
- Toxicology & Experimental Medicine, CSIR- Central Drug Research Institute (CDRI), Lucknow 226 031, India
| | - Bidya Dhar Sahu
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, 781101, Assam, India.
| |
Collapse
|
16
|
Wu D, Yuan R, Zhang L, Sun M. USP13 reduces septic mediated cardiomyocyte oxidative stress and inflammation by inducing Nrf2. Allergol Immunopathol (Madr) 2023; 51:160-167. [PMID: 36916102 DOI: 10.15586/aei.v51i2.813] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 01/03/2025]
Abstract
BACKGROUND Sepsis is a common cardiovascular complication that can cause heart damage. The regulatory role of ubiquitin-specific peptidase 13 (USP13) on erythroid 2-related factor 2 (Nrf2) has been reported, but its regulatory role in septic cardiomyopathy remains unclear. METHODS The Sprague Dawley (SD) rat model of septic myocardial injury was constructed by lipopolysaccharides (LPS). The serum lactate dehydrogenase (LDH) and creatine kinase (CK) levels were detected, the mRNA and protein expression levels of Nrf2 and USP13 in tissues were detected by real-time quantitative reverse transcription PCR (qRT-PCR) and western blot (WB), and the expression of USP13 at the treatment time of 3 h, 6 h, and 12 h was also detected. The cell viability and USP13, Nrf-2 and heme oxygenase-1 (HO-1) expression levels of H9C2-treated cells by LPS and the oxidative stress level and inflammatory response of H9C2 cells were detected by enzyme-linked immunosorbent assay (ELISA) and WB. RESULTS The results showed that USP13 was downregulated in septic myocardial injury tissues, and the Nrf2 level was increased in vitro after the cells were treated with LPS. Overexpression of USP13 further induced Nrf2 to reduce apoptosis, oxidative stress, and expression of inflammatory factors. CONCLUSION In conclusion, this study demonstrated that USP13 was downregulated in septic myocardial injury tissues, and USP13 overexpression increased Nrf2 levels and reduced apoptosis. Further studies showed that USP13 reduced LPS-induced oxidative stress and inflammation by inducing Nrf2.
Collapse
Affiliation(s)
- Danyang Wu
- Department of Critical Care Medicine, Deyang People's Hospital, Deyang, China
| | - Rong Yuan
- Department of Critical Care Medicine, Deyang People's Hospital, Deyang, China
| | - Lian Zhang
- Department of Critical Care Medicine, Deyang People's Hospital, Deyang, China
| | - Meng Sun
- Department of Gastrointestinal Surgery, Suining Central Hospital, Suining, China;
| |
Collapse
|
17
|
Wang S, Ma J, Qiu H, Liu S, Zhang S, Liu H, Zhang P, Ge RL, Li G, Cui S. Plasma exosomal microRNA expression profiles in patients with high-altitude polycythemia. Blood Cells Mol Dis 2023; 98:102707. [DOI: 10.1016/j.bcmd.2022.102707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
|
18
|
USP13 reduces septic mediated cardiomyocyte oxidative stress and inflammation by inducing Nrf2. Allergol Immunopathol (Madr) 2023; 51:160-167. [PMID: 36916102 DOI: 10.15586/aei.v51i1.813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/12/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Sepsis is a common cardiovascular complication that can cause heart damage. The regulatory role of ubiquitin-specific peptidase 13 (USP13) on erythroid 2-related factor 2 (Nrf2) has been reported, but its regulatory role in septic cardiomyopathy remains unclear. METHODS The Sprague Dawley (SD) rat model of septic myocardial injury was constructed by lipopolysaccharides (LPS). The serum lactate dehydrogenase (LDH) and creatine kinase (CK) levels were detected, the mRNA and protein expression levels of Nrf2 and USP13 in tissues were detected by real-time quantitative reverse transcription PCR (qRT-PCR) and western blot (WB), and the expression of USP13 at the treatment time of 3 h, 6 h, and 12 h was also detected. The cell viability and USP13, Nrf-2 and heme oxygenase-1 (HO-1) expression levels of H9C2-treated cells by LPS and the oxidative stress level and inflammatory response of H9C2 cells were detected by enzyme-linked immunosorbent assay (ELISA) and WB. RESULTS The results showed that USP13 was downregulated in septic myocardial injury tissues, and the Nrf2 level was increased in vitro after the cells were treated with LPS. Overexpression of USP13 further induced Nrf2 to reduce apoptosis, oxidative stress, and expression of inflammatory factors. CONCLUSION In conclusion, this study demonstrated that USP13 was downregulated in septic myocardial injury tissues, and USP13 overexpression increased Nrf2 levels and reduced apoptosis. Further studies showed that USP13 reduced LPS-induced oxidative stress and inflammation by inducing Nrf2.
Collapse
|
19
|
Lu R, Yang L, Jia S, Lin M, Zhang Y, Xu X, Feng J, Nie G. Fatty hepatocytes-derived exosomal miR-122 reduces immune function and antioxidant defence in Ctenopharyngodon idella kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2022; 130:186-193. [PMID: 36007833 DOI: 10.1016/j.fsi.2022.08.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Exosomes are important for intercellular "cross talk", but the role of exosomes in communication between hepatocytes and C. idella kidney (CIK) cells remains unknown. In this study, we detected the changes in factors related to immune and oxidative stress to investigate the molecular mechanism by which fatty hepatocyte-derived exosomes (OA-Exos) reduced immunity and induced oxidative stress in CIK cells. After incubation of CIK cells by OA-Exos for 24 h, tumor necrosis factor-α (TNF-α), nuclear factor-κB (NF-κB) and interleukin-1β (IL-1β) were significantly upregulated in the OA-Exos group (P < 0.05), and Mn superoxide dismutase (Mn-SOD) and heme oxygenase-1 (HO-1) were significantly downregulated (P < 0.05). Surprisingly, miR-122 expression was also significantly elevated after OA-Exos incubation. We further identified the expression of miR-122 and found that it was notably increased in OA-Exos compared to hepatocyte-derived exosomes (Exos). Then we transfected CIK cells with miR-122 mimic, consistently, the expression of inflammatory cytokines was also significantly elevated (P < 0.05), and the expression of glutathione peroxidase (GPx), HO-1, and Mn-SOD were dramatically decreased (P < 0.05). Furthermore, HO-1 was improved to be a direct target of miR-122, and transfection with HO-1 siRNA indicated that changes in inflammatory cytokines and genes related to oxidative stress were consistent with the above results of CIK cells incubated with OA-Exos and miR-122 mimic. We concluded that OA-Exos may, through the miR-122/HO-1 pathway, reduce immune function and antioxidant defence in CIK cells.
Collapse
Affiliation(s)
- Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Lulu Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Shenzong Jia
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengjun Lin
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Yuru Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Xinxin Xu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Junchang Feng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
20
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
21
|
Jiang Y, Shen X, Dong C, Zhi F, Gao Y, Shi C, Chao Y, Xu J, Shang D, Xu J, Yang B, Li X, Bai Y. The whole transcriptome analysis and the circRNA-lncRNA network construction in arsenic trioxide-treated mice myocardium. Biomed Pharmacother 2022; 151:113183. [PMID: 35676786 DOI: 10.1016/j.biopha.2022.113183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND/AIMS Arsenic trioxide (ATO) is an effective anti-cancer drug. Nonetheless, it possesses cardiotoxic effects which limit its clinical application. The present study aims to elucidate the molecular basis of ATO-induced cardiotoxicity through using whole transcriptome analysis. METHODS The whole transcriptome in ATO-treated mice myocardium was analyzed using RNA sequencing technique. These results were confirmed by real-time PCR. The lncRNA-mRNA and circRNA-mRNA co-expression networks were constructed. Finally, a circRNA-lncRNA co-regulated competing endogenous RNA (ceRNA) network was constructed. GO and KEGG pathway analyses were performed. The expression levels of Txnip and Spp1 in ATO-treated neonatal mouse cardiomyocytes were validated by real-time PCR. RESULTS A total of 113 mRNAs, 159 lncRNAs, 35 miRNAs, and 94 circRNAs were differentially expressed in ATO-treated mice myocardium. A lncRNA-circRNA co-regulation network was constructed. Function annotation revealed that aberrantly expressed genes may be enriched in the 'Wnt signaling pathway', 'Hippo signaling pathway', 'Notch signaling pathway', etc. Finally, the expression levels of Txnip and Spp1 were validated in ATO-treated cardiomyocytes, which was in accordance with the RNA-sequencing results. CONCLUSION ATO altered coding and noncoding RNA profiles in myocardium of mice. The ATO-related lncRNA-circRNA co-regulation network was constructed. Genes in the co-regulation network are likely to play important roles in the cardiotoxicity of ATO. This study provides new insights into the prevention and treatment of ATO-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China; College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Xiuyun Shen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Fengnan Zhi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Yang Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Chunpeng Shi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Yuqiu Chao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Jincheng Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.
| | - Desi Shang
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Juan Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine, Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.
| |
Collapse
|
22
|
Zhao H, Wang Y, Zhu X. Chrysophanol exerts a protective effect against sepsis-induced acute myocardial injury through modulating the microRNA-27b-3p/Peroxisomal proliferating-activated receptor gamma axis. Bioengineered 2022; 13:12673-12690. [PMID: 35599576 PMCID: PMC9275920 DOI: 10.1080/21655979.2022.2063560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Sepsis, a leading contributor to the death of inpatients, results in severe organ dysfunction as complications. The heart is one of the major organs attacked by sepsis, and the effective control of the inflammatory cascade reaction in sepsis is of great significance in alleviating sepsis-associated acute myocardial injury (S-AMI). Chrysophanol, a natural anthraquinone, has been discovered to carry anti-inflammatory effects. The aim of this paper is to probe the impact of Chrysophanol on S-AMI. An S-AMI model was engineered in rats via CLP. Pathological alterations in the myocardial tissues of rats were monitored. qRT-PCR, ELISA, and western blot measured the profiles of miR-27b-3p, Peroxisomal proliferating-activated receptor gamma (PPARG), inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8), and inflammatory response proteins (NF-κB-p65, MAPK-p38, JNK1/2). Besides, miR-27b-3p mimics were transfected into cardiomyocytes, and the proliferation and apoptosis of cardiomyocytes were examined through MTT and flow cytometry. As evidenced by the experimental outcomes, chrysophanol suppressed sepsis-mediated acute myocardial injury and LPS-mediated apoptosis in myocardial cells and lessened the release of pro-inflammatory cytokines and inflammatory response proteins. Moreover, chrysophanol cramped miR-27b-3p expression and heightened PPARG expression. miR-27b-3p targeted PPARG and restrained its expression. On the other hand, the PPARG agonist (RGZ) partially eliminated the apoptosis and pro-inflammatory responses of myocardial cells elicited by LPS. Therefore, this study revealed that Chrysophanol guarded against sepsis-mediated acute myocardial injury through dampening inflammation and apoptosis via the miR-27b-3p-PPARG axis, adding to the references for treating sepsis-AMI.
Collapse
Affiliation(s)
- Haiyan Zhao
- Dry Treatment Department of Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Xishan, China
| | - Yuping Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, Xichang, China
| | - Xiaolin Zhu
- Dry Treatment Intensive Care Unit, The First Affiliated Hospital of Kunming Medical University, Kunming, Xichang, China
| |
Collapse
|
23
|
Xu Y, Ge Y, Chen X, Zhang Y, Chen H, Liu D, Lu Y, Liu Y, Tu W. Hypoxic Cell-Derived Extracellular Vesicles Aggravate Rectal Injury Following Radiotherapy via MiR-122-5p. Front Cell Dev Biol 2022; 10:892575. [PMID: 35557942 PMCID: PMC9086396 DOI: 10.3389/fcell.2022.892575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Radiation-induced rectal injury is a common side effect of radiotherapy. Hypoxia often occurs after radiotherapy. This study aimed to explore the bystander effect of hypoxia on radiation-induced rectal injury. In vivo, apoptosis increased nearby the highly hypoxic area in the rectal tissues in the mouse models of radiation-induced rectal injury, indicating the potential involvement of hypoxia. In vitro, flow cytometry and Western blotting showed that both hypoxia and hypoxic human intestinal epithelial crypt (HIEC) cell supernatant promoted apoptosis in normoxic HIEC cells. The pro-apoptotic effect of extracellular vesicles (EVs) derived from hypoxic HIEC cell to normoxic HIEC cells was then determined. MiR-122-5p was chosen for further studies through a microRNA (miRNA) microarray assay and apoptosis was alleviated in cells receiving miR-122-5p inhibiting hypoxic EVs. Together, our study demonstrated that the miR-122-5p containing-EVs derived from hypoxic HIEC cells promoted apoptosis in normoxic HIEC cells. Hypoxic EV-derived miR-122-5p plays a critical pathologic role in radiation-induced rectal injury and may be a potential therapeutic target.
Collapse
Affiliation(s)
- Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yulong Ge
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuming Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanliang Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongli Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Lu
- Department of Radiotherapy, Huangpu Branch of the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yue Lu, ; Yong Liu, ; Wenzhi Tu,
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yue Lu, ; Yong Liu, ; Wenzhi Tu,
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yue Lu, ; Yong Liu, ; Wenzhi Tu,
| |
Collapse
|
24
|
Chen H, Qiao H, Zhao Q, Wei F. microRNA-135a-5p regulates NOD-like receptor family pyrin domain containing 3 inflammasome-mediated hypertensive cardiac inflammation and fibrosis via thioredoxin-interacting protein. Bioengineered 2022; 13:4658-4673. [PMID: 35148667 PMCID: PMC8973706 DOI: 10.1080/21655979.2021.2024956] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Hypertension is a severe public health problem that induces cardiac injury with alterations of gene expressions. The current study sought to evaluate the mechanism of microRNA(miR)-135a-5p in NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome-mediation of cardiac inflammation and hypertensive cardiac fibrosis. Firstly, hypertensive mouse models were established using angiotensin II (Ang II), followed by miR-135a-5p agomir treatment. Subsequently, mouse blood pressure and basic cardiac function indexes, histopathological changes, and cardiac fibrosis were all determined, in addition to detection of factors related to inflammation and fibrosis. Additionally, mice cardiac fibroblasts (CFs) were isolated and treated with Ang II. The binding relationship of miR-135a-5p and thioredoxin-interacting protein (TXNIP) was predicted and testified, while the interaction of TXNIP and NLRP3 was detected by means of a co-immunoprecipitation assay. It was found that miR-135a-5p was poorly-expressed in Ang II-treated mice and further exerted cardioprotective effects against hypertensive heart diseases. Moreover, over-expression of miR-135a-5p resulted in inhibition of inflammatory infiltration and almost eliminated cardiac fibrosis, as evidenced by decreased Collagen (COL)-I, COL-III, a-smooth muscle actin, NLRP3, tumor necrosis factor-α, and interleukin-6. Mechanically, miR-135a-5p inhibited TXNIP expression to block the binding of TXNIP and NLRP3. On the other hand, TXNIP up-regulation reversed the protective role of miR-135a-5p over-expression in CFs. Collectively, our findings indicated that miR-135a-5p over-expression inhibited TXNIP expression to block the binding of TXNIP and NLRP3, thereby alleviating hypertensive cardiac inflammation and fibrosis.
Collapse
Affiliation(s)
- Hao Chen
- Department of Cardiovascular Center, The 8th Medical Center of General Hospital of PLA, Beijing, China
| | - Huilian Qiao
- Department of Pathology, Air Force Medical Center PLA, Beijing, China
| | - Qiang Zhao
- Department of Cardiovascular Center, The 8th Medical Center of General Hospital of PLA, Beijing, China
| | - Fuling Wei
- Department of Cardiovascular Center, The 8th Medical Center of General Hospital of PLA, Beijing, China
| |
Collapse
|
25
|
Yuan L, Wang D, Wu C. Protective effect of liquiritin on coronary heart disease through regulating the proliferation of human vascular smooth muscle cells via upregulation of sirtuin1. Bioengineered 2022; 13:2840-2850. [PMID: 35038972 PMCID: PMC8974169 DOI: 10.1080/21655979.2021.2024687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study aimed to explore whether liquiritin affects the development of coronary heart disease by regulating the proliferation and migration of human vascular smooth muscle cells (hVSMCs). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) release detection were performed to measure the toxic effects of liquiritin on hVSMCs. An in vitro atherosclerosis model in hVSMCs was established using oxidized low-density lipoprotein (ox-LDL), and cell proliferation and apoptosis were detected using an MTT assay and flow cytometry analysis. Western blotting and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) were used to detect protein and mRNA expressions, respectively. Caspase3 activity and cell migration were measured using an activity detection kit and Transwell assay, respectively. The results indicated that liquiritin at doses <160 μM had no significant effect on cell viability and LDH release in hVSMCs. Ox-LDL significantly induced cell proliferation and migration, and inhibited hVSMCs apoptosis. Liquiritin significantly inhibited cell proliferation and migration, and enhanced cell apoptosis in ox-LDL induced hVSMCs. Sirtuin1 (SIRT1) was lowly expressed in atherosclerotic plaque tissues in coronary heart disease patients and in ox-LDL-induced hVSMCs. Liquiritin improved SIRT1 expression in ox-LDL-induced hVSMCs, whereas the improvement was inhibited by Selisistat (EX 527, an effective SIRT1 inhibitor) treatment. EX 527 reversed the effects of liquiritin on cell proliferation, migration, and apoptosis in ox-LDL-induced hVSMCs In conclusion, liquiritin plays a protective role in coronary heart disease by regulating the proliferation and migration of hVSMCs by increasing SIRT1 expression.
Collapse
Affiliation(s)
- Liang Yuan
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dajie Wang
- Department of Cardiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
| | - Chunyang Wu
- Department of Cardiology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People's Hospital), Yancheng, China
| |
Collapse
|
26
|
Ni W, Li Z, Ai K. lncRNA ZFPM2-AS1 promotes retinoblastoma progression by targeting microRNA miR-511-3p/paired box protein 6 (PAX6) axis. Bioengineered 2022; 13:1637-1649. [PMID: 34989314 PMCID: PMC8805943 DOI: 10.1080/21655979.2021.2021346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play crucial roles in retinoblastoma progression. In this study, we aimed to investigate the mechanism of lncRNA ZFPM2-AS1 (ZFPM2-AS1) in retinoblastoma progression. Quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting assays were performed to determine the expression of lncRNA, microRNA (miRNA), mRNA, and protein. The changes in cell proliferation, apoptosis, and cell migration were assessed by functional experiments. The interaction between ZFPM2-AS1, miR-511-3p, and paired box protein 6 (PAX6) was confirmed by a luciferase assay. Our study found that ZFPM2-AS1 and PAX6 were upregulated, whereas miR-511-3p was downregulated in retinoblastoma. ZFPM2-AS1 inhibition decreased the viability and migration of retinoblastoma cells. We also found that ZFPM2-AS1 targets miR-511-3p to upregulate PAX6 in Y79 and SO-RB50 cells. Moreover, we demonstrated that inhibiting miR-511-3p reversed the negative effects of silencing ZFPM2-AS1 and PAX6 on retinoblastoma cell viability and migration. In conclusion, retinoblastoma development is regulated by the ZFPM2-AS1/511-3p/PAX6 axis.
Collapse
Affiliation(s)
- Wenchang Ni
- Department of Pediatrics, Wuhan Third Hospital Guanggu District, Wuhan, Hubei, China
| | - Zhen Li
- Department of Pediatrics, Wuhan Third Hospital Guanggu District, Wuhan, Hubei, China
| | - Kui Ai
- Department of Pediatrics, Wuhan Third Hospital Guanggu District, Wuhan, Hubei, China
| |
Collapse
|
27
|
Kang J, Song Y, Zhang Z, Wang S, Lu Y, Liu X. Identification of Key microRNAs in Diabetes Mellitus Erectile Dysfunction Rats with Stem Cell Therapy by Bioinformatic Analysis of Deep Sequencing Data. World J Mens Health 2022; 40:663-677. [PMID: 35021304 PMCID: PMC9482859 DOI: 10.5534/wjmh.210147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/30/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Diabetes mellitus erectile dysfunction (DMED) is a common resulting complication of diabetes. Studies have shown mesenchymal stem cell (MSC)-based therapy was beneficial in alleviating erectile function of DMED rats. While the pathogenesis of DMED and the mechanism MSCs actions are unclear. MATERIALS AND METHODS We constructed a rat model of DMED with or without intracavernous injection of MSCs, and performed microRNA (miRNA) sequencing of corpora cavernosa tissues. RESULTS We identified three overlapping differentially expressed miRNAs (rno-miR-1298, rno-miR-122-5p, and rno-miR-6321) of the normal control group, DMED group, and DMED+MSCs group. We predicted 285 target genes of three miRNAs through RNAhybrid and miRanda database and constructed a miRNA-target gene network through Cytoscape. Next, we constructed protein-protein interaction networks through STRING database and identified the top 10 hub genes with highest connectivity scores. Five GO terms including cellular response to growth factor stimulus (GO:0071363), ossification (GO:0001503), response to steroid hormone (GO:0048545), angiogenesis (GO:0001525), positive regulation of apoptotic process (GO:0043065), and one Reactome pathway (Innate Immune System) were significantly enriched by 10 hub genes using the Metascape database. We selected the GSE2457 dataset to validate the expression of hub genes and found only the expression of B4galt1 was statistically different (p<0.001). B4galt1 was highly expressed in penile tissues of diabetic rats and would be negatively regulated by rno-miR-1298. CONCLUSIONS Three key miRNAs were identified in DMED rats with stem cell therapy and the miR-1298/B4GalT1 axis might exert function in stem cell therapy for ED.
Collapse
Affiliation(s)
- Jiaqi Kang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuxuan Song
- Department of Urology, Peking University People's Hospital, Beijing, China.,Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Zhexin Zhang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Lu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
28
|
Li Z, Gong C, Wei H. Long non-coding RNA H19 aggravates keloid progression by upregulating SMAD family member 5 expression via miR-196b-5p. Bioengineered 2022; 13:1447-1458. [PMID: 34974806 PMCID: PMC8805852 DOI: 10.1080/21655979.2021.2019868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence suggests that long non-coding RNAs (lncRNAs) participate in the formation and development of keloids, a benign tumor. In addition, lncRNA H19 has been shown to act on the biological processes of keloids. This study aimed to identify other important mechanisms of the effect of lncRNA H19 on keloid formation. The H19, miR-196b-5p, and SMAD family member 5 (SMAD5) expression levels were detected using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. Subcellular localization of lncRNA H19 was detected using a nuclear-cytoplasmic separation assay. Cell viability and proliferation were measured using counting kit-8 and colony formation assays. Bax and Bcl-2 levels were examined using Western blot analysis. The interaction between H19 and miR-196b-5p or SMAD5 was verified using a dual-luciferase reporter assay. H19 and SMAD5 expression was upregulated in keloid tissue and fibroblasts, whereas miR-196b-5p expression was downregulated. Knockdown of H19, overexpression of miR-196b-5p, or knockdown of SMAD5 inhibited the viability and proliferation of keloid fibroblasts and promoted apoptosis. Overexpression of H19 or SMAD5 and knockdown of miR-196b-5p promoted viability and proliferation and inhibited apoptosis. miR-196b-5p was identified as a H19 sponge, and SMAD5 was identified as a miR-196b-5p target. The combination of lncRNA H19 and miR-196b-5p regulates SMAD5 expression and promotes keloid formation, thus providing a new direction for keloid treatment.
Collapse
Affiliation(s)
- Zhichao Li
- Department of Hand and Foot Microsurgery, Hanyang Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Cheng Gong
- Department of Dermatological, Huazhong University of Science and Technology and Jiangbei Hospital, Wuhan, Hubei, China
| | - Huiming Wei
- Department of Medical and Beauty, Huazhong University of Science and Technology and Jiangbei Hospital, Wuhan, Hubei, China
| |
Collapse
|
29
|
Fan L, Cao X, Lei Y. MicroRNA miR-23b-3p promotes osteosarcoma by targeting ventricular zone expressed PH domain-containing 1 (VEPH1)/phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. Bioengineered 2021; 12:12568-12582. [PMID: 34903122 PMCID: PMC8810025 DOI: 10.1080/21655979.2021.2010383] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence suggests that dysregulated miRNA expression can lead to the tumorigenesis of osteosarcoma (OS). Nevertheless, the potential role of miR-23b-3p in OS is unclear and remains to be explored. Microarray analysis was performed to identify key genes involved in OS. Reverse transcription quantitative polymerase chain reaction and Western blotting were used to examine miR-23b-3p expression, ventricular zone expressed PH domain-containing 1 (VEPH1) transcript (as well as other transcripts as indicated), and phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway-related protein expression. A luciferase reporter gene assay was performed to confirm the regulatory relationship between VEPH1 mRNA and miR-23b-3p. Cell viability was evaluated using the Cell Counting Kit-8 assay, cell growth was assessed using the bromodeoxyuridine enzyme-linked immunosorbent assay, and cell migration was tested using a wound healing assay. We found significant upregulation of miR-23b-3p in OS, which prominently promoted the viability, proliferation, and migration of OS cells. Additionally, VEPH1 was found to be a target of miR-23b-3p and its expression was decreased in OS. Lastly, VEPH1 alleviated the promotion effect of miR-23b-3p on the malignancy phenotypes of OS cells via the PI3K/AKT signaling pathway. Thus, miR-23b-3p augmented the viability, proliferation, and migration of OS cells by directly targeting and downregulating VEPH1, which inhibited the activation of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Liang Fan
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Cao
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanrong Lei
- Department of Oncology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Lu X, Song X, Hao X, Liu X, Zhang X, Yuan N, Ma H, Zhang Z. miR-186-3p attenuates the tumorigenesis of cervical cancer via targeting insulin-like growth factor 1 to suppress PI3K-Akt signaling pathway. Bioengineered 2021; 12:7079-7092. [PMID: 34551673 PMCID: PMC8806770 DOI: 10.1080/21655979.2021.1977053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
miR-186-3p acts as a tumor suppressor in various cancers. This study aimed to explore the expression levels of miR-186-3p and its role in cervical cancer. We analyzed the effects of miR-186-3p and insulin-like growth factor 1 (IGF1) on the proliferation, invasion, and apoptosis of cervical cancer cells in vitro by regulating the PI3K/Akt signaling pathway. In cervical cancer tissues and cells, miR-186-3p was downregulated, and IGF1 was upregulated. In addition, miR-186-3p inhibited cell proliferation and invasion and enhanced apoptosis of cervical cancer cells. Moreover, our results showed that miR-186-3p inversely regulated the mRNA expression of IGF1 through direct contact. Knockdown of IGF1 reversed the results of miR-186-3p inhibitor in cervical cancer cells. In addition, the PI3K/Akt signaling pathway was activated by the miR-186-3p inhibitor, although partially arrested by IGF1 knockdown. The PI3K/Akt signaling pathway inhibitor suppressed miR-186-3p inhibitor-stimulated cell proliferation in cervical cancer. In conclusion, miR-186-3p inhibits tumorigenesis of cervical cancer by repressing IGF1, which inactivates the PI3K/Akt signaling pathway, implicating miR-186-3p as a potential new target for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xiurong Lu
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiao Song
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaohui Hao
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaoyu Liu
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Xianyu Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Na Yuan
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Huan Ma
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Zhilin Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
31
|
Zhan L, Yang J, Liu Y, Cheng Y, Liu H. MicroRNA miR-502-5p inhibits ovarian cancer genesis by downregulation of GINS complex subunit 2. Bioengineered 2021; 12:3336-3347. [PMID: 34288816 PMCID: PMC8806667 DOI: 10.1080/21655979.2021.1946347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Ovarian cancer (OC) is one of the most common malignancies with high incidence and mortality and the eighth most common cancer-associated mortality in women worldwide. Aberrant expression of the GINS complex subunit 2 (GINS2) gene and miR-502-5p has been associated with cancer progression. This study aims to investigate the specific molecular mechanism of the miR-502-5p-GINS2 axis in OC. GINS2 and miR-502-5p expression in OC tissues and cell lines was measured using RT-qPCR. Next, we investigated the interaction between miR-502-5p and GINS2 using a luciferase assay. The role of the miR-502-5p-GINS2 axis was detected by assessing cell proliferation, migration, and apoptosis levels, such as caspase-3 activity and caspase-3 protein expression, in the OC cell lines CaOV3 and SKOV3, respectively. MiR-502-5p expression was decreased, and GINS2 expression was dramatically elevated in OC tissues and cells. Upregulation of miR-502-5p expression repressed cellular proliferation and migration levels but increased the cellular apoptosis level. GINS2 overexpression enhanced the proliferation and migration levels but hampered OC cell apoptosis. Moreover, miR-502-5p inhibited GINS2 expression and suppressed OC tumorigenesis. miR-502-5p targeting GINS2 suppressed OC progression by inhibiting cell growth and promoting cell apoptosis. Hence, we provide a comprehensive understanding of OC involving both miR-502-5p and GINS2, which might be effective therapeutic targets for OC patients.
Collapse
Affiliation(s)
- Lili Zhan
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Jing Yang
- Dept of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Yang Liu
- Dept of Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Yanxiang Cheng
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| | - Hua Liu
- Dept of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R.C
| |
Collapse
|
32
|
Nong A, Li Q, Huang Z, Xu Y, He K, Jia Y, Cen Z, Liao L, Huang Y. MicroRNA miR-126 attenuates brain injury in septic rats via NF-κB signaling pathway. Bioengineered 2021; 12:2639-2648. [PMID: 34115555 PMCID: PMC8806573 DOI: 10.1080/21655979.2021.1937905] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to investigate the impact and mechanism of microRNA miR-126 on brain injury induced by blood-brain barrier (BBB) damage in septic rats. We used cecal ligation and perforation (CLP) to create a rat model of sepsis. The experimental rats were randomly divided into Control group, CLP group, CLP + miR-NC group, CLP + miR-126 group and CLP + miR-126 + NF-κB pathway agonist (PMA) group. MiR-126 expressed in the brain tissue of CLP rats was down-regulated by qRT-PCR. Upregulation of miR-126 in CLP rats could improve brain injury and BBB marker protein level, reduce brain water content, Evans blue extravasation, inflammation, and excessive oxidative stress. This could also result in an inhibition of NF-κB signaling pathway activity. In conclusion, miR-126 overexpression can prevent brain injury caused by BBB damage via the inhibition of NF-κB signaling pathway activity.
Collapse
Affiliation(s)
- Anna Nong
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Qingfeng Li
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Zhijing Huang
- Department of Pediatric Internal Medicine Ward 1, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Yunan Xu
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Kebin He
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Yuying Jia
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Zhenyi Cen
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Lianghua Liao
- Graduate School, Youjiang Medical University for Nationalities, Baise, Guangxi China
| | - Yueyan Huang
- Department of Radiology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi China
| |
Collapse
|