1
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Tian Y, Zhang M, Liu LX, Wang ZC, Liu B, Huang Y, Wang X, Ling YZ, Wang F, Feng X, Tu Y. Exploring non-coding RNA mechanisms in hepatocellular carcinoma: implications for therapy and prognosis. Front Immunol 2024; 15:1400744. [PMID: 38799446 PMCID: PMC11116607 DOI: 10.3389/fimmu.2024.1400744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a significant contributor to cancer-related deaths in the world. The development and progression of HCC are closely correlated with the abnormal regulation of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). Important biological pathways in cancer biology, such as cell proliferation, death, and metastasis, are impacted by these ncRNAs, which modulate gene expression. The abnormal expression of non-coding RNAs in HCC raises the possibility that they could be applied as new biomarkers for diagnosis, prognosis, and treatment targets. Furthermore, by controlling the expression of cancer-related genes, miRNAs can function as either tumor suppressors or oncogenes. On the other hand, lncRNAs play a role in the advancement of cancer by interacting with other molecules within the cell, which, in turn, affects processes such as chromatin remodeling, transcription, and post-transcriptional processes. The importance of ncRNA-driven regulatory systems in HCC is being highlighted by current research, which sheds light on tumor behavior and therapy response. This research highlights the great potential of ncRNAs to improve patient outcomes in this difficult disease landscape by augmenting the present methods of HCC care through the use of precision medicine approaches.
Collapse
Affiliation(s)
- Yu Tian
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
- School of Public Health, Benedictine University, Lisle, IL, United States
| | - Meng Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Li-xia Liu
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Zi-chao Wang
- Department of Ultrasound, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Bin Liu
- Central Laboratory, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding, Hebei, China
| | - Youcai Huang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoling Wang
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Yun-zhi Ling
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Furong Wang
- Department of Pathology, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| | - Xiaoqiang Feng
- Center of Stem Cell and Regenerative Medicine, Gaozhou People’s Hospital, Gaozhou, Guangdong, China
| | - Yanyang Tu
- Research Center, The Huizhou Central People’s Hospital, Guangdong Medical University, Huizhou, Guangdong, China
| |
Collapse
|
3
|
Pan M, Luo M, Liu L, Chen Y, Cheng Z, Wang K, Huang L, Tang N, Qiu J, Huang A, Xia J. EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J Exp Clin Cancer Res 2024; 43:35. [PMID: 38287371 PMCID: PMC10823730 DOI: 10.1186/s13046-024-02957-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/14/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a matter of great global public health importance; however, its current therapeutic effectiveness is deemed inadequate, and the range of therapeutic targets is limited. The aim of this study was to identify early growth response 1 (EGR1) as a transcription factor target in HCC and to explore its role and assess the potential of gene therapy utilizing EGR1 for the management of HCC. METHODS In this study, both in vitro and in vivo assays were employed to examine the impact of EGR1 on the growth of HCC. The mouse HCC model and human organoid assay were utilized to assess the potential of EGR1 as a gene therapy for HCC. Additionally, the molecular mechanism underlying the regulation of gene expression and the suppression of HCC growth by EGR1 was investigated. RESULTS The results of our investigation revealed a notable decrease in the expression of EGR1 in HCC. The decrease in EGR1 expression promoted the multiplication of HCC cells and the growth of xenografted tumors. On the other hand, the excessive expression of EGR1 hindered the proliferation of HCC cells and repressed the development of xenografted tumors. Furthermore, the efficacy of EGR1 gene therapy was validated using in vivo mouse HCC models and in vitro human hepatoma organoid models, thereby providing additional substantiation for the anti-cancer role of EGR1 in HCC. The mechanistic analysis demonstrated that EGR1 interacted with the promoter region of phosphofructokinase-1, liver type (PFKL), leading to the repression of PFKL gene expression and consequent inhibition of PFKL-mediated aerobic glycolysis. Moreover, the sensitivity of HCC cells and xenografted tumors to sorafenib was found to be increased by EGR1. CONCLUSION Our findings suggest that EGR1 possesses therapeutic potential as a tumor suppressor gene in HCC, and that EGR1 gene therapy may offer benefits for HCC patients.
Collapse
Affiliation(s)
- Mingang Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Muyu Luo
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Lele Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Yunmeng Chen
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ziyi Cheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Luyi Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China
| | - Jianguo Qiu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
4
|
Gu J, Bao S, Akemuhan R, Jia Z, Zhang Y, Huang C. Radiomics Based on Contrast-Enhanced CT for Recognizing c-Met-Positive Hepatocellular Carcinoma: a Noninvasive Approach to Predict the Outcome of Sorafenib Resistance. Mol Imaging Biol 2023; 25:1073-1083. [PMID: 37932610 DOI: 10.1007/s11307-023-01870-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVES The purpose of our project was to investigate the effectiveness of radiomic features based on contrast-enhanced computed tomography (CT) that can detect the expression of c-Met in hepatocellular carcinoma (HCC) and to validate its efficacy in predicting the outcome of sorafenib resistance. MATERIALS AND METHODS In total, 130 patients (median age, 60 years) with pathologically confirmed HCC who underwent contrast material-enhanced CT from October 2012 to July 2020 were randomly divided into a training set (n = 91) and a test set (n = 39). Radiomic features were extracted from arterial phase (AP), portal venous phase (VP) and delayed phase (DP) images of every participant's enhanced CT images. RESULTS The entire group comprised 39 Met-positive and 91 Met-negative patients. The combined model, which included the clinical factors and the radiomic features, performed well in the training (area under the curve [AUC] = 0.878) and validation (AUC = 0.851) cohorts. The nomogram, which relied on the combined model, fits well in the calibration curves. Decision curve analysis (DCA) further confirmed that the clinical valuation of the nomogram achieved comparable accuracy in c-Met prediction. Among another 20 patients with HCC who had received sorafenib, the predicted high-risk group had shorter overall survival (OS) than the predicted low-risk group (p < 0.05). CONCLUSION A multivariate model acquired from three phases (AP, VP and DP) of enhanced CT, HBV-DNA and γ glutamyl transpeptidase isoenzyme II (GGT-II) could be considered a satisfactory preoperative marker of the expression of c-Met in patients with HCC. This approach may help in overcoming sorafenib resistance in advanced HCC.
Collapse
Affiliation(s)
- Jingxiao Gu
- Department of Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, the, People's Republic of China
- Department of Radiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Shanlei Bao
- Department of Nuclear Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | | | - Zhongzheng Jia
- Department of Radiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China.
| | - Yu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Nantong, China.
| | - Chen Huang
- Department of Vascular Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, the, People's Republic of China.
| |
Collapse
|
5
|
Yan N, Zhang Z, Guo S, Shen S, Li X. Advanced HCC with amplified mesenchymal epithelial transition factor receptor responds well to savolitinib: a case report. Front Med (Lausanne) 2023; 10:1130012. [PMID: 37293311 PMCID: PMC10244768 DOI: 10.3389/fmed.2023.1130012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Objective Current treatment agents for HCC are mostly immune checkpoint inhibitors (ICIs) plus bevacizumab and multitarget tyrosine kinase inhibitors (TKIs); however, their limited overall response rate and shorter median progression-free survival (PFS) discourage their frequent use. The development of Mesenchymal Epithelial Transition Factor receptor (MET) Tyrosine Kinase Inhibitors (MET-TKI) has transformed the treatment pattern in MET-altered solid tumors and improved their prognosis. However, the benefits of MET-TKIs in MET-amplified hepatocellular carcinoma (HCC) remain unclear. Methods Here, we present a case of advanced HCC amplified with MET treated with savolitinib, a MET-TKI, after progression from first-line treatment with bevacizumab plus sintilimab. Results The patient achieved a partial response (PR) to savolitinib in the second line setting. The progression-free survival (PFS) of first-line of bevacizumab plus sintilimab and sequential second-line treatment with MET-TKI, savolitinib, are 3 and over 8 months, respectively. furthermore, the patient still had continuous PR status with manageable toxicities. Conclusions The present case report provides first-hand evidence that savolitinib may be beneficial for patients with advanced MET-amplified HCC and offers a promising treatment option.
Collapse
Affiliation(s)
- Ningning Yan
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziheng Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sanxing Guo
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shujing Shen
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xingya Li
- Department of Medical Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Minoux K, Lassailly G, Ningarhari M, Lubret H, El Amrani M, Canva V, Truant S, Mathurin P, Louvet A, Lebuffe G, Goria O, Nguyen-Khac E, Boleslawski E, Dharancy S. Neo-Adjuvant Use of Sorafenib for Hepatocellular Carcinoma Awaiting Liver Transplantation. Transpl Int 2022; 35:10569. [PMID: 36438781 PMCID: PMC9681796 DOI: 10.3389/ti.2022.10569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/21/2022] [Indexed: 12/01/2023]
Abstract
Data on efficacy and safety of sorafenib in a neoadjuvant setting for HCC awaiting liver transplantation (LT) are heterogeneous and scarce. We aimed to investigate the trajectory of patients treated with sorafenib while awaiting LT. All patients listed for HCC and treated with sorafenib were included in a monocentric observational study. A clinical and biological evaluation was performed every month. Radiological tumor response evaluation was realized every 3 months on the waiting list and every 6 months after LT. Among 327 patients listed for HCC, 62 (19%) were treated with Sorafenib. Sorafenib was initiated for HCC progression after loco-regional therapy (LRT) in 50% of cases and for impossibility of LRT in 50% of cases. The mean duration of treatment was 6 months. Thirty six patients (58%) dropped-out for tumor progression and 26 (42%) patients were transplanted. The 5-year overall and recurrent-free survival after LT was 77% and 48% respectively. Patients treated for impossibility of LRT had acceptable 5-year intention-to-treat overall and post-LT survivals. Conversely, patients treated for HCC progression presented high dropout rate and low intention-to-treat survival. Our results suggest that it is very questionable in terms of utility that patients treated for HCC progression should even be kept listed once the tumor progression has been observed.
Collapse
Affiliation(s)
- Kate Minoux
- CHU Lille, Department of Hepatogastroenterology, Lille, France
- INSERM U995, University of Lille, Lille, France
| | - Guillaume Lassailly
- CHU Lille, Department of Hepatogastroenterology, Lille, France
- INSERM U995, University of Lille, Lille, France
| | - Massih Ningarhari
- CHU Lille, Department of Hepatogastroenterology, Lille, France
- INSERM U995, University of Lille, Lille, France
| | - Henri Lubret
- CHU Lille, Department of Hepatogastroenterology, Lille, France
- INSERM U995, University of Lille, Lille, France
| | - Medhi El Amrani
- CHU Lille, Department of Digestive Surgery and Transplantation, University of Lille, Lille, France
| | - Valérie Canva
- CHU Lille, Department of Hepatogastroenterology, Lille, France
- INSERM U995, University of Lille, Lille, France
| | - Stéphanie Truant
- CHU Lille, Department of Digestive Surgery and Transplantation, University of Lille, Lille, France
| | - Philippe Mathurin
- CHU Lille, Department of Hepatogastroenterology, Lille, France
- INSERM U995, University of Lille, Lille, France
| | - Alexandre Louvet
- CHU Lille, Department of Hepatogastroenterology, Lille, France
- INSERM U995, University of Lille, Lille, France
| | - Gilles Lebuffe
- CHU Lille, Department of Anesthesiology, Resuscitation, and Critical Care Anesthesiology, University of Lille, Lille, France
| | - Odile Goria
- CHU Rouen, Department of Hepatogastroenterology, Hôpital Charles Nicolle, Rouen, France
| | - Eric Nguyen-Khac
- CHU Amiens-Picardie, Hôpital Sud, Department of Hepatogastroenterology, Amiens, France
- CHU Amiens, Centre Universitaire de Recherche en Santé (CURS), Université de Picardie-Jules-Verne (UPJV), Groupe de Recherche sur l’alcool et les Pharmacodépendances (GRAP), Inserm U1247, Amiens, France
| | - Emmanuel Boleslawski
- CHU Lille, Department of Digestive Surgery and Transplantation, University of Lille, Lille, France
| | - Sebastien Dharancy
- CHU Lille, Department of Hepatogastroenterology, Lille, France
- INSERM U995, University of Lille, Lille, France
| |
Collapse
|
7
|
|
8
|
Li L, Cheng L, Sa R, Qiu X, Chen L. Real-world insights into the efficacy and safety of tyrosine kinase inhibitors against thyroid cancers. Crit Rev Oncol Hematol 2022; 172:103624. [PMID: 35150866 DOI: 10.1016/j.critrevonc.2022.103624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 01/01/2023] Open
Abstract
Based on clinical trials demonstrating favorable short-term efficacy and tolerable toxicity, several tyrosine kinase inhibitors have been approved for treating locally recurrent or metastatic, progressive radioiodine-refractory differentiated thyroid cancer, BRAFV600E-mutant anaplastic thyroid cancer, and advanced or progressive medullary thyroid cancer. Longer term efficacy and safety of these treatments have been investigated in multiple real-world studies, demonstrating indispensable complementary value. Hereby, we summarize data from a total of 27 real-world studies with a focus on long-term survival data and rare but life-threatening adverse effects. An overall picture of current real-world study was drawn, and integrated experience of multiple centers would be helpful to clinical practice and further research.
Collapse
Affiliation(s)
- Lingyu Li
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, 227, South Chongqing Road, Shanghai 200023, China
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, 227, South Chongqing Road, Shanghai 200023, China
| | - Xian Qiu
- Shanghai Jiao Tong University School of Medicine, 227, South Chongqing Road, Shanghai 200023, China
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China; Shanghai Jiao Tong University School of Medicine, 227, South Chongqing Road, Shanghai 200023, China.
| |
Collapse
|
9
|
c-Met up-regulates the expression of PD-L1 through MAPK/NF-κBp65 pathway. J Mol Med (Berl) 2022; 100:585-598. [PMID: 35122106 DOI: 10.1007/s00109-022-02179-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/11/2022] [Accepted: 01/24/2022] [Indexed: 12/29/2022]
Abstract
Sorafenib acquired drug resistance during the treatment of hepatocellular carcinoma (HCC) reduces the efficacy of the drug. The immune escape effect induced by PD-L1 is largely associated with drug resistance of HCC. However, the regulated mechanism of PD-L1 is unclear. This research aimed to clarify the control mechanism of PD-L1. c-Met was found abnormally highly expressed in Huh-7SR with high PD-L1 expression. In addition, c-Met, as the upstream target molecule of PD-L1, promoted the proliferation and migration of HCC in vitro and in vivo. We also found that c-Met activated the MAPK signaling pathway and the downstream NF-κBp65 transcription factor, which interacts with the proximal region of the PD-L1 promoter to promote PD-L1 expression. In conclusion, c-Met regulates the transcription of PD-L1 through the MAPK/NF-κBp65 pathway, thereby promoting the progress of HCC. The role of c-Met and PD-L1 in HCC needs to be further studied, but it is a potential target for the treatment of HCC. KEY MESSAGES: In the study, it was found that c-Met is also abnormally highly expressed in Huh-7SR with high PD-L1 expression and can promote the development of HCC in vitro and in vivo. PD-L1 and c-Met expression levels are positively correlated. In the follow-up mechanism study, we found that c-Met activated the MAPK signaling pathway and subsequently activated the downstream NF-κBp65 transcription factor, which interacts with the proximal region of the PD-L1 promoter to promote PD-L1 expression. Our study found that c-Met regulates the transcription of PD-L1 through the MAPK/NF-κBp65 pathway, thereby promoting the progress of HCC.
Collapse
|
10
|
Liu Z, Lu J, Fang H, Sheng J, Cui M, Yang Y, Tang B, Zhang X. m6A Modification-Mediated DUXAP8 Regulation of Malignant Phenotype and Chemotherapy Resistance of Hepatocellular Carcinoma Through miR-584-5p/MAPK1/ERK Pathway Axis. Front Cell Dev Biol 2021; 9:783385. [PMID: 34957112 PMCID: PMC8696125 DOI: 10.3389/fcell.2021.783385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has a poor prognosis due to its high malignancy, rapid disease progression, and the presence of chemotherapy resistance. Long-stranded non-coding RNAs (lncRNAs) affect many malignant tumors, including HCC. However, their mechanism of action in HCC remains unclear. This study aimed to clarify the role of DUXAP8 in regulating the malignant phenotype and chemotherapy resistance in HCC. Using an in vivo xenograft tumor model, the regulatory functions and mechanisms of lncRNA DUXAP8 in the progression and response of HCC to chemotherapy were explored. It was found that DUXAP8 was significantly upregulated in a patient-derived xenograft tumor model based on sorafenib treatment, which is usually associated with a relatively poor prognosis in patients. In HCC, DUXAP8 maintained its upregulation in the expression by increasing the stability of m6A methylation-mediated RNA. DUXAP8 levels were positively correlated with the proliferation, migration, invasion, and chemotherapy resistance of HCC in vivo and in vitro. In the mechanistic study, it was found that DUXAP8 competitively binds to miR-584-5p through a competing endogenous RNA (ceRNA) mechanism, thus acting as a molecular sponge for miR-584-5p to regulate MAPK1 expression, which in turn activates the MAPK/ERK pathway. These findings can provide ideas for finding new prognostic indicators and therapeutic targets for patients with HCC.
Collapse
Affiliation(s)
- Zefeng Liu
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, China
| | - Jin Lu
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - He Fang
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, China
| | - Jiyao Sheng
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, China
| | - Mengying Cui
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, China
| | - Yongsheng Yang
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Bo Tang
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China.,Department of Health Sciences, Hiroshima Shudo University, Hiroshima, Japan
| | - Xuewen Zhang
- Department of Hepatobiliary Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, China.,Jilin Engineering Laboratory for Translational Medicine of Hepatobiliary and Pancreatic Diseases, Changchun, China
| |
Collapse
|
11
|
Deng S, Solinas A, Calvisi DF. Cabozantinib for HCC Treatment, From Clinical Back to Experimental Models. Front Oncol 2021; 11:756672. [PMID: 34722310 PMCID: PMC8548824 DOI: 10.3389/fonc.2021.756672] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related mortality worldwide. Patients with early-stage HCC can be treated successfully with surgical resection or liver transplantation. However, the usual late diagnosis of HCC precludes curative treatments, and systemic therapies are the only viable option for inoperable patients. Sorafenib, an orally available multikinase inhibitor, is a systemic therapy approved for treating patients with advanced HCC yet providing limited benefits. Consequently, new drugs have been developed to overcome sorafenib resistance and improve patients' prognoses. A new promising strategy is using c-MET inhibitors, such as cabozantinib, as activation of c-MET occurs in up to 40% of HCC patients. In particular, cabozantinib, in combination with the checkpoint inhibitor atezolizumab, is currently in phase 3 clinical trial for HCC, and the results are eagerly awaited. Herein, we summarize and review the drugs approved for the treatment of advanced HCC, mainly focusing on the clinical and preclinical efficacy evaluation of cabozantinib. Also, we report the available preclinical data on cabozantinib-based combination therapies for HCC, current obstacles for cabozantinib therapy, and the future directions for cabozantinib-based treatment for HCC.
Collapse
Affiliation(s)
- Shanshan Deng
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, CA, United States
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
12
|
Hu X, Zhu H, Shen Y, Zhang X, He X, Xu X. The Role of Non-Coding RNAs in the Sorafenib Resistance of Hepatocellular Carcinoma. Front Oncol 2021; 11:696705. [PMID: 34367979 PMCID: PMC8340683 DOI: 10.3389/fonc.2021.696705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the second most common cause of cancer-related death. Sorafenib is approved by the U.S. Food and Drug Administration to be a first-line chemotherapy agent for patients with advanced HCC. A portion of advanced HCC patients can benefit from the treatment with sorafenib, but many patients ultimately develop sorafenib resistance, leading to a poor prognosis. The molecular mechanisms of sorafenib resistance are sophisticated and indefinite. Notably, non-coding RNAs (ncRNAs), which include long ncRNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs), are critically participated in the occurrence and progression of tumors. Moreover, growing evidence has suggested that ncRNAs are crucial regulators in the development of resistance to sorafenib. Herein, we integrally and systematically summarized the molecular mechanisms and vital role of ncRNAs impact sorafenib resistance of HCC, and ultimately explored the potential clinical administrations of ncRNAs as new prognostic biomarkers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinyao Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Shen
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Zhang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoqin He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ximing Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Li J, Chu T, Yang M. Oleic acid induces A7r5 cell proliferation and migration associated with increased expression of HGF and p‑p38. Mol Med Rep 2021; 24:484. [PMID: 33907848 PMCID: PMC8127074 DOI: 10.3892/mmr.2021.12123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
The phenotypes and mechanisms underlying the proliferation and migration of vascular smooth muscle cells (VSMCs) induced by oleic acid (OA) are not completely understood. Therefore, the aim of the present study was to further elucidate the effects of OA on the proliferation and migration of VSMCs. Using A7r5 cells, the hepatocyte growth factor (HGF) inhibitor PHA665752 and the p38 MAPK inhibitor SB203580 were utilized, and Cell Counting Kit‑8 (CCK‑8) assays, Transwell assays, flow cytometry, ELISAs, western blotting and reverse transcription‑quantitative PCR (RT‑qPCR) were conducted to assess the effects of OA. CCK‑8 assays indicated that OA promoted (at 5 and 50 µmol/l) or inhibited (at 800 µmol/l) A7r5 cell proliferation in a time‑ and concentration‑dependent manner (P<0.05). Transwell assays revealed that OA also promoted (at 50 µmol/l) or inhibited (at 800 µmol/l) A7r5 cell migration (P<0.05). Moreover, cell‑cycle analysis identified that 50 µmol/l OA reduced the cellular population in the G0/G1 phase and enhanced the cellular population in the S phase (P<0.05), whereas 800 µmol/l OA increased the cell number in the G0/G1 phase and decreased the cell number in the S phase (P<0.05). In addition, OA promoted (at 50 µmol/l) or inhibited (at 800 µmol/l) the expression level of HGF in A7r5 cells, as demonstrated via ELISA, western blotting and RT‑qPCR analyses (P<0.05). It was also found that OA promoted (at 50 µmol/l) or inhibited (at 800 µmol/l) the expression level of phosphorylated (p)‑p38 in A7r5 cells, as indicated by western blotting (P<0.05). Furthermore, the cell proliferation, migration and HGF expression induced by OA (50 µmol/l) were mitigated by treatment with PHA665752 (0.1 µmol/l) (P<0.05), and the cell proliferation, migration and p‑p38 expression induced by OA (50 µmol/l) were mitigated by SB203580 (2 µmol/l) (P<0.05). Thus, the results suggested that OA served a role in the proliferation and migration of VSMCs via HGF and the p38 MAPK pathway. Moreover, the proliferation and migration of VSMCs induced by OA was associated with increased expression levels of HGF and p‑p38. Taken together, OA, HGF and p38 MAPK may be potential therapeutic targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Clinical Medicine, Jishou University School of Medicine, Jishou, Hunan 416000, P.R. China
| | - Ting Chu
- Department of Nursing, Jishou University School of Medicine, Jishou, Hunan 416000, P.R. China
| | - Maosheng Yang
- Laboratory of Disorders Genes and Department of Pharmacology, Jishou University School of Pharmacy, Jishou, Hunan 416000, P.R. China
| |
Collapse
|
14
|
Liu ZL, Liu JH, Staiculescu D, Chen J. Combination of molecularly targeted therapies and immune checkpoint inhibitors in the new era of unresectable hepatocellular carcinoma treatment. Ther Adv Med Oncol 2021; 13:17588359211018026. [PMID: 34104226 PMCID: PMC8150670 DOI: 10.1177/17588359211018026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Multikinase inhibitors (MKIs) have been the only first-line treatment for advanced hepatocellular carcinoma (HCC) for more than a decade, until the approval of immune checkpoint inhibitors (ICIs). Moreover, the combination regimen of atezolizumab (anti-programmed cell death protein ligand 1 antibody) plus bevacizumab (anti-vascular endothelial growth factor monoclonal antibody) has recently been demonstrated to have superior efficacy when compared with sorafenib monotherapy. The remarkable efficacy has made this combination therapy the new standard treatment for advanced HCC. In addition to MKIs, many other molecularly targeted therapies are under investigation, some of which have shown promising results. Therefore, in the era of immuno-oncology, there is a significant rationale for testing the combinations of molecularly targeted therapies and ICIs. Indeed, numerous preclinical and clinical studies have shown the synergic antitumor efficacy of such combinations. In this review, we aim to summarize the current knowledge on the combination of molecularly targeted therapies and immune checkpoint therapies for HCC from both preclinical and clinical perspectives.
Collapse
Affiliation(s)
- Ze-Long Liu
- Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing-Hua Liu
- Department of Hepatobiliary Surgery and Professor Cai’s Laboratory, Linyi People’s Hospital, Linyi, Shandong Province, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University, No. 3, East Qingchun Road, Hangzhou, Zhejiang Province, 310016, China
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
15
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Zhao F, Feng G, Zhu J, Su Z, Guo R, Liu J, Zhang H, Zhai Y. 3-Methyladenine-enhanced susceptibility to sorafenib in hepatocellular carcinoma cells by inhibiting autophagy. Anticancer Drugs 2021; 32:386-393. [PMID: 33395067 PMCID: PMC7952045 DOI: 10.1097/cad.0000000000001032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
As an effective targeted therapy for advanced hepatocellular carcinoma (HCC), sorafenib resistance has been frequently reported in recent years, with the activation of autophagy by cancer cells under drug stress being one of the crucial reasons. Sorafenib treatment could enhance autophagy in HCC cells and autophagy is also considered as an important mechanisms of drug resistance. Therefore, the inhibition of autophagy is a potential way to improve the sensitivity and eliminate drug resistance to restore their efficacy. To determine whether autophagy is involved in sorafenib resistance and investigate its role in the regulation of HepG2 cells' (an HCC cell line) chemosensitivity to sorafenib, we simultaneously treated HepG2 with sorafenib and 3-Methyladenine (3-MA) (a common autophagy inhibitor). First, by performing cell counting kit 8 cell viability assay, Hoechst 33342 apoptosis staining, and Annexin V-fluorescein isothiocyanate/propidium iodide apoptosis kit detection, we found that both sorafenib and 3-MA effectively inhibitted the proliferative activity of HepG2 cells and induced their apoptosis to a certain extent. This effect was significantly enhanced after these two drugs were combined, which was also confirmed by the increased expression of apoptosis-related proteins. Subsequently, by using AAV-GFP-LC3 transfection methods and transmission electron microscopy, we found that both the number and activity of autophagosomes in HepG2 cells in sorafenib and 3-MA group were significantly reduced, suggesting that autophagy activity was inhibited, and this result was consistent with the expression results of autophagy-related proteins. Therefore, we conclude that 3-MA may attenuate the acquired drug resistance of sorafenib by counteracting its induction of autophagy activity, thus enhancing its sensitivity to advanced HCC therapy.
Collapse
Affiliation(s)
- Fangfang Zhao
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guohe Feng
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Junyao Zhu
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhijun Su
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
| | - Ruyi Guo
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
| | - Jiangfu Liu
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
| | - Huatang Zhang
- Department of Infectious Disease, Fujian Medical University Affiliated First Quanzhou Hospital, Quanzhou, Fujian
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Xiao F, Li H, Feng Z, Huang L, Kong L, Li M, Wang D, Liu F, Zhu Z, Wei Y, Zhang W. Intermedin facilitates hepatocellular carcinoma cell survival and invasion via ERK1/2-EGR1/DDIT3 signaling cascade. Sci Rep 2021; 11:488. [PMID: 33436794 PMCID: PMC7803743 DOI: 10.1038/s41598-020-80066-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most malignant cancer types, hepatocellular carcinoma (HCC) is highly invasive and capable of metastasizing to distant organs. Intermedin (IMD), an endogenous peptide belonging to the calcitonin family, has been suggested playing important roles in cancer cell survival and invasion, including in HCC. However, how IMD affects the behavior of HCC cells and the underlying mechanisms have not been fully elucidated. Here, we show that IMD maintains an important homeostatic state by activating the ERK1/2-EGR1 (early growth response 1) signaling cascade, through which HCC cells acquire a highly invasive ability via significantly enhanced filopodia formation. The inhibition of IMD blocks the phosphorylation of ERK1/2, resulting in EGR1 downregulation and endoplasmic reticulum stress (ER) stress, which is evidenced by the upregulation of ER stress marker DDIT3 (DNA damage-inducible transcript 3). The high level of DDIT3 induces HCC cells into an ER-stress related apoptotic pathway. Along with our previous finding that IMD plays critical roles in the vascular remodeling process that improves tumor blood perfusion, IMD may facilitate the acquisition of increased invasive abilities and a survival benefit by HCC cells, and it is easier for HCC cells to obtain blood supply via the vascular remodeling activities of IMD. According to these results, blockade of IMD activity may have therapeutic potential in the treatment of HCC.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Intensive Care Unit of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hongyu Li
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zhongxue Feng
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Luping Huang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lingmiao Kong
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Min Li
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Denian Wang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Fei Liu
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhijun Zhu
- Liver Transplantation Center, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
| | - Yong'gang Wei
- Department of Liver Surgery, West China Hospital, Sichuan University, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Wei Zhang
- Department of Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, No. 1, Ke Yuan 4th Road, Gao Peng Street, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
18
|
Yılmaz Y, Batur T, Korhan P, Öztürk M, Atabey N. Targeting c-Met and AXL Crosstalk for the Treatment of Hepatocellular Carcinoma. LIVER CANCER IN THE MIDDLE EAST 2021:333-364. [DOI: 10.1007/978-3-030-78737-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Myojin Y, Kodama T, Maesaka K, Motooka D, Sato Y, Tanaka S, Abe Y, Ohkawa K, Mita E, Hayashi Y, Hikita H, Sakamori R, Tatsumi T, Taguchi A, Eguchi H, Takehara T. ST6GAL1 Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clin Cancer Res 2020; 27:1150-1161. [PMID: 33288659 DOI: 10.1158/1078-0432.ccr-20-3382] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is characterized by high intertumor heterogeneity of genetic drivers. Two multitarget tyrosine kinase inhibitors (TKI), lenvatinib and sorafenib, are used as standard-of-care chemotherapeutics in patients with advanced HCC, but a stratification strategy has not been established because of a lack of efficacious biomarkers. Therefore, we sought biomarkers that indicate lenvatinib-susceptible HCC. EXPERIMENTAL DESIGN We performed genetic screening of HCC driver genes involved in TKI susceptibility using a novel HCC mouse model in which tumor diversity of genetic drivers was recapitulated. A biomarker candidate was evaluated in human HCC cell lines. Secreted proteins from HCC cells were then screened using mass spectrometry. Serum and tumor levels of the biomarker candidates were analyzed for their association and prediction of overall survival in patients with HCC. RESULTS We found that lenvatinib selectively eliminated FGF19-expressing tumors, whereas sorafenib eliminated MET- and NRAS-expressing tumors. FGF19 levels and lenvatinib susceptibility were correlated in HCC cell lines, and FGF19 inhibition eliminated lenvatinib susceptibility. Lenvatinib-resistant HCC cell lines, generated by long-term exposure to lenvatinib, showed FGF19 downregulation but were resensitized to lenvatinib by FGF19 reexpression. Thus, FGF19 is a tumor biomarker of lenvatinib-susceptible HCC. Proteome and secretome analyses identified ST6GAL1 as a tumor-derived secreted protein positively regulated by FGF19 in HCC cells. Serum ST6GAL1 levels were positively correlated with tumor FGF19 expression in patients with surgically resected HCC. Among patients with serum ST6GAL1-high HCC who underwent TKI therapy, lenvatinib therapy showed significantly better survival than sorafenib. CONCLUSIONS Serum ST6GAL may be a novel biomarker that identifies lenvatinib-susceptible FGF19-driven HCC.
Collapse
Affiliation(s)
- Yuta Myojin
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazuki Maesaka
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Yu Sato
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoshi Tanaka
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yuichi Abe
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kazuyoshi Ohkawa
- Department of Gastroenterology and Hepatology, Osaka International Cancer Institute, Osaka, Japan
| | - Eiji Mita
- Department of Gastroenterology and Hepatology, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hayato Hikita
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ryotaro Sakamori
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tomohide Tatsumi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ayumu Taguchi
- Division of Molecular Diagnostics, Aichi Cancer Center Research Institute, Nagoya, Japan.,Division of Advanced Cancer Diagnostics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan.
| |
Collapse
|
20
|
Yang X, Liu J, Liang Q, Sun G. Valproic acid reverses sorafenib resistance through inhibiting activated Notch/Akt signaling pathway in hepatocellular carcinoma. Fundam Clin Pharmacol 2020; 35:690-699. [PMID: 33015852 DOI: 10.1111/fcp.12608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common lethal human malignancies worldwide. Sorafenib is the first-line drug approved by the United States Food and Drug Administration for HCC. However, the acquired resistance to sorafenib reduces its beneficial effects and limits clinical use. In this study, we established a sorafenib-resistant HCC cell line HepG2-SR by low-concentration gradient induction. Compared with the parental cell HepG2, the proliferation and anti-apoptosis were increased in drug-resistant cell HepG2-SR. Thorough comparisons of the molecular changes between parental HepG2 and sorafenib-resistant HepG2-SR cells indicated that the Notch signaling pathway and PI3K/Akt signaling pathway were associated with sorafenib resistance mechanisms. Notch1 and Akt were upregulated in sorafenib-resistant cells. However, we surprisingly found that valproic acid (VPA) combined with sorafenib could enhance the sensitivity of drug-resistant cells and reverse the increased levels of Notch1 and Akt in sorafenib-resistant HCC cells. Moreover, Akt inhibitor could suppress Notch1 expression, whereas the level of Akt phosphorylation decreased along with increasing dose of Notch inhibitor. Besides, we found that knockdown of Akt resulted in Notch1 reduction, whereas Notch1 reduction also led to a significant reduction in the phosphorylation of Akt. Collectively, our results indicated that Notch1 and Akt might play vital roles in sorafenib resistance in HCC cells and VPA might overcome the drug resistance to enhance the sensitivity of HCC cells to sorafenib through suppressing Notch/Akt signaling pathway. VPA combined with sorafenib may provide a potential targeting therapeutic regimen for clinically to solve the problem of sorafenib resistance.
Collapse
Affiliation(s)
- Xu Yang
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Jing Liu
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Qing Liang
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| | - Guangchun Sun
- Department of Pharmacy, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, China
| |
Collapse
|
21
|
Jiang Y, Tu X, Zhang X, Liao H, Han S, Jiang W, Zheng Y, Zhao P, Tong Z, Fu Q, Qi Q, Shen J, Zhong L, Pan Y, Fang W. Nutrition and metabolism status alteration in advanced hepatocellular carcinoma patients treated with anti-PD-1 immunotherapy. Support Care Cancer 2020; 28:5569-5579. [PMID: 32361828 DOI: 10.1007/s00520-020-05478-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE The aim of this study was to evaluate the nutrition and metabolism status alteration during immunotherapy in advanced hepatocellular carcinoma (HCC) patients. METHODS Patients with advanced HCC who participated in the clinical trials of single-agent anti-PD-1 immunotherapy or sorafenib were retrospectively included. We analyzed self-comparison of the nutritional and metabolic indices of patients in the anti-PD-1 and sorafenib treatment group. We conducted mutual-comparison of the mentioned indices between the disease progression group and disease control group among anti-PD-1 treatment patients. We further analyzed those indices with statistical differences by partial correlation and survival analysis. RESULTS Both self-comparison before and after treatment in the anti-PD-1 group and mutual-comparison of disease progression and the control group showed significant differences in multiple indices, but we did not observe significant differences in the sorafenib group. Strikingly, albumin (ALB)/prognostic nutritional index (PNI, calculated by serum albumin and lymphocyte count) decreased distinctly in the immunotherapy disease progression group patients. However, changes in ALB/PNI were not significant in disease progression patients from the sorafenib group or in the disease control patients with immunotherapy. Partial correlation analysis suggested that ALB and PNI were positively correlated with the efficacy of immunotherapy. Furthermore, survival analysis showed that the median progression-free survival and median overall survival of patients in the ALB/PNI decreased group were significantly shorter than those of patients from the ALB/PNI increased group. CONCLUSION Anti-PD-1 immunotherapy might alter the nutritional and metabolic status in advanced HCC patients. We also should pay attention to the nutritional and metabolic status of patients when drug resistance is detected.
Collapse
Affiliation(s)
- Yizhen Jiang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Xiaoxuan Tu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Xiangying Zhang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Haihong Liao
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Shuwen Han
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Weiqin Jiang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Yi Zheng
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Peng Zhao
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Zhou Tong
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Qihan Fu
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China
| | - Quan Qi
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Junjun Shen
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Liping Zhong
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China
| | - Yuefen Pan
- Department of Medical Oncology, Huzhou Central Hospital, Huzhou, 313000, Zhejiang, People's Republic of China.
| | - Weijia Fang
- Department of Medical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, People's Republic of China.
| |
Collapse
|
22
|
Yu J, Chen GG, Lai PBS. Targeting hepatocyte growth factor/c-mesenchymal-epithelial transition factor axis in hepatocellular carcinoma: Rationale and therapeutic strategies. Med Res Rev 2020; 41:507-524. [PMID: 33026703 DOI: 10.1002/med.21738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/27/2020] [Accepted: 09/27/2020] [Indexed: 12/27/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer mortality worldwide. The outcome of current standard treatments, as well as targeted therapies in advanced stages, are still unsatisfactory. Attention has been drawn to novel strategies for better treatment efficacy. Hepatocyte growth factor/c-mesenchymal-epithelial transition factor (HGF/c-Met) axis has been known as an essential element in the regulation of liver diseases and as an oncogenic factor in HCC. In this review, we collected the evidence of HGF/c-Met as a tumor progression and prognostic marker, discussed the anti-c-Met therapy in vitro, summarized the outcome of c-Met inhibitors in clinical trials, and identified potential impetus for future anti-c-Met treatments. We also analyzed the inconsistency of HGF/c-Met from various publications and offered reasonable explanations based on the current understanding in this area. In conclusion, HGF/c-Met plays a crucial role in the progression and growth of HCC, and the strategies to inhibit this pathway may facilitate the development of new and effective treatments for HCC patients.
Collapse
Affiliation(s)
- Jianqing Yu
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - George G Chen
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Paul B S Lai
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
23
|
Qiu W, Chang Y, Liu J, Yang X, Yu Y, Li J, Liang Q, Sun G. Identification of P-Rex1 in the Regulation of Liver Cancer Cell Proliferation and Migration via HGF/c-Met/Akt Pathway. Onco Targets Ther 2020; 13:9481-9495. [PMID: 33061433 PMCID: PMC7522411 DOI: 10.2147/ott.s265592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
Background Rho-GTPases and their activators, guanine nucleotide exchange factors (GEFs), are increasingly being recognized as essential mediators of oncogenic signaling. Although it is known that P-Rex1, a member of the Dbl family of GEFs for the Rac small GTPase, contributes to the migration of cancer cells, its exact role in liver cancer and the underlying mechanisms remain unclear. Materials and Methods Public datasets from the Gene Expression Omnibus database (GEO) and clinical liver cancer samples were analyzed to explore the expression of P-Rex1. P-Rex1 knockdown and overexpression cell lines were established using a recombinant lentiviral transfection system. BrdU and colony formation assays were performed to determine cell viability. Migratory capacity was analyzed using a transwell migration assay and an in vitro wound-healing assay. Nude mice bearing subcutaneous xenograft tumors were established to determine the effects of P-Rex1 on tumorigenesis in vivo. The role of P-Rex1 in hepatocarcinogenesis was determined through Western blot and co-immunoprecipitation. Results Induced expression of endogenous P-Rex1 was identified in liver cancer tumors when compared with adjacent nonmalignant tissues from clinical data. In response to HGF treatment, P-Rex1-knockdown cells displayed reduced proliferation and migration in vitro as well as reduced xenograft tumor growth in vivo. Overexpression of P-Rex1 promoted liver cancer cell proliferation and migration. P-Rex1 primarily acts as a downstream effector of GPCR signaling. This study demonstrated that downregulation of P-Rex1 led to a significant decrease in the phosphorylation of Akt and Erk1/2 by reducing the phosphorylation of the tyrosine kinase receptor c-Met. Furthermore, a physical association between P-Rex1 and c-Met was observed after HGF treatment, suggesting that P-Rex1 may be involved in the HGF/c-Met signaling pathway. Conclusion These results support the role of P-Rex1 as a novel player in liver cancer, which suggest that targeting P-Rex1 may provide a potential strategy for liver cancer treatment.
Collapse
Affiliation(s)
- Wancheng Qiu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yanhua Chang
- Department of Pathology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu Province, People's Republic of China
| | - Jing Liu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xu Yang
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yan Yu
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Li
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qing Liang
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| | - Guangchun Sun
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Identification of the Novel Oncogenic Role of SAAL1 and Its Therapeutic Potential in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12071843. [PMID: 32650537 PMCID: PMC7408781 DOI: 10.3390/cancers12071843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide, affecting over 700,000 people per year. The treatment effect in advanced HCC is still disappointing and prognosis of advanced HCC remains poor. Hence, to find more effective therapeutic targets to improve the treatment outcome of HCC is of urgent need. In this study, we reported the novel oncogenic function of SAAL1 (serum amyloid A-like 1) in HCC, which previously is considered as an inflammation-related gene. We found that SAAL1 was significantly upregulated in HCC tumor tissues when compared to the adjacent normal tissues and high expression of SAAL1 correlated with shorter overall survival in The Cancer Genome Atlas (TCGA) HCC database. Functionally, we showed that the depletion of SAAL1 significantly reduced cell proliferation, 3D colony formation, and migration/invasion abilities of HCC cancer cells. Furthermore, suppression of SAAL1 impaired the HGF/Met-driven Akt/mTOR phosphorylation cascade and increased the chemosensitivity of HCC cells to sorafenib and foretinib treatment. Our data indicated that SAAL1 plays an important role in HCC via mediating oncogenic HGF/Met-driven Akt/mTOR signaling and could serve as an independent prognostic marker, as well as a promising therapeutic target for HCC patients.
Collapse
|
25
|
Quantitative phosphoproteomic analysis identifies the potential therapeutic target EphA2 for overcoming sorafenib resistance in hepatocellular carcinoma cells. Exp Mol Med 2020; 52:497-513. [PMID: 32203105 PMCID: PMC7156679 DOI: 10.1038/s12276-020-0404-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Limited therapeutic options are available for advanced-stage hepatocellular carcinoma owing to its poor diagnosis. Drug resistance to sorafenib, the only available targeted agent, is commonly reported. The comprehensive elucidation of the mechanisms underlying sorafenib resistance may thus aid in the development of more efficacious therapeutic agents. To clarify the signaling changes contributing to resistance, we applied quantitative phosphoproteomics to analyze the differential phosphorylation changes between parental and sorafenib-resistant HuH-7 cells. Consequently, an average of ~1500 differential phosphoproteins were identified and quantified, among which 533 were significantly upregulated in resistant cells. Further bioinformatic integration via functional categorization annotation, pathway enrichment and interaction linkage analysis led to the discovery of alterations in pathways associated with cell adhesion and motility, cell survival and cell growth and the identification of a novel target, EphA2, in resistant HuH-7R cells. In vitro functional analysis indicated that the suppression of EphA2 function impairs cell proliferation and motility and, most importantly, overcomes sorafenib resistance. The attenuation of sorafenib resistance may be achieved prior to its development through the modulation of EphA2 and the subsequent inhibition of Akt activity. Binding analyses and in silico modeling revealed a ligand mimic lead compound, prazosin, that could abate the ligand-independent oncogenic activity of EphA2. Finally, data obtained from in vivo animal models verified that the simultaneous inhibition of EphA2 with sorafenib treatment can effectively overcome sorafenib resistance and extend the projected survival of resistant tumor-bearing mice. Thus our findings regarding the targeting of EphA2 may provide an effective approach for overcoming sorafenib resistance and may contribute to the management of advanced hepatocellular carcinoma.
Collapse
|
26
|
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z, Yu Z. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:55. [PMID: 32117981 PMCID: PMC7018668 DOI: 10.3389/fcell.2020.00055] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, leading to a large global cancer burden. Hepatocyte growth factor (HGF) and its high-affinity receptor, mesenchymal epithelial transition factor (c-Met), are closely related to the onset, progression, and metastasis of multiple tumors. The HGF/c-Met axis is involved in cell proliferation, movement, differentiation, invasion, angiogenesis, and apoptosis by activating multiple downstream signaling pathways. In this review, we focus on the function of the HGF/c-Met axis in HCC. The HGF/c-Met axis promotes the onset, proliferation, invasion, and metastasis of HCC. Moreover, it can serve as a biomarker for diagnosis and prognosis, as well as a therapeutic target for HCC. In addition, it is closely related to drug resistance during HCC treatment.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Wei L, Wang X, Lv L, Liu J, Xing H, Song Y, Xie M, Lei T, Zhang N, Yang M. The emerging role of microRNAs and long noncoding RNAs in drug resistance of hepatocellular carcinoma. Mol Cancer 2019; 18:147. [PMID: 31651347 PMCID: PMC6814027 DOI: 10.1186/s12943-019-1086-z] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and the second most lethal human cancer. A portion of patients with advanced HCC can significantly benefit from treatments with sorafenib, adriamycin, 5-fluorouracil and platinum drugs. However, most HCC patients eventually develop drug resistance, resulting in a poor prognosis. The mechanisms involved in HCC drug resistance are complex and inconclusive. Human transcripts without protein-coding potential are known as noncoding RNAs (ncRNAs), including microRNAs (miRNAs), small nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs) and circular RNA (circRNA). Accumulated evidences demonstrate that several deregulated miRNAs and lncRNAs are important regulators in the development of HCC drug resistance which elucidates their potential clinical implications. In this review, we summarized the detailed mechanisms by which miRNAs and lncRNAs affect HCC drug resistance. Multiple tumor-specific miRNAs and lncRNAs may serve as novel therapeutic targets and prognostic biomarkers for HCC.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Liyan Lv
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Jibing Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.,Department of Intervention Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Huaixin Xing
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Tianshui Lei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong Province, China.
| |
Collapse
|
28
|
Noonan A, Pawlik TM. Hepatocellular carcinoma: an update on investigational drugs in phase I and II clinical trials. Expert Opin Investig Drugs 2019; 28:941-949. [DOI: 10.1080/13543784.2019.1677606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Anne Noonan
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University Wexner Medical Center, The James Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center, The James Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|