1
|
Jia X, Liu S, Sun C, Zhu M, Yuan Q, Wang M, Xu T, Wang Z, Chen Z, Huang M, Ji N, Zhang M. METTL16 controls airway inflammations in smoking-induced COPD via regulating glutamine metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117518. [PMID: 39667326 DOI: 10.1016/j.ecoenv.2024.117518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
The persistent airway inflammation is the main characteristic of chronic obstructive pulmonary disease (COPD), typically caused by an indoor environment pollution cigarette smoke (CS). METTL16 is an m6A methyltransferase that has been proven to be closely associated with the occurrence of various diseases. However, its exact role in smoking-induced COPD remains to be investigated. In this study, we found that the level of METTL16 was aberrantly decreased in lung tissues of COPD smokers. Similarly, murine model induced by CS and lung epithelial cell model induced by cigarette smoke extract (CSE) also confirmed this discovery. Moreover, in the Mettl16-deficient (Mettl16+/-) mice challenged with CS, airway inflammation was aggravated. To identify the potential target genes and regulatory pathways through METTL16, methylated RNA immunoprecipitation sequencing (meRIP-seq), RNA sequencing (RNA-seq) and metabolomic profiling were used. Knockdown of METTL16 significantly reduced the stability of glutamic-oxaloacetic transaminase 2 (GOT2) and downregulated its expression through m6A modification, while reprogramed glutamine metabolism in lung epithelial cells. Significant reduction in inflammation levels was observed in the 3-month COPD murine model fed a glutamine-supplemented diet. Mechanistically, METTL16 could regulate lung epithelial mitochondrial function by participating in the reprogramming of glutamine metabolism. Our study characterized the role of the METTL16/GOT2/glutamine axis in the occurrence and development of COPD, and emphasized the potential value of METTL16 and glutamine in the therapy of chronic airway inflammation in smoking-induced COPD.
Collapse
Affiliation(s)
- Xinyu Jia
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shan Liu
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Chunan Sun
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China
| | - Manni Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Xu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongqi Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Mingshun Zhang
- Jiangsu Province Engineering Research Center of Antibody Drug, NHC Key Laboratory of Antibody Technique, Department of Immunology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
Bao T, Zhu H, Ma M, Sun T, Hu J, Li J, Cao L, Cheng H, Tian Z. Implication of m6A Methylation Regulators in the Immune Microenvironment of Bronchopulmonary Dysplasia. Biochem Genet 2024; 62:5129-5143. [PMID: 38393623 DOI: 10.1007/s10528-024-10664-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/01/2024] [Indexed: 02/25/2024]
Abstract
N6-methyladenosine (m6A) regulates gene expression and governs many important biological processes. However, the function of m6A in the development of bronchopulmonary dysplasia (BPD) remains poorly characterized. Thus, the purpose of this investigation was to evaluate the effects of m6A RNA methylation regulators on the development of BPD. BPD-related transcriptome data were downloaded from the GEO database. Differentially expressed m6A methylation regulators between BPD and control group were identified. Consensus clustering was conducted for the classification of BPD and association between clusters and BPD phenotypes were explored. Analysis of differentially expressed genes (DEGs) and immune-related DEGs was performed. The GSEA, GO and KEGG analyses were used to interpret the functional enrichments. The composition of immune cell subtypes in BPD subsets was predicted by CIBERSORT analysis. Compared with the control group, expression of most m6A regulators showed significant alteration, especially for IGF2BP1/2/3. BPD was classified into 2 subsets, and cluster 1 was correlated with severe BPD. Furthermore, the results of functional enrichment analyses showed a disturbed immune-related signaling pathway. Based on CIBERSORT analysis, we found that the proportion of immune cell subsets changed between cluster 1 and cluster 2. Our study revealed the implication of m6A methylation regulators in the development of BPD, which might provide a novel insight for the diagnosis and treatment of BPD.
Collapse
Affiliation(s)
- Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Haiyan Zhu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Tingting Sun
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jingjing Hu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - JingYan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
3
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
4
|
Zhang P, Gao N, Li X, Zheng X, Kong D, Wu J. Role of m6A Methylation Regulators in the Diagnosis and Subtype Classification of COPD Based on the GEO Database. J Cell Mol Med 2024; 28:e70226. [PMID: 39580709 PMCID: PMC11585962 DOI: 10.1111/jcmm.70226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/30/2024] [Accepted: 11/09/2024] [Indexed: 11/26/2024] Open
Abstract
N6-methyladenosine (m6A) is a prevalent mRNA modifier, yet its role in chronic obstructive pulmonary disease (COPD) remains unexplored. We sourced expression levels of m6A methylation regulators from the GSE76925 dataset. These regulators' differential expression (DEMs) predicted COPD risk via random forest and support vector machine models. Additionally, a nomogram model using DEMs estimated COPD prevalence. We employed consistent cluster analysis of m6A methylation regulators to categorise COPD samples into distinct subtypes. Analyses of immune cell infiltration in these subtypes and differential gene expression (DEGs) across m6A methylation subtypes were conducted. A cell model validated several m6A regulators and their associated pathways. Fifteen m6A methylation regulators showed differential expression and were used in random forest and support vector machine models. Eleven were selected for a nomogram model, which decision curve analysis suggested could benefit patients. Consensus cluster analysis divided the COPD samples into two subtypes: Cluster A and Cluster B. Cluster B was associated with neutrophil and eosinophil-dominated immunity, while Cluster A was linked with monocyte-dominated immunity. Validation of some research findings was achieved through cell experiments. m6A methylation regulators appear instrumental in diagnosing and classifying subtypes of COPD.
Collapse
Affiliation(s)
- Pingan Zhang
- Respiratory Department, the Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| | - Na Gao
- Rehabilitation CollegeZhengzhou Health Vocational CollegeZhengzhouChina
| | - Xiaoning Li
- Respiratory Department, the Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| | - Xudong Zheng
- Respiratory Department, the Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| | - Deyu Kong
- Respiratory Department, the Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| | - Jianjun Wu
- Respiratory Department, the Third Affiliated HospitalBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
5
|
Wang L, Lv Z, Ning X, Yue Z, Wang P, Liu C, Jin S, Li X, Yin Q, Zhu Q, Chang J. The effects of compound probiotics on production performance, rumen fermentation and microbiota of Hu sheep. Front Vet Sci 2024; 11:1440432. [PMID: 39545259 PMCID: PMC11560882 DOI: 10.3389/fvets.2024.1440432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
Fungal probiotics have the potential as feed additives, but less has been explored in ruminant feed up to date. This study aimed to determine the effect of compound probiotics (CPs) with Aspergillus oryzae 1, Aspergillus oryzae 2 and Candida utilis on Hu sheep's growth performance, rumen fermentation and microbiota. A total of 120 male Hu sheep, aged 2 months and with the body weight of 16.95 ± 0.65 kg were divided into 4 groups. Each group consisted of 5 replicates, with 6 sheep per replicate. Group A was the control group fed with the basal diet. Group B, C and D was supplemented with the basal diet by adding 400, 800 and 1,200 grams per ton (g/t) CPs, respectively. The feeding trial lasted for 60 days after a 10-day adaptation period. The results showed that the average daily gain (ADG) of sheep in the CPs groups were significantly higher, the feed/gain were significantly lower than those in group A in the later stage and the overall period. The addition of CPs increased the economic benefit. The levels of CD4+ and the CD4+/CD8+ ratio in the CPs groups were higher than those in Group A. The levels of GSH, IgG, IL-2, IL-6, and IFN-γ in group C were significantly elevated compared with group A. Group B showed a significant increase in rumen NH3-N and cellulase activity. There was no difference in VFAs content between group A and group B, however, with the increasing addition of CPs, the butyric acid and isobutyric acid content tended to decrease. The rumen microbiota analysis indicated that the CPs addition increased the Firmicutes and Proteobacteria abundances, decreased the Bacteroidetes abundance. The correlation analysis showed that Prevotella was negatively correlated with ADG, and the addition of 400 CPs in group B reduced Prevotella's relative abundance, indicating CPs increased sheep growth by decreasing Prevotella abundance. The CPs addition reduced caspase-3, NF-κB and TNF-α expression in liver, jejunum and rumen tissues. In conclusion, the addition of CPs increased the sheep production performance, reduced inflammation, improved rumen and intestinal health. Considering the above points and economic benefits, the optimal addition of CPs as an additive for Hu sheep is 800 g/t.
Collapse
Affiliation(s)
- Lijun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhanqi Lv
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | | | - Zhiguang Yue
- Henan Anjin Biotechnology Co., Ltd., Xinxiang, China
| | - Ping Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chaoqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Sanjun Jin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Xinxin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qingqiang Yin
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Qun Zhu
- Henan Delin Biological Product Co., Ltd., Xinxiang, China
| | - Juan Chang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
6
|
Zhang D, Gou Z, Qu Y, Su X. Understanding how methyltransferase-like 3 functions in lung diseases: From pathogenesis to clinical application. Biomed Pharmacother 2024; 179:117421. [PMID: 39241568 DOI: 10.1016/j.biopha.2024.117421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
Lung diseases have complex pathogenesis and treatment challenges, showing an obvious increase in the rate of diagnosis and death every year. Therefore, elucidating the mechanism for their pathogenesis and treatment ineffective from novel views is essential and urgent. Methyltransferase-like 3 (METTL3) is a novel post-transcriptional regulator for gene expression that has been implicated in regulating lung diseases, including that observed in chronic conditions such as pulmonary fibrosis (PF), pulmonary arterial hypertension (PAH), and chronic obstructive pulmonary disease (COPD), as well as acute conditions such as pneumonia, severe acute respiratory syndrome coronavirus 2 infection, and sepsis-induced acute respiratory distress syndrome. Notably, a comprehensive summary and analysis of findings from these studies might help understand lung diseases from the novel view of METTL3-regulated mechanism, however, such a review is still lacking. Therefore, this review aims to bridge such shortage by summarising the roles of METTL3 in lung diseases, establishing their interrelationships, and elucidating the potential applications of METTL3 regarding diagnosis, treatment, and prognosis. The analysis collectively suggests METTL3 is contributable to the onset and progression of these lung diseases, thereby prospecting METTL3 as a valuable biomarker for their diagnosis, treatment, and prognosis. In conclusion, this review offers elucidation into the correlation between METTL3 and lung diseases in both research and clinical settings and highlights potential avenues for exploring the roles of METTL3 in the respiratory system.
Collapse
Affiliation(s)
- Deshuang Zhang
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Zhixian Gou
- Department of Pediatrics, School of Clinical Medicine & the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Yi Qu
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China
| | - Xiaojuan Su
- Department of Paediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China; NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
He J, Hao F, Song S, Zhang J, Zhou H, Zhang J, Li Y. METTL Family in Healthy and Disease. MOLECULAR BIOMEDICINE 2024; 5:33. [PMID: 39155349 PMCID: PMC11330956 DOI: 10.1186/s43556-024-00194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Transcription, RNA splicing, RNA translation, and post-translational protein modification are fundamental processes of gene expression. Epigenetic modifications, such as DNA methylation, RNA modifications, and protein modifications, play a crucial role in regulating gene expression. The methyltransferase-like protein (METTL) family, a constituent of the 7-β-strand (7BS) methyltransferase subfamily, is broadly distributed across the cell nucleus, cytoplasm, and mitochondria. Members of the METTL family, through their S-adenosyl methionine (SAM) binding domain, can transfer methyl groups to DNA, RNA, or proteins, thereby impacting processes such as DNA replication, transcription, and mRNA translation, to participate in the maintenance of normal function or promote disease development. This review primarily examines the involvement of the METTL family in normal cell differentiation, the maintenance of mitochondrial function, and its association with tumor formation, the nervous system, and cardiovascular diseases. Notably, the METTL family is intricately linked to cellular translation, particularly in its regulation of translation factors. Members represent important molecules in disease development processes and are associated with patient immunity and tolerance to radiotherapy and chemotherapy. Moreover, future research directions could include the development of drugs or antibodies targeting its structural domains, and utilizing nanomaterials to carry miRNA corresponding to METTL family mRNA. Additionally, the precise mechanisms underlying the interactions between the METTL family and cellular translation factors remain to be clarified.
Collapse
Affiliation(s)
- Jiejie He
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Fengchen Hao
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Shiqi Song
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Junli Zhang
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Hongyu Zhou
- Department of Radiology, Affiliated Hospital of Qinghai University, Xining, 810000, Qinghai Province, China
| | - Jun Zhang
- Department of Urology Surgery, Affiliated Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai Province, China.
| | - Yan Li
- Department of Gynecologic Oncology, Affiliated Hospital of Qinghai University & Affiliated Cancer Hospital of Qinghai University, No. 29, Tongren Road, West of the City, Xining, 810000, Qinghai Province, China.
| |
Collapse
|
8
|
Gao G, Hao YQ, Wang C, Gao P. Role and regulators of N 6-methyladenosine (m 6A) RNA methylation in inflammatory subtypes of asthma: a comprehensive review. Front Pharmacol 2024; 15:1360607. [PMID: 39108751 PMCID: PMC11300364 DOI: 10.3389/fphar.2024.1360607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/03/2024] [Indexed: 01/05/2025] Open
Abstract
Asthma is a common chronic inflammatory disease of the lungs and airway, yet its inflammatory subtypes and potential pathogenesis have not been completely elucidated and require further study. With advances in epigenetic development, methylation has emerged as a new direction for identifying and decoding the occurrence and subtype manifestations of asthma. N6-methyladenosine (m6A), an RNA methylation modification occurring in the N6-position of adenosine, is a prevalent epigenetic modification observed in eukaryotes. It exerts significant control over mRNA metabolism by regulating alternative splicing, stability, export, and translation. The dynamic process of m6A methylation plays a crucial role in the pathogenesis of asthma and is tightly regulated by three types of regulators: writers, readers, and erasers. This article provides a comprehensive review of the association between m6A regulators and the pathogenesis of inflammatory subtypes of asthma, such as involvement of inflammatory cells and related inflammatory response. Furthermore, the findings presented herein provide new insights and a solid foundation for further research on m6A mRNA methylation as biomarkers for the diagnosis and development of personalized treatment for different subtypes of asthma, particularly neutrophilic asthma and eosinophilic asthma.
Collapse
Affiliation(s)
- Ge Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Yu Qiu Hao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Chen Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Xie WM, Su W, Liu XY, Zhou J, Wang M, Wang Y, Wang W, Bai X, Li Z, Li T. FTO Deficiency Alleviates LPS-induced Acute Lung Injury by TXNIP/NLRP3-mediated Alveolar Epithelial Cell Pyroptosis. Am J Respir Cell Mol Biol 2024; 70:351-363. [PMID: 38271683 DOI: 10.1165/rcmb.2023-0251oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
N6-methyladenosine (m6A) plays a role in various diseases, but it has rarely been reported in acute lung injury (ALI). The FTO (fat mass and obesity-associated) protein can regulate mRNA metabolism by removing m6A residues. The aim of this study was to examine the role and mechanism of the m6A demethylase FTO in LPS-induced ALI. Lung epithelial FTO-knockout mice and FTO-knockdown/overexpression human alveolar epithelial (A549) cell lines were constructed to evaluate the effects of FTO on ALI. Bioinformatics analysis and a series of in vivo and in vitro assays were used to examine the mechanism of FTO regulation. Rescue assays were conducted to examine whether the impact of FTO on ALI depended on the TXNIP/NLRP3 pathway. In LPS-induced ALI, RNA m6A modification amounts were upregulated, and FTO expression was downregulated. In vivo, lung epithelial FTO knockout alleviated alveolar structure disorder, tissue edema, and pulmonary inflammation and improved the survival of ALI mice. In vitro, FTO knockdown reduced A549 cell damage and death induced by LPS, whereas FTO overexpression exacerbated cell damage and death. Mechanistically, bioinformatics analysis revealed that TXNIP was a downstream target of FTO. FTO deficiency mitigated pyroptosis in LPS-induced ALI via the TXNIP/NLRP3 pathway. Rescue assays confirmed that the impact of FTO on the TXNIP/NLRP3 pathway was significantly reversed by the TXNIP inhibitor SRI-37330. Deficiency of FTO alleviates LPS-induced ALI via TXNIP/NLRP3 pathway-mediated alveolar epithelial cell pyroptosis, which might be a novel therapeutic strategy for combating ALI.
Collapse
Affiliation(s)
- Wei-Ming Xie
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, and
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Wei Su
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, and
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xin-Yu Liu
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, and
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Junhao Zhou
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Min Wang
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Yuchang Wang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, and
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Wei Wang
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, and
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Xiangjun Bai
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, and
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Zhanfei Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, and
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| | - Tianyu Li
- Division of Trauma Surgery, Emergency Surgery & Surgical Critical, Tongji Trauma Center, and
- Department of Emergency and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; and
| |
Collapse
|
10
|
Qian W, Yang L, Li T, Li W, Zhou J, Xie S. RNA modifications in pulmonary diseases. MedComm (Beijing) 2024; 5:e546. [PMID: 38706740 PMCID: PMC11068158 DOI: 10.1002/mco2.546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/26/2024] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Threatening public health, pulmonary disease (PD) encompasses diverse lung injuries like chronic obstructive PD, pulmonary fibrosis, asthma, pulmonary infections due to pathogen invasion, and fatal lung cancer. The crucial involvement of RNA epigenetic modifications in PD pathogenesis is underscored by robust evidence. These modifications not only shape cell fates but also finely modulate the expression of genes linked to disease progression, suggesting their utility as biomarkers and targets for therapeutic strategies. The critical RNA modifications implicated in PDs are summarized in this review, including N6-methylation of adenosine, N1-methylation of adenosine, 5-methylcytosine, pseudouridine (5-ribosyl uracil), 7-methylguanosine, and adenosine to inosine editing, along with relevant regulatory mechanisms. By shedding light on the pathology of PDs, these summaries could spur the identification of new biomarkers and therapeutic strategies, ultimately paving the way for early PD diagnosis and treatment innovation.
Collapse
Affiliation(s)
- Weiwei Qian
- Emergency Department of Emergency MedicineLaboratory of Emergency Medicine, West China Hospital, And Disaster Medical, Sichuan UniversityChengduSichuanChina
- Emergency DepartmentShangjinnanfu Hospital, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Lvying Yang
- The Department of Respiratory and Critical Care MedicineThe First Veterans Hospital of Sichuan ProvinceChengduSichuanChina
| | - Tianlong Li
- Department of Critical Care Medicine Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wanlin Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's HospitalShenzhenGuangdongChina
| | - Jian Zhou
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical SchoolShenzhenChina
- Department of ImmunologyInternational Cancer Center, Shenzhen University Health Science CenterShenzhenGuangdongChina
| | - Shenglong Xie
- Department of Thoracic SurgerySichuan Provincial People's Hospital, University of Electronic Science and Technology of ChinaChengduSichuanChina
| |
Collapse
|
11
|
Bao T, Liu X, Hu J, Ma M, Li J, Cao L, Yu B, Cheng H, Zhao S, Tian Z. Recruitment of PVT1 Enhances YTHDC1-Mediated m6A Modification of IL-33 in Hyperoxia-Induced Lung Injury During Bronchopulmonary Dysplasia. Inflammation 2024; 47:469-482. [PMID: 37917328 PMCID: PMC11074042 DOI: 10.1007/s10753-023-01923-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic lung disease that specifically affects preterm infants. Oxygen therapy administered to treat BPD can lead to hyperoxia-induced lung injury, characterized by apoptosis of lung alveolar epithelial cells. Our epitranscriptomic microarray analysis of normal mice lungs and hyperoxia-stimulated mice lungs revealed elevated RNA expression levels of IL-33, as well as increased m6A RNA methylation levels of IL-33 and PVT1 in the hyperoxia-stimulated lungs. This study aimed to investigate the role of the PVT1/IL-33 axis in BPD. A mouse model of BPD was established through hyperoxia induction, and lung histological changes were assessed by hematoxylin-eosin staining. Parameters such as radial alveolar count and mean chord length were measured to assess lung function. Mouse and human lung alveolar epithelial cells (MLE12 and A549, respectively) were stimulated with hyperoxia to create an in vitro BPD model. Cell apoptosis was detected using Western blotting and flow cytometry analysis. Our results demonstrated that silencing PVT1 suppressed apoptosis in MLE12 and A549 cells and improved lung function in hyperoxia-stimulated lungs. Additionally, IL-33 reversed the effects of PVT1 both in vivo and in vitro. Through online bioinformatics analysis and RNA-binding protein immunoprecipitation assays, YTHDC1 was identified as a RNA-binding protein (RBP) for both PVT1 and IL-33. We found that PVT1 positively regulated IL-33 expression by recruiting YTHDC1 to mediate m6A modification of IL-33. In conclusion, silencing PVT1 demonstrated beneficial effects in alleviating BPD by facilitating YTHDC1-mediated m6A modification of IL-33. Inhibition of the PVT1/IL-33 axis to suppress apoptosis in lung alveolar epithelial cells may hold promise as a therapeutic approach for managing hyperoxia-induced lung injury in BPD.
Collapse
Affiliation(s)
- Tianping Bao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Xiangye Liu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jian Hu
- Department of Pediatrics, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Mengmeng Ma
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Jingyan Li
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Linxia Cao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Bingrui Yu
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Huaiping Cheng
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China
| | - Sai Zhao
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| | - Zhaofang Tian
- Department of Neonatology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No. 1 Western Huanghe Road, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
12
|
Chen B. β-defensin 2 protects against Escherichia coli-induced acute urinary tract infection by downregulating β-catenin. Microb Pathog 2024; 186:106469. [PMID: 38070628 DOI: 10.1016/j.micpath.2023.106469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
β-defensin 2 (BD2) is a small cationic peptide that exerts a critical role in host defense against bacterial infections. Here, we aimed to investigate the role of BD2 in protecting against acute urinary tract infection (AUTI) caused by Escherichia coli (UPEC). Here, LPS-induced human urinary bladder epithelial cell (HCV-29) model and UPEC-induced mice model were used for assessing AUTI. Visceral organ lesions of mice following treatment was assessed by HE staining. Cell viability was determined by CCK-8 assay. Permeability in HCV-29 cells was analyzed in Transwell assay. Expression of inflammatory factors (IL-1β, IL-6, and TNF-α) was measured by ELISA assay. The levels of BD2, β-catenin and tight-junction proteins (ZO-1, Occludin, and Claudin-1) were detected by RT-qPCR, western blotting, immunofluorescence or immunohistochemistry. Our results showed that BD2 was lowly expressed and β-catenin showed the reverse trend in response to bacterial infection in vitro and in vivo. BD2 overexpression alleviated the decreased cell viability, increased cell permeability, upregulation of inflammatory factors, downregulation of tight-junction protein and high β-catenin expression in LPS-induced HCV-29 cells, which may contribute to the negative regulation of β-catenin expression. Furthermore, BD2 overexpression attenuated the bacterial infection of tissues, high levels of inflammatory factors and β-catenin, and low levels of tight-junction proteins in mice stimulated with UPEC. This study showed that BD2 played a crucial role in protecting against AUTI caused by gram-negative bacteria through suppressing β-catenin expression. Targeting BD2 may provide a potential therapeutic approach for the prevention and treatment of AUTI.
Collapse
Affiliation(s)
- Bin Chen
- Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang Province, China.
| |
Collapse
|
13
|
Wang W, Wang H, Sun T. N 6-methyladenosine modification: Regulatory mechanisms and therapeutic potential in sepsis. Biomed Pharmacother 2023; 168:115719. [PMID: 37839108 DOI: 10.1016/j.biopha.2023.115719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023] Open
Abstract
Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection and is characterized by multiple biological and clinical features. N6-methyladenosine (m6A) modification is the most common type of RNA modifications in eukaryotes and plays an important regulatory role in various biological processes. Recently, m6A modification has been found to be involved in the regulation of immune responses in sepsis. In addition, several studies have shown that m6A modification is involved in sepsis-induced multiple organ dysfunctions, including cardiovascular dysfunction, acute lung injury (ALI), acute kidney injury (AKI) and etc. Considering the complex pathogenesis of sepsis and the lack of specific therapeutic drugs, m6A modification may be the important bond in the pathophysiological process of sepsis and even therapeutic targets. This review systematically highlights the recent advances regarding the roles of m6A modification in sepsis and sheds light on their use as treatment targets for sepsis.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huaili Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Henan Engineering Research Center for Critical Care Medicine, Zhengzhou, Henan, China.
| |
Collapse
|
14
|
Zhang H, Yin M, Huang H, Zhao G, Lu M. METTL16 in human diseases: What should we do next? Open Med (Wars) 2023; 18:20230856. [PMID: 38045858 PMCID: PMC10693013 DOI: 10.1515/med-2023-0856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
METTL16 is a class-I methyltransferase that is responsible for depositing a vertebrate-conserved S-adenosylmethionine site. Since 2017, there has been a growing body of research focused on METTL16, particularly in the field of structural studies. However, the role of METTL16 in cell biogenesis and human diseases has not been extensively studied, with limited understanding of its function in disease pathology. Recent studies have highlighted the complex and sometimes contradictory role that METTL16 plays in various diseases. In this work, we aim to provide a comprehensive summary of the current research on METTL16 in human diseases.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Gastroenterology, Wuhan Tongji Aerospace City Hospital, Wuhan, Hubei Province, 430000, China
| | - Mengqi Yin
- Department of Neurology, Wuhan No. 1 Hospital, Wuhan, Hubei Province, 430000, China
| | - Hua Huang
- Department of Gastroenterology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 665000, Yunnan Province, China
| | - Gongfang Zhao
- Department of Gastroenterology, The Second Affiliated Hospital, Kunming Medical University, Kunming, 665000, Yunnan Province, China
| | - Mingliang Lu
- Department of Gastroenterology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101149, PR China
| |
Collapse
|
15
|
Jia J, Yuan Y, He Y, Wasti B, Duan W, Chen Z, Li D, Sun W, Zeng Q, Ma L, Zhang X, Liu S, Zhang D, Liu L, Liu Q, Liang H, Wang G, Xiang X, Xiao B. Inhibition of METTL3 alleviated LPS-induced alveolar epithelial cell apoptosis and acute lung injury via restoring neprilysin expression. Life Sci 2023; 333:122148. [PMID: 37805166 DOI: 10.1016/j.lfs.2023.122148] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
AIMS To investigate the role and mechanisms of methyltransferase-like 3 (METTL3) in the pathogenesis of lipopolysaccharide (LPS)-induced acute lung injury (ALI). MAIN METHODS LPS intratracheally instillation was applied in alveolar epithelial cell METTL3 conditional knockout (METTL3-CKO) mice and their wild-type littermates. In addition, METTL3 inhibitor STM2457 was used. LPS treatment on mouse lung epithelial 12 (MLE-12) cell was applied to establish an in vitro model of LPS-induced ALI. H&E staining, lung wet-to-dry ratio, and total broncho-alveolar lavage fluid (BALF) concentrations were used to evaluate lung injury. Overall, the m6A level was determined with the m6A RNA Methylation Quantification Kit and dot blot assay. Expression of METTL3 and neprilysin were measured with immunohistochemistry, immunofluorescence, immunofluorescence-fluorescence in situ hybridization, and western blot. Apoptosis was detected with TUNEL, western blot, and flow cytometry. The interaction of METTL3 and neprilysin was determined with RIP-qPCR and MeRIP. KEY FINDINGS METTL3 expression and apoptosis were increased in alveolar epithelial cells of mice treated with LPS, and METTL3-CKO or METTL3 inhibitor STM2457 could alleviate apoptosis and LPS-induced ALI. In MLE-12 cells, LPS-Induced METTL3 expression and apoptosis. Knockdown of METTL3 alleviated, while overexpression of METTL3 exacerbated LPS-induced apoptosis. LPS treatment reduced neprilysin expression, the intervention of neprilysin expression negatively regulated apoptosis without affecting METTL3 expression, and mitigated the promoting effect of METTL3 on LPS-induced apoptosis. Additionally, METTL3 could bind to the mRNA of neprilysin, and reduce its expression. SIGNIFICANCE Our findings revealed that inhibition of METTL3 could exert anti-apoptosis and ALI-protective effects via restoring neprilysin expression.
Collapse
Affiliation(s)
- Jingsi Jia
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, PR China
| | - Yu Yuan
- Department of Respiratory Medicine, Hunan Center for Evidence-Based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Yi He
- Department of Respiratory Medicine, Hunan Center for Evidence-Based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Binaya Wasti
- Department of Respiratory Medicine, Hunan Center for Evidence-Based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Wentao Duan
- Department of Respiratory Medicine, Hunan Center for Evidence-Based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Zhifeng Chen
- Department of Respiratory Medicine, Hunan Center for Evidence-Based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Danhong Li
- Department of Respiratory Medicine, Hunan Center for Evidence-Based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Wenjin Sun
- Department of General Medicine, West China Hospital, Sichuan University, Chengdu, PR China
| | | | - Libing Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guilin Medical University, Guangxi, PR China
| | - Xiufeng Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Shaokun Liu
- Department of Respiratory Medicine, Hunan Center for Evidence-Based Medicine, Research Unit of Respiratory Diseases, The Second Xiangya Hospital of Central South University, Changsha, PR China
| | - Dongshan Zhang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, PR China
| | - Linxia Liu
- Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, PR China
| | - Qimi Liu
- Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, PR China
| | - Hengxing Liang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, PR China; Department of Thoracic Surgery, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, PR China
| | - Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xudong Xiang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, PR China; Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, PR China.
| | - Bing Xiao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, Hunan, PR China; Department of Respiratory and Critical Care Medicine, Guilin Hospital of the Second Xiangya Hospital of Central South University, Guilin, Guangxi, PR China.
| |
Collapse
|
16
|
Qin Y, Wu S, Zhang F, Zhou X, You C, Tan F. N6-methyladenosine methylation regulator RBM15 promotes the progression of diabetic nephropathy by regulating cell proliferation, inflammation, oxidative stress, and pyroptosis through activating the AGE-RAGE pathway. ENVIRONMENTAL TOXICOLOGY 2023; 38:2772-2782. [PMID: 37551785 DOI: 10.1002/tox.23917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Diabetic nephropathy (DN) is a major cause of end-stage renal disease throughout the world, and m6A modification plays a critical role in the progression of DN. We aimed to find m6A-related genes and their regulatory mechanisms in DN. METHODS The expression levels of four important m6A-related genes (METTL16, RBM15, IGF2BP1, and ALKBH5) were detected by quantitative real-time PCR (RT-qPCR). RBM15 was chosen and its function was explored. The downstream pathway of RBM15 was screened by transcriptome sequencing. The levels of AGE, inflammation, and oxidative stress were determined with enzyme-linked immunosorbent assay, and the expression of AGE-RAGE pathway-related proteins were detected by Western blot (WB). Cell proliferation was assessed by Cell counting Kit-8 (CCK-8). The levels of pyroptosis-related proteins were evaluated by RT-qPCR or WB. RESULTS METTL16 and RBM15 were up regulated in the mouse model of DN, in which RBM15 was more significant. Silencing RBM15 recovered cell proliferation, reduced the levels of inflammation factors, and inhibited cell pyroptosis in high glucose-induced HK-2 cells. Transcriptome sequencing suggested that the AGE-RAGE pathway might be downstream of RBM15. RBM15 knockdown reduced AGE level and the expression of AGE-RAGE pathway-related proteins. After silencing RBM15, we found that activating the AGE-RAGE pathway inhibited cell proliferation, increased the levels of inflammation factors, promoted oxidative stress, and induced cell pyroptosis in HK-2 cell model of DN. CONCLUSION The m6A-related gene RBM15 inhibited cell proliferation, promoted inflammation, oxidative stress, and cell pyroptosis, thereby facilitating the progression of DN through the activation of the AGE-RAGE pathway.
Collapse
Affiliation(s)
- Yongzhang Qin
- Department of Endocrinology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
- Institute of Thyroid Diseases, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fengxia Zhang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Xueyan Zhou
- Department of Endocrinology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Cong You
- Department of Dermatology and Venereology, Candidate Branch of National Clinical Research Centre for Skin and Immune Diseases, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fei Tan
- Department of Nephrology, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| |
Collapse
|
17
|
Shi Q, Li Z, Dong Y, Yang G, Li M. LncRNA THRIL, transcriptionally activated by AP-1 and stabilized by METTL14-mediated m6A modification, accelerates LPS-evoked acute injury in alveolar epithelial cells. Int Immunopharmacol 2023; 123:110740. [PMID: 37543013 DOI: 10.1016/j.intimp.2023.110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
Acute lung injury (ALI) and its extreme manifestation, acute respiratory distress syndrome (ARDS), are life-threatening diseases in intensive care units. LncRNA THRIL plays a crucial role in regulating the inflammatory response; however, the potential function of THRIL in ALI/ARDS and the associated mechanism remain unclear. In our study, we found that THRIL was upregulated in the serum of ALI/ARDS patients, and its increased expression was positively correlated with the inflammatory cytokines IL-17. In LPS-induced A549 cells, knockdown of THRIL inhibited the release of the proinflammatory cytokines TNF-α, IL-1β, IL-17, and IL-6, decreased the number of monodansylcadaverine-positive cells and LC3-II with immunofluorescence staining, decreased the expression of autophagy marker ATG7 and Beclin1, and increased expression of p62. Mechanistically, the transcription factor AP-1 bound directly to the THRIL promoter region and activated its transcription by c-Jun upon LPS exposure. Moreover, m6A modification of THRIL was increased in LPS-treated A549 cells, and METTL14 knockdown significantly abolished m6A modification and reduced stabilization of THRIL mRNA. In conclusion, our findings reveal that THRIL, transcriptionally activated by AP-1 and modified by METTL14-mediated m6A modification, induces autophagy in LPS-treated A549 cells, suggesting the potential application of THRIL for ALI/ARDS therapy.
Collapse
Affiliation(s)
- Qian Shi
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhiliang Li
- Department of Critical Care Medicine, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yixin Dong
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Guigui Yang
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Miao Li
- Department of Microbiology and Parasitology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
18
|
Faraj R, Liang Y, Feng A, Wu J, Black SM, Wang T. Exploring m6A-RNA methylation as a potential therapeutic strategy for acute lung injury and acute respiratory distress syndrome. Pulm Circ 2023; 13:e12230. [PMID: 37091123 PMCID: PMC10119488 DOI: 10.1002/pul2.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
N6-methyladenosine (m6A) is the most common methylation modification in mammalian messenger RNA (mRNA) and noncoding RNAs. m6A modification plays a role in the regulation of gene expression and deregulation of m6A methylation has been implicated in many human diseases. Recent publications suggest that exploitation of this methylation process may possess utility against acute lung injury (ALI). ALI and its more severe form, acute respiratory distress syndrome (ARDS) are acute, inflammatory clinical syndromes characterized by poor oxygenation and diffuse pulmonary infiltrates. This syndrome is associated with microvascular endothelial dysfunction, subsequent pulmonary hypertension and may ultimately lead to mortality without rigorous and acute clinical intervention. Over the years, many attempts have been made to detect novel therapeutic avenues for research without much success. The urgency for the discovery of novel therapeutic agents has become more pronounced recently given the current pandemic infection of coronavirus disease 2019 (COVID-2019), still ongoing at the time that this review is being written. We review the current landscape of literature regarding ALI and ARDS etiology, pathophysiology, and therapeutics and present a potential role of m6A methylation. Additionally, we will establish the axiomatic principles of m6A methylation to provide a framework. In conclusion, METTL3, or methyltransferase-like 3, the selective RNA methyltransferase for m6A, is a hub of proinflammatory gene expression regulation in ALI, and using a modern drug discovery strategy will identify new and effective ALI drug candidates targeting METTTL3.
Collapse
Affiliation(s)
- Reem Faraj
- Department of Internal MedicineUniversity of Arizona College of Medicine PhoenixPhoenixArizonaUSA
| | - Ying Liang
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| | - Anlin Feng
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| | - Jialin Wu
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| | - Stephen M. Black
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| | - Ting Wang
- Department of Internal MedicineUniversity of Arizona College of Medicine PhoenixPhoenixArizonaUSA
- Center for Translational Science and Department of Environmental Health SciencesFlorida International UniversityPort St. LucieFloridaUSA
| |
Collapse
|
19
|
Kisan A, Chhabra R. Modulation of gene expression by YTH domain family (YTHDF) proteins in human physiology and pathology. J Cell Physiol 2023; 238:5-31. [PMID: 36326110 DOI: 10.1002/jcp.30907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
The advent of high throughput techniques in the past decade has significantly advanced the field of epitranscriptomics. The internal chemical modification of the target RNA at a specific site is a basic feature of epitranscriptomics and is critical for its structural stability and functional property. More than 170 modifications at the transcriptomic level have been reported so far, among which m6A methylation is one of the more conserved internal RNA modifications, abundantly found in eukaryotic mRNAs and frequently involved in enhancing the target messenger RNA's (mRNA) stability and translation. m6A modification of mRNAs is essential for multiple physiological processes including stem cell differentiation, nervous system development and gametogenesis. Any aberration in the m6A modification can often result in a pathological condition. The deregulation of m6A methylation has already been described in inflammation, viral infection, cardiovascular diseases and cancer. The m6A modification is reversible in nature and is carried out by specialized m6A proteins including writers (m6A methyltransferases) that add methyl groups and erasers (m6A demethylases) that remove methyl groups selectively. The fate of m6A-modified mRNA is heavily reliant on the various m6A-binding proteins ("readers") which recognize and generate a functional signal from m6A-modified mRNA. In this review, we discuss the role of a family of reader proteins, "YT521-B homology domain containing family" (YTHDF) proteins, in human physiology and pathology. In addition, we critically evaluate the potential of YTHDF proteins as therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Aju Kisan
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
20
|
Battaglini D, Al-Husinat L, Normando AG, Leme AP, Franchini K, Morales M, Pelosi P, Rocco PR. Personalized medicine using omics approaches in acute respiratory distress syndrome to identify biological phenotypes. Respir Res 2022; 23:318. [PMID: 36403043 PMCID: PMC9675217 DOI: 10.1186/s12931-022-02233-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/01/2022] [Indexed: 11/21/2022] Open
Abstract
In the last decade, research on acute respiratory distress syndrome (ARDS) has made considerable progress. However, ARDS remains a leading cause of mortality in the intensive care unit. ARDS presents distinct subphenotypes with different clinical and biological features. The pathophysiologic mechanisms of ARDS may contribute to the biological variability and partially explain why some pharmacologic therapies for ARDS have failed to improve patient outcomes. Therefore, identifying ARDS variability and heterogeneity might be a key strategy for finding effective treatments. Research involving studies on biomarkers and genomic, metabolomic, and proteomic technologies is increasing. These new approaches, which are dedicated to the identification and quantitative analysis of components from biological matrixes, may help differentiate between different types of damage and predict clinical outcome and risk. Omics technologies offer a new opportunity for the development of diagnostic tools and personalized therapy in ARDS. This narrative review assesses recent evidence regarding genomics, proteomics, and metabolomics in ARDS research.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
- Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Lou'i Al-Husinat
- Department of Clinical Medical Sciences, Faculty of Medicine, Yarmouk University, P.O. Box 566, Irbid, 21163, Jordan
| | - Ana Gabriela Normando
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Adriana Paes Leme
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Kleber Franchini
- Brazilian Biosciences National Laboratory, LNBio, Brazilian Center for Research in Energy and Materials, CNPEM, Campinas, Brazil
| | - Marcelo Morales
- Laboratory of Cellular and Molecular Physiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, Instituto di Ricovero e Cura a Carattere Scientifico (IRCCS) for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Science and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia Rm Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
21
|
Zhang X, Li MJ, Xia L, Zhang H. The biological function of m6A methyltransferase KIAA1429 and its role in human disease. PeerJ 2022; 10:e14334. [PMID: 36389416 PMCID: PMC9657180 DOI: 10.7717/peerj.14334] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022] Open
Abstract
KIAA1429 is a major m6A methyltransferase, which plays important biological and pharmacological roles in both human cancer or non-cancer diseases. KIAA1429 produce a tumorigenic role in various cancers through regulating DAPK3, ID2, GATA3, SMC1A, CDK1, SIRT1 and other targets, promoting cell proliferation, migration, invasion, metastasis and tumor growth . At the same time, KIAA1429 is also effective in non-tumor diseases, such as reproductive system and cardiovascular system diseases. The potential regulatory mechanism of KIAA1429 dependent on m6A modification is related to mRNA, lncRNA, circRNA and miRNAs. In this review, we summarized the current evidence on KIAA1429 in various human cancers or non-cancer diseases and its potential as a prognostic target.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Meng jiao Li
- Liaocheng Vocational and Technical College, Liaocheng, China
| | - Lei Xia
- Shandong University of Traditional Chinese Medicine, Department of Pathology, Jinan, China
| | - Hairong Zhang
- Shandong Provincial Third Hospital, Department of Obstetrics and Gynecology, Jinan, China
| |
Collapse
|
22
|
Yin F, Li Q, Cao M, Duan Y, Zhao L, Gan L, Cai Z. Effects of microRNA-101-3p on predicting pediatric acute respiratory distress syndrome and its role in human alveolar epithelial cell. Bioengineered 2022; 13:11602-11611. [PMID: 35506305 PMCID: PMC9275879 DOI: 10.1080/21655979.2022.2070583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pediatric acute respiratory distress syndrome (PARDS) is a severe form of respiratory failure associated with high mortality among children. The objective of this study is reported to explore the clinical function and molecular roles of microRNA-101-3p (miR-101-3p) in PARDS. The levels of miR-101-3p and mRNA levels of SRY-related high-mobility group box 9 (Sox9) were measured by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Additionally, the diagnostic role of miR-101-3p was identified by using the Receiver operating characteristic (ROC) curve. The cell proliferation and apoptosis were examined through Cell Counting Kit-8 (CCK-8) assay and flow cytometry. To detect inflammation in cells, enzyme-linked immunosorbent assays (ELISA) were performed. The target gene of miR-101-3p was confirmed through data obtained from the luciferase activity. In patients with PARDS, miR-101-3p expression was decreased. Moderate and severe PARDS patients had lower levels of miR-101-3p than mild PARDS patients. The inflammatory progression was related to the aberrant expression of miR-101-3p in all PARDS children. MiR-101-3p was highly predictive for the detection of children with PARDS. In addition, miR-101-3p might protect A549 cells from abnormal proliferation, apoptosis, and inflammation caused by lipopolysaccharide (LPS). Sox9 might be a target gene of miR-101-3p and increased mRNA expression of Sox9 in LPS-treated A549 cells was inhibited by overexpression of miR-101-3p. Ultimately, this study suggested that reduced expression of miR-101-3p plays a role in PARDS, providing a novel angle to study the disease.
Collapse
Affiliation(s)
- Fang Yin
- Child Health Development Center, Hunan Children's Hospital, Changsha China
| | - Qi Li
- Child Health Development Center, Hunan Children's Hospital, Changsha China
| | - Min Cao
- Child Health Development Center, Hunan Children's Hospital, Changsha China
| | - Yaqin Duan
- Rehabilitation Center, Hunan Children's Hospital, Changsha China
| | - Liu Zhao
- Children's Research Institute, Hunan Children's Hospital, Changsha China
| | - Lumin Gan
- Department of Infection, Hunan Children's Hospital, Changsha China
| | - Zili Cai
- Child Health Development Center, Hunan Children's Hospital, Changsha China
| |
Collapse
|
23
|
Zhao H, Shi L, Wang X, Yu X, Wang D. Sp1 transcription factor represses transcription of phosphatase and tensin homolog to aggravate lung injury in mice with type 2 diabetes mellitus-pulmonary tuberculosis. Bioengineered 2022; 13:9928-9944. [PMID: 35420971 PMCID: PMC9162029 DOI: 10.1080/21655979.2022.2062196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 11/02/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) can enhance the risk of mycobacterium tuberculosis (Mtb) infection and aggravate pulmonary tuberculosis (PTB). This study intended to explore the function of phosphatase and tensin homolog (PTEN) in T2DM-PTB and the molecules involved. Mice were treated with streptozotocin to induce T2DM and then infected with Mtb. The mice with T2DM had increased weight, blood glucose level, glucose intolerance and insulin resistance, and increased susceptibility to PTB after Mtb infection. PTEN was significantly downregulated in mice with T2DM-PTB and it had specific predictive value in patients. Overexpression of PTEN improved mouse survival and reduced bacterial load, inflammatory infiltration, cell apoptosis, and fibrosis in lung tissues. Sp1 transcription factor (SP1) was predicted and identified as an upstream regulator of PTEN. SP1 suppressed PTEN transcription. Silencing of SP1 enhanced mouse survival and alleviated the lung injury, and it promoted the M1 polarization of macrophages in murine lung tissues. However, further downregulation of PTEN increased protein kinase B (Akt) phosphorylation and blocked the alleviating roles of SP1 silencing in T2DM-PTB. This study demonstrates that SP1 represses PTEN transcription to promote lung injury in mice with T2DM-PTB through Akt activation.
Collapse
Affiliation(s)
- Hongmei Zhao
- Department of Tuberculosis, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Lian Shi
- Department of Tuberculosis, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Xiaohong Wang
- Department of Tuberculosis, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Xiuli Yu
- Department of Respiratory and Critical Care, Shenyang Chest Hospital, Shenyang, Liaoning, China
| | - Danfeng Wang
- Department of Tuberculosis, Shenyang Chest Hospital, Shenyang, Liaoning, China
| |
Collapse
|