1
|
Zhu L, Luo Y, Liu Y, Sun S, Yuan J, Zhang L, Zhong W, Ma S, Yu Z, Zhou J, Chen X, Zhao J. Clostridium butyricum ameliorates indomethacin-induced enteropathy by promoting MUC2 secretion via suppressing the Notch pathway. Front Microbiol 2025; 16:1509876. [PMID: 40177488 PMCID: PMC11961966 DOI: 10.3389/fmicb.2025.1509876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Nonsteroidal anti-inflammatory drug (NSAID) enteropathy is a serious clinical complication with no effective treatments available. Modulating the intestinal microbiota through dietary and nutritional targets is a promising strategy for preventing NSAID enteropathy. This study aimed to investigate the protective effect and underlying mechanisms of the probiotic Clostridium butyricum (CB) on indomethacin (IND)-induced enteropathy. C57BL/6J mice received CB treatment for 14 days along with concurrent IND gavage for the final 7 days. Caco2 cells were stimulated with IND to evaluate the effect of CB supernatant (CBS) on the intestinal barrier function, and LS174T cells were used to validate the modulatory action of CBS on the Notch signaling pathway. Our findings revealed that CB treatment prevented anorexia and weight loss, reduced the severity of enteropathy, and decreased the inflammatory response of the small intestine. CB also increased the expression of tight junction proteins and reduced permeability in mice and Caco2 cells. Additionally, CB suppressed apoptosis and promoted proliferation in the small intestine. Further research found that CB increased the number of goblet cells and MUC2 secretion. Mechanistically, CB may promote MUC2 secretion by suppressing the Notch signaling pathway, consistent with the results of intervention in LS174T cells with CBS. In conclusion, CB might prevent NSAID enteropathy by increasing MUC2 secretion through the inhibition of the Notch pathway. Our study identified the potential efficacy of CB as a preventive strategy against NSAID enteropathy and showed promising prospects for CB as a food supplement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingwen Zhao
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
2
|
Hu J, Wang X, Guo X, Wen W, Xue J, Liao Z, Chen L. Network analysis and experimental validation to investigate chenpi against functional dyspepsia through TLR4/MyD88 by regulating the gut microbial structure. Front Pharmacol 2025; 16:1495799. [PMID: 40017602 PMCID: PMC11865038 DOI: 10.3389/fphar.2025.1495799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025] Open
Abstract
Functional dyspepsia (FD) is a prevalent functional gastrointestinal disorder characterized by the absence of organic lesions; it affects nearly one-fifth of the global population. There is currently no specific drug for treating it. Citri reticulatae Pericarpium (CRP) has been utilized in China for millennia as a therapeutic agent for alleviating bloating and spleen-stomach disharmony. Nonetheless, the curative efficacy and precise molecular mechanisms implicated in FD warrant further investigation. This study aims to address this gap by investigating the potential mechanisms of CRP against FD using HPLC-ESI-QTOF-MS, network analysis prediction, and experimental validation. In this study, 90 CRP metabolites were identified by HPLC-ESI-QTOF-MS; 70 common targets of CRP and FD were extracted, and the top ten overlapped targets included MAPK1, MAPK2, and MAPK3. KEGG enrichment analysis revealed that the MAPK pathways were predominant and involved the TLR4 signaling pathway. In vivo experiments demonstrated that after 14 days of treatment, CRP improved body weight, gastric emptying rate, intestinal transit rate, and the pathological structure of the gastric tissue. Serum IL-6, TNF-α, and IL-1β were downregulated, and the expressions of TLR4, MyD88, p-NF-κB, and MAPKs were suppressed in gastric tissue. Furthermore, CRP increased the relative abundance of Patescibateria and Bacteroidota, accompanied by a reduction in the relative abundance of Verrucomicrobota and Proteobacteria. In brief, CRP could attenuate dyspepsia by reducing the activation of inflammation-related TLR4/MyD88 and MAPK signaling pathways and by mediating gut microbial structure and composition. This study provides a unique perspective for further research on drugs for treating FD.
Collapse
Affiliation(s)
- Jinfang Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xu Wang
- Center for Experimental Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqiu Guo
- Department of Pharmacy, the Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wen Wen
- Jiangxi Center for Drug Certification and Evaluation, Nanchang, Jiangxi, China
| | - Jin Xue
- Formula-pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengzheng Liao
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
3
|
Caterbi S, Buttarini C, Garetto S, Franco Moscardini I, Ughetto S, Guerrini A, Panizzi E, Rumio C, Mattioli L, Perfumi M, Maidecchi A, Cossu A, des Varannes SB, Regula J, Malfertheiner P, Sardi C, Lucci J. A Non-Pharmacological Paradigm Captures the Complexity in the Mechanism of Action of Poliprotect Against Gastroesophageal Reflux Disease and Dyspepsia. Int J Mol Sci 2025; 26:1181. [PMID: 39940951 PMCID: PMC11818618 DOI: 10.3390/ijms26031181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
When the protective mechanisms of the gastroesophageal mucosa are overwhelmed by injurious factors, the structural and functional mucosal integrity is compromised, resulting in a wide spectrum of disorders. Poliprotect has recently been shown to be non-inferior to standard-dose omeprazole for the treatment of endoscopy-negative patients with heartburn and/or epigastric pain or burning. Here, we provide preclinical data describing the mechanism of action of the Poliprotect formulation, a 100% natural, biodegradable, and environmental friendly medical device according to EU 2017/745 and containing UVCB (unknown or variable composition, complex-reaction products, or biological materials) substances of botanical and mineral origin, according to the REACH and European Chemical Agency definitions. Different in vitro assays demonstrated the capability of Poliprotect to adhere to mucus-secreting gastric cells and concomitantly deliver a local barrier with buffering and antioxidant activity. In studies conducted in accordance with systems biology principles, we evaluated the effects of this barrier on human gastric cells exposed to acidic stress. Biological functions identified via Ingenuity Pathway Analysis highlighted the product's ability to create a microenvironment that supports the mucosal structural and functional integrity, promotes healing, and restores a balanced mucosal inflammatory status. Additionally, transepithelial electrical resistance and an Ussing chamber showed the product's capability of preserving the integrity of the gastric and esophageal epithelial barriers when exposed to an acid solution. Two in vivo models of erosive gastropathy further highlighted its topical protection against ethanol- and drug-induced mucosal injury. Overall, our findings sustain the feasibility of a paradigm shift in therapeutics R&D by depicting a very innovative and desirable mode of interaction with the human body based on the emerging biophysical, rather than the pharmacological properties of these therapeutic agents.
Collapse
Affiliation(s)
- Sara Caterbi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Claudio Buttarini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Stefano Garetto
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Isabelle Franco Moscardini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Stefano Ughetto
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Angela Guerrini
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Elena Panizzi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Cristiano Rumio
- Department of Pharmacology and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy;
| | - Laura Mattioli
- Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (L.M.); (M.P.)
| | - Marina Perfumi
- Department of Experimental Medicine and Public Health, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy; (L.M.); (M.P.)
| | - Anna Maidecchi
- Aboca S.p.A, Società Agricola, Località Aboca 20, 52037 Sansepolcro, Italy; (A.M.); (A.C.)
| | - Andrea Cossu
- Aboca S.p.A, Società Agricola, Località Aboca 20, 52037 Sansepolcro, Italy; (A.M.); (A.C.)
| | - Stanislas Bruley des Varannes
- Department of Gastroenterology Hepatology and Clinical Oncology, Institut des Maladies de l’Appareil Digestif, Universitary Hospital, 44000 Nantes, France;
| | - Jaroslaw Regula
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, 00-001 Warsaw, Poland;
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Peter Malfertheiner
- LMU Klinikum Medizinische Klinik und Poliklinik II, Campus Großhadern, Marchioninistr. 15, 81377 München, Germany;
- Otto-von-Guericke Universität Magdeburg Klinik für Gastroenterologie, Hepatologie und Infektiologie, 39120 Magdeburg, Germany
| | - Claudia Sardi
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| | - Jacopo Lucci
- Bios-Therapy, Physiological Systems for Health S.p.A., Località Aboca 20, 52037 Sansepolcro, Italy; (S.C.); (C.B.); (S.G.); (I.F.M.); (S.U.); (A.G.); (E.P.); (C.S.)
| |
Collapse
|
4
|
Salamone FL, Molonia MS, Muscarà C, Saija A, Cimino F, Speciale A. In Vitro Protective Effects of a Standardized Extract of Opuntia ficus-indica (L.) Mill. Cladodes and Olea europaea L. Leaves Against Indomethacin-Induced Intestinal Epithelial Cell Injury. Antioxidants (Basel) 2024; 13:1507. [PMID: 39765835 PMCID: PMC11673993 DOI: 10.3390/antiox13121507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/06/2025] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) can induce serious adverse effects in gastrointestinal (GI) mucosa, increasing intestinal permeability and leading to mitochondrial dysfunction, oxidative stress, apoptosis and inflammation. As proton pump inhibitors are effective in protecting against NSAID-induced gastropathy but not NSAID-induced enteropathy, current research is focused on natural products as protective substances for therapy and prevention of intestinal injury. Herein, through the use of an in vitro model based on intestinal epithelial cell (Caco-2) damage caused by indomethacin (INDO), we examined the protective activity of a commercially available standardized extract (OFI+OE) from Opuntia ficus-indica (L.) Mill. cladodes and Olea europaea L. leaves. Pre-treatment with OFI+OE prevented INDO-induced intestinal epithelial barrier damage, as demonstrated by TEER measurement, fluorescein permeability, and tight junction protein expression. The extract showed positive effects against INDO-induced oxidative stress and correlated activation of apoptosis, decreasing pro-apoptotic markers BAX and Caspase-3 and increasing anti-apoptotic factor Bcl-2. Moreover, the extract inhibited the NF-κB pathway and pro-inflammatory cascade. In conclusion, these data support the use of OFI+OE extract as a natural strategy for therapy and prevention of intestinal mucosal damage, demonstrating its beneficial effects against INDO-induced intestinal damage, through modulation of oxidative, apoptotic, and inflammatory pathways.
Collapse
|
5
|
H. Altemani F, H. Elmaidomy A, H. Abu-Baih D, M. Abdel Zaher A, Mokhtar FA, A. Algehainy N, T. Bakhsh H, Bringmann G, Ramadan Abdelmohsen U, Abdelhafez OH. Tamarix aphylla derived metabolites ameliorate indomethacin-induced gastric ulcers in rats by modulating the MAPK signaling pathway, alleviating oxidative stress and inflammation: In vivo study supported by pharmacological network analysis. PLoS One 2024; 19:e0302015. [PMID: 38728332 PMCID: PMC11086843 DOI: 10.1371/journal.pone.0302015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Nature has proven to be a treasure resource of bioactive metabolites. In this regard, Tamarix aphylla (F. Tamaricaceae) leaves crude extract was investigated for its gastroprotective effect against indomethacin-induced damage to the gastric mucosa. Additionally, phytochemical investigation of the methanolic extract afforded eight flavonoids' derivatives (1-8). On pharmacology networking study, the isolated compounds identified 123 unique targets where only 45 targets were related to peptic ulcer conditions, these 45 targets include 11 targets specifically correlate to gastric ulcer. The protein-protein interaction defined the PTGS2 gene as one of the highly interacted genes and the complete pharmacology network defined the PTGS2 gene as the most represented gene. The top KEGG signaling pathways according to fold enrichment analysis was the EGFR tyrosine kinase inhibitor resistance pathway. As a result, these findings highlighted the significance of using T. aphylla leaves crude extract as an anti-gastric ulcer candidate, which provides a safer option to chemical antisecretory medicines, which are infamous for their negative side effects. Our findings have illuminated the potent anti-inflammatory and antioxidant effects of T. aphylla, which are likely mediated by suppressing IL-1β, IL-6, TNF-α, and MAPK signaling pathways, without compromising gastric acidity.
Collapse
Affiliation(s)
- Faisal H. Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Abeer H. Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Dalia H. Abu-Baih
- Department of Biochemistry & Molecular Biology, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Deraya Center for Scientific Research, Deraya University, Minia, Egypt
| | - Azza M. Abdel Zaher
- Department of Pathology, Faculty of Medicine, Minia University, Minia, Egypt
| | | | - Naseh A. Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hussain T. Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | |
Collapse
|
6
|
Nighot M, Liao PL, Morris N, McCarthy D, Dharmaprakash V, Ullah Khan I, Dalessio S, Saha K, Ganapathy AS, Wang A, Ding W, Yochum G, Koltun W, Nighot P, Ma T. Long-Term Use of Proton Pump Inhibitors Disrupts Intestinal Tight Junction Barrier and Exaggerates Experimental Colitis. J Crohns Colitis 2023; 17:565-579. [PMID: 36322638 PMCID: PMC10115233 DOI: 10.1093/ecco-jcc/jjac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Proton pump inhibitors [PPIs] are widely used to treat a number of gastro-oesophageal disorders. PPI-induced elevation in intragastric pH may alter gastrointestinal physiology. The tight junctions [TJs] residing at the apical intercellular contacts act as a paracellular barrier. TJ barrier dysfunction is an important pathogenic factor in inflammatory bowel disease [IBD]. Recent studies suggest that PPIs may promote disease flares in IBD patients. The role of PPIs in intestinal permeability is not clear. AIM The aim of the present study was to study the effect of PPIs on the intestinal TJ barrier function. METHODS Human intestinal epithelial cell culture and organoid models and mouse IBD models of dextran sodium sulphate [DSS] and spontaneous enterocolitis in IL-10-/- mice were used to study the role of PPIs in intestinal permeability. RESULTS PPIs increased TJ barrier permeability via an increase in a principal TJ regulator, myosin light chain kinase [MLCK] activity and expression, in a p38 MAPK-dependent manner. The PPI-induced increase in extracellular pH caused MLCK activation via p38 MAPK. Long-term PPI administration in mice exaggerated the increase in intestinal TJ permeability and disease severity in two independent models of DSS colitis and IL-10-/- enterocolitis. The TJ barrier disruption by PPIs was prevented in MLCK-/- mice. Human database studies revealed increased hospitalizations associated with PPI use in IBD patients. CONCLUSIONS Our results suggest that long-term use of PPIs increases intestinal TJ permeability and exaggerates experimental colitis via an increase in MLCK expression and activity.
Collapse
Affiliation(s)
- Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Pei-Luan Liao
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Nathan Morris
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Dennis McCarthy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Viszwapriya Dharmaprakash
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Inam Ullah Khan
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Shannon Dalessio
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | | | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
7
|
d’Angelo M, Brandolini L, Catanesi M, Castelli V, Giorgio C, Alfonsetti M, Tomassetti M, Zippoli M, Benedetti E, Cesta MC, Colagioia S, Cocchiaro P, Cimini A, Allegretti M. Differential Effects of Nonsteroidal Anti-Inflammatory Drugs in an In Vitro Model of Human Leaky Gut. Cells 2023; 12:cells12050728. [PMID: 36899865 PMCID: PMC10001324 DOI: 10.3390/cells12050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The intestinal barrier is the main contributor to gut homeostasis. Perturbations of the intestinal epithelium or supporting factors can lead to the development of intestinal hyperpermeability, termed "leaky gut". A leaky gut is characterized by loss of epithelial integrity and reduced function of the gut barrier, and is associated with prolonged use of Non-Steroidal Anti-Inflammatories. The harmful effect of NSAIDs on intestinal and gastric epithelial integrity is considered an adverse effect that is common to all drugs belonging to this class, and it is strictly dependent on NSAID properties to inhibit cyclo-oxygenase enzymes. However, different factors may affect the specific tolerability profile of different members of the same class. The present study aims to compare the effects of distinct classes of NSAIDs, such as ketoprofen (K), Ibuprofen (IBU), and their corresponding lysine (Lys) and, only for ibuprofen, arginine (Arg) salts, using an in vitro model of leaky gut. The results obtained showed inflammatory-induced oxidative stress responses, and related overloads of the ubiquitin-proteasome system (UPS) accompanied by protein oxidation and morphological changes to the intestinal barrier, many of these effects being counteracted by ketoprofen and ketoprofen lysin salt. In addition, this study reports for the first time a specific effect of R-Ketoprofen on the NFkB pathway that sheds new light on previously reported COX-independent effects, and that may account for the observed unexpected protective effect of K on stress-induced damage on the IEB.
Collapse
Affiliation(s)
- Michele d’Angelo
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Laura Brandolini
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
| | - Mariano Catanesi
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Vanessa Castelli
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Cristina Giorgio
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Margherita Alfonsetti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Mara Tomassetti
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Mara Zippoli
- Dompé Farmaceutici S.p.A., via De Amicis 95, 80131 Napoli, Italy
| | - Elisabetta Benedetti
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | | | - Sandro Colagioia
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
| | | | - Annamaria Cimini
- Dept. of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Sbarro Institute for Cancer Research and Molecular Medicine, Dept. of Biology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (A.C.); (M.A.)
| | - Marcello Allegretti
- Dompé Farmaceutici S.p.A., via Campo di Pile snc, 67100 L’Aquila, Italy
- Correspondence: (A.C.); (M.A.)
| |
Collapse
|
8
|
Wei Y, Ren S, Wang J, Wang Y, Cui Y, Tian M, Wang R, Liu H, Zhao Y. Dehydroevodiamine ameliorates indomethacin-induced gastric injury via inhibition of ERK and p38 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153764. [PMID: 34628242 DOI: 10.1016/j.phymed.2021.153764] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Dehydroevodiamine (DHE), a pivotal quinazoline alkaloid isolated from Fructus Evodiae (Tetradium ruticarpum (A. Juss.) Hartley), has various pharmacological effects. However, the effect of DHE on gastric injury is still uncharted. PURPOSE To clarify the pharmacological effect and mechanism of DHE on gastric injury (GI) induced by indomethacin (IDO). STUDY DESIGN The gastric injury was induced in rat by oral administration of 5 mg/kg IDO for 7 days. Then the rats were treated with DHE (10, 20, 40 mg/kg, ig) for 7 days. METHODS The changes of food intake, body weight, gastric pH and general state observation were determined. And HE staining and AB-PAS staining was analyzed. Then, the inflammatory infiltration of gastric tissue was observed through MPO immunohistochemical approach, and the expression of TNF-α, IL-6 and IL-10 were measured. Furthermore, the levels of proteins ERK, p-ERK, P38, p-P38, JNK and p-JNK were determined to elucidate the molecular mechanism of DHE. RESULTS DHE alleviated food intake reduction, weight loss and gastric injury induced by IDO and made gastric pH and mucosal thickness return to normal. In addition, DHE could down regulate the expression of MPO, TNF-α and IL-6 and up regulate the expression of IL-10 to reduce the damage induced by inflammatory, and create a healing environment. Furthermore, DHE could significantly inhibit the phosphorylation of ERK and p38 not JNK. CONCLUSION DHE ameliorated dyspepsia, inflammatory infiltration and tissue damage induced by IDO through ERK and p38 signaling pathways rather than JNK pathway.
Collapse
Affiliation(s)
- Ying Wei
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Sichen Ren
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jian Wang
- Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Wang
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanfei Cui
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Miao Tian
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ruilin Wang
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honghong Liu
- China Military Institute of Chinese Medicine, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yanling Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, the Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
9
|
Endo S, Nishiyama T, Matuoka T, Miura T, Nishinaka T, Matsunaga T, Ikari A. Loxoprofen enhances intestinal barrier function via generation of its active metabolite by carbonyl reductase 1 in differentiated Caco-2 cells. Chem Biol Interact 2021; 348:109634. [PMID: 34506768 DOI: 10.1016/j.cbi.2021.109634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/31/2021] [Accepted: 09/05/2021] [Indexed: 02/06/2023]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are used worldwide as antipyretic analgesics and agents for rheumatoid arthritis and osteoarthritis, but known to cause damage to the gastrointestinal mucosae as their serious adverse effects. Few studies showed the impairment of intestinal epithelial barrier function (EBF) by high concentrations (0.5-1 mM) of NSAIDs, but the underlying mechanism is not fully understood. This study is aimed at clarifying effects at a low concentration (50 μM) of three NSAIDs, loxoprofen (Lox), ibuprofen and indomethacin, on intestinal EBF using human intestinal epithelial-like Caco-2 cells. Among those NSAIDs, Lox increased the transepithelial electric resistance (TER) value, decreased the paracellular Lucifer yellow CH (LYCH) permeability, and upregulated claudin (CLDN)-1, -3 and -5, indicating that low doses of Lox enhanced EBF through increasing expression of CLDNs. Lox is known to be metabolized to a pharmacologically active metabolite, (2S,1'R,2'S)-loxoprofen alcohol (Lox-RS), by carbonyl reductase 1 (CBR1), which is highly expressed in human intestine. CBR1 was expressed in the Caco-2 cells, and the pretreatment with a CBR1 inhibitor suppressed both the Lox-evoked CLDN upregulation and EBF enhancement. In addition, the treatment of the cells with Lox-RS resulted in higher TER value and lower LYCH permeability than those with Lox. Thus, Lox-RS synthesized by CBR1 may greatly contribute to the improving efficacy of Lox on the barrier function. Since EBF is decreased in inflammatory bowel disease, we finally examined the effect of Lox on EBF using the Caco-2/THP-1 co-culture system, which is used as an in vitro inflammatory bowel disease model. Lox significantly recovered EBF which was impaired by inflammatory cytokines secreted from THP-1 macrophages. These in vitro observations suggest that Lox enhances intestinal EBF, for which the metabolism of Lox to Lox-RS by CBR1 has an important role.
Collapse
Affiliation(s)
- Satoshi Endo
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 501-1196, Gifu, Japan
| | - Tsubasa Nishiyama
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 501-1196, Gifu, Japan
| | - Tomoe Matuoka
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 501-1196, Gifu, Japan
| | - Takeshi Miura
- Pharmaceutical Education Support Center, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, 663-8184, Japan
| | - Toru Nishinaka
- Laboratory of Biochemistry, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi, 584-8540, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Department of Biopharmaceutical Sciences, Gifu Pharmaceutical University, 501-1196, Gifu, Japan.
| |
Collapse
|
10
|
Fratter A, Biagi D, Giacomini I, Montopoli M, Cocetta V. Novel Adenosine Triphosphate-Based Nutraceutical Formulation to Prevent Non-Steroidal Anti-Inflammatory Drug Enteric Cell Toxicity: Preliminary In Vitro Evidence. J Med Food 2021; 24:1293-1303. [PMID: 34491844 DOI: 10.1089/jmf.2021.0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed and self-prescribed drugs to treat inflammation and pain associated with several conditions. Although their efficacy and overall safety have been recognized when used according to medical prescriptions and for a short period time, their acute impact on enteric physiology has rarely been studied. NSAIDs are known to cause gastrointestinal side effects due to their intrinsic mechanism of action, which involves prostaglandins synthesis, leading to impaired mucopolysaccharide layer production. Despite this well-known and investigated side effect, the short- and long-term influences of acute administration of these drugs on the biochemical environment of enteric cells are not well understood. This study investigates the rate of adenosine triphosphate (ATP) loss and permeability alterations occurring in a model of human enteric cells, as a consequence of acute administration of NSAIDs as major perpetrators of enteric toxicity. For the first time, we investigate the ability of a novel ATP-containing formulation to prevent ATP hydrolysis in the stomach and ensure its delivery at the proximal duodenal site.
Collapse
Affiliation(s)
- Andrea Fratter
- Labomar SPA, Nutraceutical Research and Innovation Department, Istrana, Treviso, Italy.,Italian Society of Nutraceutical Formulators (SIFNut), Castelfranco Veneto, Treviso, Italy
| | - Damiano Biagi
- Labomar SPA, Nutraceutical Research and Innovation Department, Istrana, Treviso, Italy
| | - Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
11
|
Mao QY, Xie S, Wu LL, Xiang RL, Cai ZG. MicroRNA-mRNA expression profiles and functional network after injection of botulinum toxin type A into submandibular glands. Toxicon 2021; 199:31-40. [PMID: 34052235 DOI: 10.1016/j.toxicon.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
Botulinum toxin type A (BTXA) is effective for the treatment of sialorrhea. MicroRNAs (miRNAs) have significant functions in salivary diseases, but the role of miRNAs during BTXA-inhibited salivary secretion is not yet clear. A total of 19 differentially expressed (DE) miRNAs and 1072 DE mRNAs were identified following BTXA injected into submandibular glands of rats (n = 4) through miRNA sequencing and microarray analysis. Bioinformatic analysis identified that several pathways may be associated with the inhibition of salivary secretion, such as the MAPK signalling pathway, tight junctions, and cytokine-cytokine receptor interaction. We predicted the target genes of DE miRNAs and established the miRNA-mRNA interaction network. The intersection of DE mRNAs and target genes of DE miRNAs was performed and seven mRNAs were obtained: Egr2, Paqr9, Zkscan1, Usp6n, Cyb561a3, Zfhx4, and Clic5. These findings explore the mechanism of BTXA in inhibiting salivary secretion and probably will provide new ideas for clinical application.
Collapse
Affiliation(s)
- Qian-Ying Mao
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Shang Xie
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, 100191, China.
| | - Zhi-Gang Cai
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
| |
Collapse
|
12
|
NMR-Guided Repositioning of Non-Steroidal Anti-Inflammatory Drugs into Tight Junction Modulators. Int J Mol Sci 2021; 22:ijms22052583. [PMID: 33806674 PMCID: PMC7961873 DOI: 10.3390/ijms22052583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/24/2022] Open
Abstract
Bioavailability is a major bottleneck in the clinical application of medium molecular weight therapeutics, including protein and peptide drugs. Paracellular transport of these molecules is hampered by intercellular tight junction (TJ) complexes. Therefore, safe chemical regulators for TJ loosening are desired. Here, we showed a potential application of select non-steroidal anti-inflammatory drugs (NSAIDs) as TJ modulators. Based on our previous observation that diclofenac and flufenamic acid directly bound various PDZ domains with a broad specificity, we applied solution nuclear magnetic resonance techniques to examine the interaction of other NSAIDs and the first PDZ domain (PDZ1) of zonula occludens (ZO)-1, ZO-1(PDZ1). Inhibition of ZO-1(PDZ1) is expected to provide loosening of the epithelial barrier function because the domain plays a crucial role in maintaining TJ integrity. Accordingly, diclofenac and indomethacin were found to decrease the subcellular localization of claudin (CLD)-2 but not occludin and ZO-1 at the apicolateral intercellular compartment of Madin–Darby canine kidney (MDCK) II cells. These NSAIDs exhibited 125–155% improved paracellular efflux of fluorescein isothiocyanate insulin for the Caco-2 cell monolayer. We propose that these NSAIDs can be repurposed as drug absorption enhancers for peptide drugs.
Collapse
|
13
|
Whitfield-Cargile CM, Coleman MC, Cohen ND, Chamoun-Emanuelli AM, DeSolis CN, Tetrault T, Sowinski R, Bradbery A, Much M. Effects of phenylbutazone alone or in combination with a nutritional therapeutic on gastric ulcers, intestinal permeability, and fecal microbiota in horses. J Vet Intern Med 2021; 35:1121-1130. [PMID: 33656183 PMCID: PMC7995434 DOI: 10.1111/jvim.16093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background Gastrointestinal (GI) injury and dysbiosis are adverse events associated with nonsteroidal anti‐inflammatory drug (NSAID) use in horses. Phenylbutazone has been shown to alter GI barrier function both in vitro and ex vivo, but its effects on barrier function have not been assessed in vivo. In addition, the ability of nutritional therapeutics to prevent these changes is not known. Objective Our objectives were to determine whether (a) phenylbutazone affected barrier function in vivo and (b) if phenylbutazone‐induced GI injury could be ameliorated by the use of a nutritional therapeutic. Animals Thirty healthy horses were randomly assigned to 3 groups (n = 10 per group): control, phenylbutazone, or phenylbutazone plus nutritional therapeutic. Methods This study was conducted as a blinded, randomized block design. All horses were managed identically throughout the study period. Samples were collected throughout the study period to monitor fecal microbiota changes and gastric ulcers before and after treatment. Quantification of the bacterial 16S rRNA gene in blood was used as a marker of intestinal permeability. Results Phenylbutazone increased amounts of bacterial 16S rDNA in circulation 3.02‐fold (95% confidence interval [CI], 0.1.89‐4.17), increased gastric ulceration score by a mean of 1.1 grade (P = .02), and induced specific changes in the microbiota, including loss of Pseudobutyrivibrio of family Lachnospiraceae. These changes were attenuated by nutritional treatment. Conclusions and Clinical Importance Collectively, these findings suggest that phenylbutazone induces GI injury, including impaired barrier function, and that nutritional treatment could attenuate these changes.
Collapse
Affiliation(s)
- Canaan M Whitfield-Cargile
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Michelle C Coleman
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Noah D Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ana M Chamoun-Emanuelli
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Cristobal Navas DeSolis
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Taylor Tetrault
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Ryan Sowinski
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Amanda Bradbery
- Department of Animal Science, College of Agriculture & Life Sciences Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Mattea Much
- Department of Animal Science, College of Agriculture & Life Sciences Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Han YM, Park JM, Her S, Kim MS, Park YJ, Hahm KB. Revaprazan prevented indomethacin-induced intestinal damages by enhancing tight junction related mechanisms. Biochem Pharmacol 2020; 182:114290. [PMID: 33075311 DOI: 10.1016/j.bcp.2020.114290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are the most commonly prescribed medications for alleviating pain and inflammation but may cause gastrointestinal tract damage. Proton pump inhibitors (PPI) prevent NSAID-induced gastric damage but may aggravate intestinal damage via dysbiosis and intestinal permeability alteration. Currently, there is growing interest regarding the influence of potassium competitive acid blockers (PCAB) on NSAID-induced enteropathy. Here, we investigated the relative changes in indomethacin-induced enteropathy by combining indomethacin with pantoprazole (as PPI) or revaprazan (as PCAB). We examined intestinal permeability-related molecular changes in in vitro Caco-2 cell models and in an in vivo indomethacin-induced enteropathy rat model. Indomethacin alone or in combination with pantoprazole significantly increased relative lucifer yellow dye flux and decreased relative trans-epithelial electrical resistance and tight junction protein (TJP) expression compare to normal cells. In contrast, indomethacin combined with revaprazan significantly preserved TJPs compare to indomethacin-treated cells. MLC phosphorylation, Rho activation, and ERK activation responsible for TJP were significantly increased by indomethacin alone or a combination of indomethacin and pantoprazole but not by a combination of indomethacin and revaprazan. Intestinal damage scores significantly increased with indomethacin and pantoprazole combination but not with indomethacin and revaprazan combination. Indomethacin and pantoprazole combination significantly activated Rho-GTPase, p-MLC, and p-ERK but significantly decreased TJP expression. However, indomethacin and revaprazan combination significantly preserved TJPs and inactivated Rho-GTPase, MLC, and ERK. Hence, revaprazan rather than PPIs should be co-administered with NSAIDs to mitigate NSAID-induced intestinal damage.
Collapse
Affiliation(s)
- Young-Min Han
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Jong-Min Park
- College of Oriental Medicine, Daejeon University, Daejeon, Republic of Korea
| | - Song Her
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | - Min Sun Kim
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea
| | | | - Ki Baik Hahm
- Medpacto Research Institute, Medpacto, Seoul, Republic of Korea; CHA Cancer Preventive Research Center, CHA Bio Complex, Pangyo, Republic of Korea.
| |
Collapse
|
15
|
Sharma L, Riva A. Intestinal Barrier Function in Health and Disease-Any role of SARS-CoV-2? Microorganisms 2020; 8:E1744. [PMID: 33172188 PMCID: PMC7694956 DOI: 10.3390/microorganisms8111744] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the structure and function of the intestinal barrier play a role in the pathogenesis of a multitude of diseases. During the recent and ongoing coronavirus disease (COVID-19) pandemic, it has become clear that the gastrointestinal system and the gut barrier may be affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and disruption of barrier functions or intestinal microbial dysbiosis may have an impact on the progression and severity of this new disease. In this review, we aim to provide an overview of current evidence on the involvement of gut alterations in human disease including COVID-19, with a prospective outlook on supportive therapeutic strategies that may be investigated to rescue intestinal barrier functions and possibly facilitate clinical improvement in these patients.
Collapse
Affiliation(s)
- Lakshya Sharma
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
| | - Antonio Riva
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
- Foundation for Liver Research, Institute of Hepatology, London SE5 9NT, UK
| |
Collapse
|
16
|
Herminghaus A, Buitenhuis AJ, Schulz J, Truse R, Vollmer C, Relja B, Bauer I, Picker O. Indomethacin Increases the Efficacy of Oxygen Utilization of Colonic Mitochondria and Uncouples Hepatic Mitochondria in Tissue Homogenates From Healthy Rats. Front Med (Lausanne) 2020; 7:463. [PMID: 32974368 PMCID: PMC7472952 DOI: 10.3389/fmed.2020.00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
- *Correspondence: Anna Herminghaus
| | - Albert J. Buitenhuis
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Jan Schulz
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Richard Truse
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Christian Vollmer
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Inge Bauer
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Olaf Picker
- Department of Anaesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
17
|
Bentley-Hewitt KL, Perrott M, Butts CA, Hedderley DI, Stoklosinski HM, Parkar SG. Influence of kiwifruit on gastric and duodenal inflammation-related gene expression in aspirin-induced gastric mucosal damage in rats. Sci Rep 2020; 10:13055. [PMID: 32747727 PMCID: PMC7400567 DOI: 10.1038/s41598-020-70006-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Kiwifruit (KF) contains bioactive compounds with potential anti-inflammatory properties. In this study, we investigated the protective effects of KF on gastric and duodenal damage induced by soluble aspirin in healthy rats. Sixty-four male Sprague Dawley rats were allocated to eight experimental treatments (n = 8) and the experimental diets were fed for 14 days ad libitum. The experimental diets were 20% fresh pureed KF (green-fleshed and gold-fleshed) or 10% glucose solution (control diet). A positive anti-inflammatory control treatment (ranitidine) was included. At the end of the 14-day feeding period, the rats were fasted overnight, and the following morning soluble aspirin (400 mg/kg aspirin) or water (control) was administered by oral gavage. Four hours after aspirin administration, the rats were euthanized and samples taken for analysis. We observed no significant ulcer formation or increase in infiltration of the gastric mucosal inflammatory cells in the rats with the aspirin treatment. Despite this, there were significant changes in gene expression, such as in the duodenum of aspirin-treated rats fed green KF where there was increased expression of inflammation-related genes NOS2 and TNF-alpha. We also observed that gold and green KF diets had a number of contrasting effects on genes related to inflammation and gastro-protective effects.
Collapse
Affiliation(s)
- Kerry L Bentley-Hewitt
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand.
| | - Matthew Perrott
- School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Duncan I Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Halina M Stoklosinski
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| | - Shanthi G Parkar
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11600, Palmerston North, 4442, New Zealand
| |
Collapse
|
18
|
Cervantes-García D, Bahena-Delgado AI, Jiménez M, Córdova-Dávalos LE, Ruiz-Esparza Palacios V, Sánchez-Alemán E, Martínez-Saldaña MC, Salinas E. Glycomacropeptide Ameliorates Indomethacin-Induced Enteropathy in Rats by Modifying Intestinal Inflammation and Oxidative Stress. Molecules 2020; 25:molecules25102351. [PMID: 32443501 PMCID: PMC7287897 DOI: 10.3390/molecules25102351] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Nonsteroidal anti-inflammatory drug (NSAID)-induced enteropathy is considered a serious and increasing clinical problem without available treatment. Glycomacropeptide (GMP) is a 64-amino acid peptide derived from milk κ-casein with numerous biological activities. The aim of this study was to investigate the protective effect of GMP on NSAID enteropathy in rats. Enteropathy was induced by seven days oral indomethacin administration. Rats were orally GMP treated from seven days previous and during the establishment of the enteropathy model. Changes in metabolism, hematological and biochemical blood alterations, intestinal inflammation and oxidative damage were analyzed. Integrity barrier markers, macroscopic intestinal damage and survival rate were also evaluated. GMP treatment prevented anorexia and weight loss in animals. Furthermore, prophylaxis with GMP ameliorated the decline in hemoglobin, hematocrit, albumin and total protein levels. The treatment had no therapeutic efficacy on the decrease of occludin and mucin (MUC)-2 expression in intestinal tissue. However, GMP markedly decreased neutrophil infiltration, and CXCL1, interleukin-1β and inducible nitric oxide synthase expression. Nitric oxide production and lipid hydroperoxide level in the small intestine were also diminished. These beneficial effects were mirrored by preventing ulcer development and increasing animal survival. These results suggest that GMP may protect against NSAID enteropathy through anti-inflammatory and antioxidant properties.
Collapse
Affiliation(s)
- Daniel Cervantes-García
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
- National Council of Science and Technology, Mexico City 03940, Mexico
| | - Armida I. Bahena-Delgado
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
| | - Mariela Jiménez
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
| | - Laura E. Córdova-Dávalos
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
| | - Vanessa Ruiz-Esparza Palacios
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
| | - Esperanza Sánchez-Alemán
- Department of Morphology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (E.S.-A.); (M.C.M.-S.)
- Unit of Familiar Medicine #8, Mexican Institute of Social Security, Aguascalientes 20180, Mexico
| | - María C. Martínez-Saldaña
- Department of Morphology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (E.S.-A.); (M.C.M.-S.)
| | - Eva Salinas
- Department of Microbiology, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20131, Mexico; (D.C.-G.); (A.I.B.-D.); (M.J.); (L.E.C.-D.); (V.R.-E.P.)
- Correspondence: ; Tel.: +52-449-910-8424
| |
Collapse
|
19
|
Park JM, Lee HJ, Sikiric P, Hahm KB. BPC 157 Rescued NSAID-cytotoxicity Via Stabilizing Intestinal Permeability and Enhancing Cytoprotection. Curr Pharm Des 2020; 26:2971-2981. [PMID: 32445447 DOI: 10.2174/1381612826666200523180301] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/19/2020] [Indexed: 02/08/2023]
Abstract
The stable gastric pentadecapeptide BPC 157 protects stomach cells, maintains gastric integrity against various noxious agents such as alcohol, nonsteroidal anti-inflammatory drugs (NSAIDs), and exerts cytoprotection/ adaptive cytoprotection/organoprotection in other epithelia, that is, skin, liver, pancreas, heart, and brain. Especially BPC 157 counteracts gastric endothelial injury that precedes and induces damage to the gastric epithelium and generalizes "gastric endothelial protection" to protection of the endothelium of other vessels including thrombosis, prolonged bleeding, and thrombocytopenia. In this background, we put the importance of BPC 157 as a possible way of securing GI safety against NSAIDs-induced gastroenteropathy since still unmet medical needs to mitigate NSAIDs-induced cytotoxicity are urgent. Furthermore, gastrointestinal irritants such as physical or mental stress, NSAIDs administration, surfactants destroyer such as bile acids, alcohol can lead to leaky gut syndrome through increasing epithelial permeability. In this review article, we described the potential rescuing actions of BPC 157 against leaky gut syndrome after NSAIDs administration for the first time.
Collapse
Affiliation(s)
- Jong M Park
- Department of Pharmacology Daejeon University College of Oriental Medicine, Daejeon, Korea
| | - Ho J Lee
- University of Gachon Lee Gil Ya Cancer and Diabetes Institute, Incheon, Korea
| | - Predrag Sikiric
- Department of Pharmacology, Medical Faculty, University of Zagreb, Zagreb, Croatia
| | - Ki B Hahm
- CHA Cancer Prevention Research Center, CHA Bio Complex, Seongnam, Korea
- Digestive Disease Center, CHA University Bundang Medical Center, Pangyo, Korea
| |
Collapse
|
20
|
Salvianolate lyophilized injection (SLI) strengthens blood-brain barrier function related to ERK1/2 and Akt signaling pathways. Brain Res 2019; 1720:146295. [DOI: 10.1016/j.brainres.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
|
21
|
Catechin and Procyanidin B 2 Modulate the Expression of Tight Junction Proteins but Do Not Protect from Inflammation-Induced Changes in Permeability in Human Intestinal Cell Monolayers. Nutrients 2019; 11:nu11102271. [PMID: 31546671 PMCID: PMC6836206 DOI: 10.3390/nu11102271] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022] Open
Abstract
The possibility of counteracting inflammation-related barrier defects with dietary compounds such as (poly)phenols has raised much interest, but information is still scarce. We have investigated here if (+)-catechin (CAT) and procyanidin B2 (PB2), two main dietary polyphenols, protect the barrier function of intestinal cells undergoing inflammatory stress. The cell model adopted consisted of co-cultured Caco-2 and HT29-MTX cells, while inflammatory conditions were mimicked through the incubation of epithelial cells with the conditioned medium of activated macrophages (MCM). The epithelial barrier function was monitored through trans-epithelial electrical resistance (TEER), and ROS production was assessed with dichlorofluorescein, while the expression of tight-junctional proteins and signal transduction pathways were evaluated with Western blot. The results indicated that MCM produced significant oxidative stress, the activation of NF-κB and MAPK pathways, a decrease in occludin and ZO-1 expression, and an increase in claudin-7 (CL-7) expression, while TEER was markedly lowered. Neither CAT nor PB2 prevented oxidative stress, transduction pathways activation, ZO-1 suppression, or TEER decrease. However, PB2 prevented the decrease in occludin expression and both polyphenols produced a huge increase in CL-7 abundance. It is concluded that, under the conditions adopted, CAT and PB2 do not prevent inflammation-dependent impairment of the epithelial barrier function of intestinal cell monolayers. However, the two compounds modify the expression of tight-junctional proteins and, in particular, markedly increase the expression of CL-7. These insights add to a better understanding of the potential biological activity of these major dietary flavan-3-ols at intestinal level.
Collapse
|
22
|
Study on the Mechanism of Fu Zi Li Zhong Decoction in Treating Gastric Ulcer and its Effect on Gastrointestinal Microecology. DIGITAL CHINESE MEDICINE 2019. [DOI: 10.1016/j.dcmed.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
Mazumder S, De R, Debsharma S, Bindu S, Maity P, Sarkar S, Saha SJ, Siddiqui AA, Banerjee C, Nag S, Saha D, Pramanik S, Mitra K, Bandyopadhyay U. Indomethacin impairs mitochondrial dynamics by activating the PKCζ-p38-DRP1 pathway and inducing apoptosis in gastric cancer and normal mucosal cells. J Biol Chem 2019; 294:8238-8258. [PMID: 30940726 DOI: 10.1074/jbc.ra118.004415] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 03/27/2019] [Indexed: 12/14/2022] Open
Abstract
The subcellular mechanism by which nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastric cancer and normal mucosal cells is elusive because of the diverse cyclooxygenase-independent effects of these drugs. Using human gastric carcinoma cells (AGSs) and a rat gastric injury model, here we report that the NSAID indomethacin activates the protein kinase Cζ (PKCζ)-p38 MAPK (p38)-dynamin-related protein 1 (DRP1) pathway and thereby disrupts the physiological balance of mitochondrial dynamics by promoting mitochondrial hyper-fission and dysfunction leading to apoptosis. Notably, DRP1 knockdown or SB203580-induced p38 inhibition reduced indomethacin-induced damage to AGSs. Indomethacin impaired mitochondrial dynamics by promoting fissogenic activation and mitochondrial recruitment of DRP1 and down-regulating fusogenic optic atrophy 1 (OPA1) and mitofusins in rat gastric mucosa. Consistent with OPA1 maintaining cristae architecture, its down-regulation resulted in EM-detectable cristae deformity. Deregulated mitochondrial dynamics resulting in defective mitochondria were evident from enhanced Parkin expression and mitochondrial proteome ubiquitination. Indomethacin ultimately induced mitochondrial metabolic and bioenergetic crises in the rat stomach, indicated by compromised fatty acid oxidation, reduced complex I- associated electron transport chain activity, and ATP depletion. Interestingly, Mdivi-1, a fission-preventing mito-protective drug, reversed indomethacin-induced DRP1 phosphorylation on Ser-616, mitochondrial proteome ubiquitination, and mitochondrial metabolic crisis. Mdivi-1 also prevented indomethacin-induced mitochondrial macromolecular damage, caspase activation, mucosal inflammation, and gastric mucosal injury. Our results identify mitochondrial hyper-fission as a critical and common subcellular event triggered by indomethacin that promotes apoptosis in both gastric cancer and normal mucosal cells, thereby contributing to mucosal injury.
Collapse
Affiliation(s)
- Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Samik Bindu
- Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal 736101
| | - Pallab Maity
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal 700032.
| |
Collapse
|
24
|
Saad MA, El-Sahhar AE, Arab HH, Al-Shorbagy MY. Nicorandil abates arthritic perturbations induced by complete Freund's adjuvant in rats via conquering TLR4-MyD88-TRAF6 signaling pathway. Life Sci 2019; 218:284-291. [PMID: 30611783 DOI: 10.1016/j.lfs.2019.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/23/2018] [Accepted: 01/02/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease which poses a need to explore effective yet safe pharmacotherapeutic options. The current work aimed to study the therapeutic role of nicorandil in controlling RA. EXPERIMENTAL APPROACH Complete Freund's adjuvant (CFA)-induced arthritis model was applied by injecting 400 μL of CFA in the right hind paw at day 0 and day 7. Four groups of rats were used as follows: normal-control (CTRL), CFA-induced arthritis (ART), CFA-induced arthritis treated with diclofenac (DIC) and CFA-induced arthritis treated with nicorandil (NIC). Both NIC and DIC were administered at day 14 for two weeks. Paw volume, knee joint diameter, pain behavior assessment as well as body weight were all periodically recorded throughout the experimental period. Following the sacrifice of animals at day 28, gene expressions of TLR-4, MyD88 and TRAF6 as well as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), nuclear factor Kappa B (NF-κB) were quantified in hind paws tissue. Finally, the serum levels of the inflammatory biomarkers (tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) together with the histopathological examination of sections in the rat hind paw were recorded. RESULTS Both NIC and DIC proved promising anti-arthritic potential mediated, at least in part through switching off TLR4-MyD88-TRAF6 axis as well as downstream TRAF6 dependent activated MAP kinases and NF-κB. CONCLUSION AND IMPLICATIONS Nicorandil, via interfering with TLR4 signaling, sheds light on a potential clinical role of the drug in pursuit for safe and effective regimens for RA.
Collapse
Affiliation(s)
- Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., 11562 Cairo, Egypt.
| | - Ayman E El-Sahhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., 11562 Cairo, Egypt.
| | - Hany H Arab
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini st., 11562 Cairo, Egypt; Biochemistry Division and GTMR Unit, Department of Pharmacology and Toxicology, Faculty of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El Aini st., 11562 Cairo, Egypt; School of Pharmacy, Newgiza University, Cairo, Egypt.
| |
Collapse
|
25
|
Koc K, Cerig S, Ucar S, Colak S, Bakir M, Erol HS, Yildirim S, Hosseinigouzdagani M, Simsek Ozek N, Aysin F, Fehim Kocpinar E, Budak H, Geyikoglu F. Gastroprotective effects of oleuropein and thymol on indomethacin-induced gastric ulcer in Sprague-Dawley rats. Drug Chem Toxicol 2018; 43:441-453. [PMID: 30426792 DOI: 10.1080/01480545.2018.1530261] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ethnopharmacological studies demonstrated that thymol (Thym) and oleuropein (Ole) have therapeutic potential for gastric ulcers. The molecular mechanism underlying the gastroprotective effects of these compounds have not been elucidated yet especially for their individual and combination use at high dose. Therefore, this study was conducted to explore their gastroprotective mechanisms on indomethacin (Indo)-induced gastric ulcer model. Ole (50,100, 250, and 500 mg/kg) and Thym (50,100, 200, and 500 mg/kg) were orally administered to the rats 10 min before the induction of ulcer with Indo. The combination of 500 mg/kg doses of Ole and Thym were applied. The gastric mucosa was evaluated histopathologically. Moreover, TAC/TOS, tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), endothelial nitric oxide synthase (eNOS), and caspase-3 levels were assessed by ELISA and the caspase-3 and TNF-α expressions were quantified by qRT-PCR. Indo-induced histopathological changes while Ole and Thym pretreatment prevented these effects. Unlike the 500 mg/kg dose of Ole treatment, the 500 mg/kg dose of Thym administration enhanced these damages. The decreased TAC, PGE2 levels and increased TOS, eNOS, TNF-α, caspase-3 levels were obtained in Indo group. However, these changes were reversed by Ole and Thym groups except the 500 mg/kg dose of Thym and the combination treatment groups. Similar trends were observed in the caspase-3 and TNF-α expression levels. These results demonstrated that enhanced inflammation, oxidant/antioxidant imbalance, and apoptotic activities were occurred in Indo, 500 mg/kg dose of Thym and the combination treatment groups while not in the other groups. The findings demonstrated the gastroprotective ability of Ole and low doses of Thym in gastric ulcer models.
Collapse
Affiliation(s)
- Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Salim Cerig
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Serap Ucar
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Suat Colak
- Department of Biology, Erzincan University, Erzincan, Turkey
| | - Murat Bakir
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary, Ataturk University, Erzurum, Turkey
| | | | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey.,East Anatolian High Technology Research and Application Center (DAYTAM), Ataturk University, Erzurum, Turkey
| | - Enver Fehim Kocpinar
- Department of Medical Laboratory, Techniques Vocational School of Health Services, Alparslan University, Mus, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
26
|
Increase in resistance to anticancer drugs involves occludin in spheroid culture model of lung adenocarcinoma A549 cells. Sci Rep 2018; 8:15157. [PMID: 30310131 PMCID: PMC6181945 DOI: 10.1038/s41598-018-33566-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is a serious issue in the therapy of many cancers, but the molecular mechanism is little understood. The mRNA level of occludin (OCLN), a tight junctional protein, was increased in the cisplatin (CDDP), doxorubicin (DXR), 7-ethyl-10-hydroxy-camptothecin, or gemcitabine-resistant human lung adenocarcinoma A549 cells. Here, we investigated the regulatory mechanism and pathophysiological role of OCLN. OCLN was mainly localized at tight junctions in A549 and CDDP-resistant A549 (A549/CDDP) cells. The level of p-Akt in A549/CDDP cells was higher than that in A549 cells, and the mRNA and protein levels of OCLN were suppressed by a phosphoinositide 3-kinase (PI3K)/Akt pathway inhibitor, LY-294002, suggesting that a PI3K/Akt pathway is involved in the elevation of OCLN expression. The overexpression of OCLN in A549 cells decreased paracellular permeability to DXR. Cytotoxicity to CDDP was unaffected by OCLN-overexpression in 2D culture model. In 3D culture model, the spheroid size, hypoxic level, and cell viability were significantly elevated by CDDP resistance, but not by OCLN-overexpression. The accumulation inside the spheroids and toxicity of DXR were correlated with OCLN expression. Our data suggest that OCLN is not directly involved in the chemoresistance, but it enhances chemoresistance mediated by suppression of accumulation of anticancer drugs inside the spheroids.
Collapse
|
27
|
Developing a link between toxicants, claudins and neural tube defects. Reprod Toxicol 2018; 81:155-167. [DOI: 10.1016/j.reprotox.2018.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
|
28
|
Guo P, Zhang SW, Zhang J, Dong JT, Wu JD, Tang ST, Yang JT, Zhang WJ, Wu F. Effects of imipenem combined with low-dose cyclophosphamide on the intestinal barrier in septic rats. Exp Ther Med 2018; 16:1919-1927. [PMID: 30186419 PMCID: PMC6122399 DOI: 10.3892/etm.2018.6373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
Anti-infection therapy combined with immunotherapy is one of the important research approaches for treating sepsis. However, the combination of anti-infection and immunotherapy therapeutic agents may have an adverse effect on intestinal barrier function. In the present study, it was hypothesized that imipenem combined with low-dose cyclophosphamide (CTX) could improve the sepsis survival rate compared with imipenem treatment alone. In addition, the alterations in the intestinal barrier were investigated and the possible mechanisms of altering intestinal barrier function in septic rats treated with imipenem combined with low-dose CTX or imipenem alone were explored. To investigate the effect of imipenem combined with low-dose CTX on the intestinal barrier, the markers of histopathology, intestinal permeability, intestinal epithelial apoptosis, cytokines interleukin (IL)-6, IL-10 and tumor necrosis factor (TNF)-α, and tight junction proteins zonula occludens (ZO)-1, occludin and claudin-2, were quantitatively and qualitatively evaluated. The results indicated that imipenem combined with low-dose CTX significantly improved the survival rate of rats compared with imipenem alone (P<0.05). However, no significantly difference between the treatment with imipenem combined with low-dose CTX and imipenem treatment alone was indicated with regard to histopathology, intestinal permeability, intestinal epithelial apoptosis and the expression of claudin-2, ZO-1 and TNF-α. However, imipenem combined with low-dose CTX significantly reduced IL-6 and IL-10 expression and significantly increased occludin expression compared with imipenem alone (P<0.05). It was concluded that imipenem combined with low-dose CTX could improve the survival rate of rats with sepsis compared with rats treated with imipenem alone. The present findings suggest that imipenem combined with low-dose CTX may cause damage to the intestinal barrier function and the mechanism may be associated with a reduction in IL-10 expression.
Collapse
Affiliation(s)
- Peng Guo
- Department of Critical Care Medicine, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Shun-Wen Zhang
- First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Jie Zhang
- Department of Emergency, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jiang-Tao Dong
- Department of Neurosurgery, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jiang-Dong Wu
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Su-Tu Tang
- Department of Critical Care Medicine, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832000, P.R. China
| | - Jun-Ting Yang
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Wan-Jiang Zhang
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| | - Fang Wu
- Department of Pathophysiology, Shihezi University School of Medicine/Key Laboratory of Xinjiang Endemic and Ethnic Diseases/Collaborative Innovation Center of High Incidence of Zoonotic Communicable Disease Prevention in The Western Region, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|