1
|
Cammarata A, Marino J, Atia MN, Durán H, Glisoni RJ. Novel doxycycline gold nanoparticles via green synthesis using PEO-PPO block copolymers for enhanced radiosensitization of melanoma. Biomater Sci 2025. [PMID: 40261332 DOI: 10.1039/d5bm00253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
This study focuses on a green and sustainable nanoplatform for the delivery of therapeutic agents, based on gold nanoparticles (AuNPs) synthesized using PEO-PPO block copolymers (F127, F68, P85, and their F127:P85 combination) as dual-function reducing and stabilizing agents. This eco-friendly approach eliminates the need for toxic chemical reductants, adheres to green chemistry principles, and yields highly stable, biocompatible nanosystems. The resulting polymer-stabilized AuNPs were associated with doxycycline (DOXY), a mitochondrial biogenesis inhibitor with radiosensitizing properties, and characterized using UV-Vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and X-ray fluorescence (XRF). The nanoparticles exhibited high colloidal stability, with tunable hydrodynamic diameters modulated by the copolymer composition. In vitro studies on A-375 and IIB-MEL-J melanoma cell lines revealed that DOXY-associated AuNPs, combined with gamma radiation (2 Gy, 137Cs), significantly enhanced radiosensitivity, reducing both cell viability and clonogenic survival. The physicochemical features of the nanosystems, particularly particle size and surface composition, influenced cellular uptake and therapeutic response. Notably, AuNPs stabilized with F127:P85 copolymer combination (∼19 nm) outperformed those with F127 (∼30 nm), despite displaying slightly higher polydispersity. Compared to Turkevich AuNPs, our copolymer-coated nanosystems demonstrated superior colloidal stability and cellular internalization. These findings highlight the potential of green-synthesized AuNPs as multifunctional, biocompatible platforms for therapeutic delivery, supporting the development of effective and environmentally responsible multimodal cancer therapies. Moreover, the simplicity, scalability, and cost-effectiveness of the synthesis process support its potential for future translational applications.
Collapse
Affiliation(s)
- Agostina Cammarata
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Junín 956, C1113AAD Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| | - Julieta Marino
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - Mariel N Atia
- Comisión Nacional de Energía Atómica (CNEA), Gerencia de Investigación y Aplicaciones, Subgerencia de Tecnología y Aplicaciones de Aceleradores, San Martín, Buenos Aires, Argentina
- Instituto de Nanociencia y Nanotecnología (INN-CNEA-CONICET), San Martín, Buenos Aires, Argentina
| | - Hebe Durán
- Comisión Nacional de Energía Atómica (CNEA), Gerencia de Investigación y Aplicaciones, Subgerencia de Tecnología y Aplicaciones de Aceleradores, San Martín, Buenos Aires, Argentina
- Instituto de Nanociencia y Nanotecnología (INN-CNEA-CONICET), San Martín, Buenos Aires, Argentina
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología, San Martín, Buenos Aires, Argentina
| | - Romina J Glisoni
- Universidad de Buenos Aires (UBA), Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Biotecnología, Junín 956, C1113AAD Buenos Aires, Argentina
- CONICET - Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Nanobiotecnología (NANOBIOTEC), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Gu X, Li Y, Yang L, Wang Q, Jia H, Ruan D, El-Kott AF, Alkhathami AG, Morsy K. Cydonia oblonga extract mediated biosynthesis of gold nanoparticles: Analysis of its anti-oral cancer and antioxidant properties. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125268. [PMID: 39413609 DOI: 10.1016/j.saa.2024.125268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024]
Abstract
Here, using natural and biological macromolecules derived from Cydonia oblonga extract, we have developed a green protocol for the biogenic made Au NPs. Under ultrasonic activated conditions, the Cydonia oblonga phytomolecules were employed as an efficient green reducing agent for the Au3+ ions to the Au0 NPs. Additionally, by encapsulating or capping, they allowed the Au NPs to stabilize on their own. Several physicochemical techniques, such as elemental mapping, TEM, FE-SEM, UV-Vis spectroscopy, EDS, and ICP-OES, were used to analyze the structure of the Au NPs/Cydonia oblonga bio-nanocomposite. The field of medicinal therapeutics pertaining to human health includes cancer treatment as a major component. Subsequently, the as prepared Au NPs/Cydonia oblonga bio-nanocomposite was investigated for antioxidant and human anti-oral cancer assays. In such studies a number of cell lines, viz., HSC-3, HSC-2, and Ca9-22 were used in determining the cytotoxicity. Notably, Au NPs/Cydonia oblonga exhibit significant anti-oral cancer properties against HSC-3, HSC-2, and Ca9-22 cancer cell lines following time and dose-dependent manner. The corresponding IC50 values were determined as 201, 192, and 246 µg/mL respectively. DPPH radical scavenging method was used to determine the antioxidant activity of Au NPs/Cydonia oblonga bio-nanocomposite. The significant IC50 value suggested the material having very good antioxidant potential. The anti-human oral cancer effect of our material is believed to be due to its antioxidant effects.
Collapse
Affiliation(s)
- Xiaoxia Gu
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Yekan Li
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Lei Yang
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Qinyi Wang
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Huijie Jia
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China
| | - Danping Ruan
- Department of Stomatology, Minhang Hospital of Fudan University, NO. 170 Xinsong Road, Xinzhuang Town, Shanghai 201199, China.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Ali G Alkhathami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Saudi Arabia
| | - Kareem Morsy
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Zhao X, Qi X, Liu D, Che X, Wu G. A Novel Approach for Bladder Cancer Treatment: Nanoparticles as a Drug Delivery System. Int J Nanomedicine 2024; 19:13461-13483. [PMID: 39713223 PMCID: PMC11662911 DOI: 10.2147/ijn.s498729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer represents one of the most prevalent malignant neoplasms of the urinary tract. In the Asian context, it represents the eighth most common cancer in males. In 2022, there were approximately 613,791 individuals diagnosed with bladder cancer worldwide. Despite the availability of efficacious treatments for the two principal forms of bladder cancer, namely non-invasive and invasive bladder cancer, the high incidence of recurrence following treatment and the suboptimal outcomes observed in patients with high-grade and advanced disease represent significant concerns in the management of bladder cancer at this juncture. Nanoparticles have gained attention for their excellent properties, including stable physical properties, a porous structure that can be loaded with a variety of substances, and so on. The in-depth research on nanoparticles has led to their emergence as a new class of nanoparticles for combination therapy, due to their advantageous properties. These include the extension of the drug release window, the enhancement of drug bioavailability, the improvement of drug targeting ability, the reduction of local and systemic toxicity, and the simultaneous delivery of multiple drugs for combination therapy. As a result, nanoparticles have become a novel agent of the drug delivery system. The advent of nanoparticles has provided a new impetus for the development of non-surgical treatments for bladder cancer, including chemotherapy, immunotherapy, gene therapy and phototherapy. The unique properties of nanoparticles have facilitated the combination of diverse non-surgical therapeutic modalities, enhancing their overall efficacy. This review examines the recent advancements in the use of nanoparticles in non-surgical bladder cancer treatments, encompassing aspects such as delivery, therapeutic efficacy, and the associated toxicity of nanoparticles, as well as the challenges encountered in clinical applications.
Collapse
Affiliation(s)
- Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
4
|
Gomes SM, Gaspar MM, Coelho JMP, Reis CP. Targeting superficial cancers with gold nanoparticles: a review of current research. Ther Deliv 2024; 15:781-799. [PMID: 39314189 PMCID: PMC11457633 DOI: 10.1080/20415990.2024.2395249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Superficial cancers typically refer to cancers confined to the surface layers of tissue. Low-targeting therapies or side effects prompt exploration of novel therapeutic approaches. Gold nanoparticles (AuNPs), due to their unique optical properties, serve as effective photosensitizers, enabling tumor ablation through photothermal therapy (PTT). PTT induced by AuNPs can be achieved through light sources externally applied to the skin. Near-infrared radiation is the main light candidate due to its deep tissue penetration capability. This review explores recent advancements in AuNP-based PTT for superficial cancers, specifically breast, head and neck, thyroid, bladder and prostate cancers. Additionally, challenges and future directions in utilizing AuNPs for cancer treatment are discussed, emphasizing the importance of balancing efficacy with safety in clinical applications.
Collapse
Affiliation(s)
- Susana M Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - João MP Coelho
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Catarina Pinto Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
5
|
Talebi Tadi A, Farhadiannezhad M, Nezamtaheri MS, Goliaei B, Nowrouzi A. Biosynthesis and characterization of gold nanoparticles from citrullus colocynthis (L.) schrad pulp ethanolic extract: Their cytotoxic, genotoxic, apoptotic, and antioxidant activities. Heliyon 2024; 10:e35825. [PMID: 39247262 PMCID: PMC11379555 DOI: 10.1016/j.heliyon.2024.e35825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
The age-old discipline of plant therapy has gained renewed importance through the utilization of plants for the synthesis of metal nanoparticles. However, toxicity testing and characterization of the recently synthesized nanomaterials are essential to evaluating their appropriate application. Citrullus colocynthis is a medicinal plant with several health benefits. Herein, we used its ethanolic pulp extract (PE) to manufacture gold nanoparticles (PE-AuNPs). Various approaches were employed to assess the MTT50 and NR50 values of PE and PE-AuNPs at different concentrations in the human hepatocarcinoma cell line (HepG2). The study aimed to assess the genotoxic effects and in vivo toxicity of PE and PE-AuNPs at MTT50 dosages. The quasi-spherical, cubic/triangular prisms, and nail-looking particles exhibited no antioxidant properties. They had an absorbance peak between 540 and 560 nm, diameters of less than 20 nm, hydrodynamic diameters of 177.9 nm, and a negative surface charge (-10.3 mV). The significant role of plant phytochemicals in the formation of metal nanoparticles is confirmed by the diminished antioxidant capacity of extract residues following PE-AuNP synthesis. PE-AuNPs exhibited in vivo and cytotoxic effects at relatively lower concentrations compared to PE. In contrast to PE, PE-AuNPs exhibited lower genotoxic at MTT50 dosages. Despite having MTT50 values of approximately 1.95 ± 0.06 and 0.89 ± 0.03 mg/ml, PE and PE-AuNPs can still be considered biocompatible. Nonetheless, our results suggest that the characteristics of recently produced nanoparticles can differ from those of the matching plant. Further investigation can provide a better understanding of the possible therapeutic and pharmacological impacts of PE-AuNPs.
Collapse
Affiliation(s)
- Abbas Talebi Tadi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farhadiannezhad
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Nezamtaheri
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azin Nowrouzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
7
|
Banthia P, Vyas R, Jain A, Daga D, Ichikawa T, Kulshrestha V, Sharma A, Agarwal RD, Kapoor N, Gambhir L, Gautam S, Sharma G. Biogenic Ag-doped ZnO nanostructures induced cytotoxicity in luminal A and triple-negative human breast cancer cells. Nanomedicine (Lond) 2024; 19:2479-2493. [PMID: 39466383 PMCID: PMC11520553 DOI: 10.1080/17435889.2024.2347825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/23/2024] [Indexed: 10/30/2024] Open
Abstract
Aim: To evaluate the apoptosis-inducing properties of undoped and silver-doped-zinc-oxide nanoparticles (SDZONs) synthesized using Boswellia serrata against MCF-7 (Luminal-A) and MDA-MB-231 (Triple-negative) breast cancer cell lines.Methodology: Nanostructures were developed by facile biohydrothermal method and characterized by x-ray diffraction (XRD), Fourier transform infrared (FTIR), and high resolution transmission electron microscopy (HR-TEM). The comparative effect of doping and dose concentration of nanostructures on cytotoxicity was measured using MTT and trypan-blue-exclusion assay.Results: SDZONs exhibited greater cytotoxicity (20.71%, 27.31% cell viability) as compared with undoped nanostructures (35.81%, 37.08% cell viability) against MCF 7 and MDA-MB-231, respectively.Conclusion: The activity of biogenic nanostructures was highly dependent on doping, dose, and type of cell lines used. The novel biogenic SDZONs could be exploited as a promising, cost-effective, and environmentally benign strategy to curb breast cancer.
Collapse
Affiliation(s)
- Poonam Banthia
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| | - Rishi Vyas
- Department of Physics, Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, Rajasthan302017, India
| | - Ankur Jain
- Centre for Renewable Energy & Storage, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| | - Dhiraj Daga
- Department of Radiation Oncology, Jawahar Lal Nehru Medical College & Hospital, Ajmer, Rajasthan305001, India
| | - Takayuki Ichikawa
- Graduate School of Advanced Science & Engineering, Hiroshima University, Higashi, Hiroshima739-8527, Japan
| | - Vaibhav Kulshrestha
- CSIR-Central Salt & Marine Chemical Research Institute, Bhavnagar, Gujarat364002, India
| | - Asha Sharma
- Dept. of Zoology, Swargiya P.N.K.S. Govt. PG College, Dausa, Rajasthan303303, India
| | - RD Agarwal
- Dept. of Botany, retd. Professor, University of Rajasthan, Jaipur, Rajasthan302004, India
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| | - Lokesh Gambhir
- School of Basic & Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand248001, India
| | - Shilpi Gautam
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan302017, India
| |
Collapse
|
8
|
GÜRAĞAÇ DERELİ FT, AKKOÇ S. Investigation of In Vitro antiproliferative activity properties of Spartium junceum L. (Spanish broom) against MDA-MB-231 and HepG2 cancer cell lines. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2023; 10:345-353. [DOI: 10.21448/ijsm.1182965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Cancer is among the top global public health burdens leading to millions of deaths each year. The study aims to investigate the antiproliferative effect of Spartium junceum L. flowers on different cancer cell lines. The ethanolic extract of the flowers was prepared in the present study. Phytochemical analysis of the plant extract revealed the presence of several phenolic compounds such as cinnamic acid and its derivatives (chlorogenic, p-coumaric, ferulic acids), protocatechuic acid, epicatechin and luteolin. This extract was tested against human breast (MDA-MB-231) and liver (HepG2) cancer cell lines to find out its antiproliferative activity. It was determined that the extract was effective against both cell lines with IC50 values of 2.37 ± 0.47 and 0.98 ± 0.01 µL/mL for MDA-MB-231 and HepG2, respectively. Particularly, the extract was found to be more effective in the liver cancer cell line than the breast cancer cell line. All these obtained findings led us to believe that this medicinal plant could be a promising antiproliferative agent candidate for the treatment of human liver and breast cancers.
Collapse
|
9
|
Balaji T, Manushankar CM, Al-Ghanim KA, Kamaraj C, Thirumurugan D, Thanigaivel S, Nicoletti M, Sachivkina N, Govindarajan M. Padina boergesenii-Mediated Copper Oxide Nanoparticles Synthesis, with Their Antibacterial and Anticancer Potential. Biomedicines 2023; 11:2285. [PMID: 37626781 PMCID: PMC10452182 DOI: 10.3390/biomedicines11082285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The utilization of nanoparticles derived from algae has generated increasing attention owing to their environmentally sustainable characteristics and their capacity to interact harmoniously with biologically active metabolites. The present study utilized P. boergesenii for the purpose of synthesizing copper oxide nanoparticles (CuONPs), which were subsequently subjected to in vitro assessment against various bacterial pathogens and cancer cells A375. The biosynthesized CuONPs were subjected to various analytical techniques including FTIR, XRD, HRSEM, TEM, and Zeta sizer analyses in order to characterize their stability and assess their size distribution. The utilization of Fourier Transform Infrared (FTIR) analysis has provided confirmation that the algal metabolites serve to stabilize the CuONPs and function as capping agents. The X-ray diffraction (XRD) analysis revealed a distinct peak associated with the (103) plane, characterized by its sharpness and high intensity, indicating its crystalline properties. The size of the CuONPs in the tetragonal crystalline structure was measured to be 76 nm, and they exhibited a negative zeta potential. The biological assay demonstrated that the CuONPs exhibited significant antibacterial activity when tested against both Bacillus subtilis and Escherichia coli. The cytotoxic effects of CuONPs and cisplatin, when tested at a concentration of 100 µg/mL on the A375 malignant melanoma cell line, were approximately 70% and 95%, respectively. The CuONPs that were synthesized demonstrated significant potential in terms of their antibacterial properties and their ability to inhibit the growth of malignant melanoma cells.
Collapse
Affiliation(s)
- Thirupathi Balaji
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India; (T.B.); (C.M.M.); (S.T.)
| | - Chethakkad Manikkan Manushankar
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India; (T.B.); (C.M.M.); (S.T.)
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Chinnaperumal Kamaraj
- Directorate of Research and Virtual Education, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology (SRMIST), Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India;
| | - Durairaj Thirumurugan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India; (T.B.); (C.M.M.); (S.T.)
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chengalpattu Dt., Kattankulathur 603203, Tamil Nadu, India; (T.B.); (C.M.M.); (S.T.)
| | - Marcello Nicoletti
- Department of Environmental Biology, Foundation in Unam Sapientiam, Sapienza University of Rome, 00185 Rome, Italy;
| | - Nadezhda Sachivkina
- Department of Microbiology V.S. Kiktenko, Institute of Medicine, Peoples Friendship University of Russia Named after Patrice Lumumba (RUDN University), Moscow 117198, Russia
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar 608 002, Tamil Nadu, India;
- Unit of Natural Products and Nanotechnology, Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
10
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
11
|
Tuli HS, Joshi R, Kaur G, Garg VK, Sak K, Varol M, Kaur J, Alharbi SA, Alahmadi TA, Aggarwal D, Dhama K, Jaswal VS, Mittal S, Sethi G. Metal nanoparticles in cancer: from synthesis and metabolism to cellular interactions. JOURNAL OF NANOSTRUCTURE IN CHEMISTRY 2023; 13:321-348. [DOI: 10.1007/s40097-022-00504-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 07/28/2024]
|
12
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
13
|
Asl SS, Tafvizi F, Noorbazargan H. Biogenic synthesis of gold nanoparticles using Satureja rechingeri Jamzad: a potential anticancer agent against cisplatin-resistant A2780CP ovarian cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20168-20184. [PMID: 36251187 DOI: 10.1007/s11356-022-23507-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Drug resistance of cancer cells is a major issue in cancer treatment. Plant-mediated nanoparticle synthesis has been applied in recent years to overcome this problem. In this study, the biogenic synthesis of AuNPs was explored using Satureja rechingeri Jamzad aqueous leaf extract, and their anticancer effects were evaluated in cisplatin-resistant A2780CP ovarian cancer cells. The chemical composition of S. rechingeri Jamzad was analyzed using gas chromatography-mass spectrometry. The characteristics of green-synthesized AuNPs were confirmed using XRD, FTIR, UV-visible spectroscopy, TEM, SEM, EDX, DLS, and zeta potential. The cytotoxic effects of AuNPs and S. rechingeri Jamzad aqueous extract on cisplatin-resistant A2780CP ovarian cancer cells were evaluated by MTT assay and flow cytometry. Real-time PCR analyzed gene expression. The chemical composition revealed that carvacrol (89%) was the main component of the S. rechingeri Jamzad extract. The average size of the spherical biosynthesized AuNPs was 15.1 ± 3.7 nm. The AuNPs and plant extract inhibited the growth of cisplatin-resistant ovarian cancer cells in a time- and dose-dependent manner. The apoptotic cell death was confirmed by flow cytometry and DAPI staining. The proapoptotic genes were upregulated, while anti-apoptotic and metastatic genes were downregulated. According to the cell cycle analysis, cancer cells were arrested in the G0/G1 phase. Considering the anticancer activity of the synthesized AuNPs using S. rechingeri Jamzad and the low side effects of AuNPs on normal cells, these AuNPs showed strong potential for use as biological agents in drug-resistant cancer cells treatment.
Collapse
Affiliation(s)
- Sahar Sadeghi Asl
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Farzaneh Tafvizi
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran.
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Qian Z, Zhang Y, Yuan J, Gong S, Chen B. Current applications of nanomaterials in urinary system tumors. Front Bioeng Biotechnol 2023; 11:1111977. [PMID: 36890910 PMCID: PMC9986335 DOI: 10.3389/fbioe.2023.1111977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
The development of nanotechnology and nanomaterials has provided insights into the treatment of urinary system tumors. Nanoparticles can be used as sensitizers or carriers to transport drugs. Some nanoparticles have intrinsic therapeutic effects on tumor cells. Poor patient prognosis and highly drug-resistant malignant urinary tumors are worrisome to clinicians. The application of nanomaterials and the associated technology against urinary system tumors offers the possibility of improving treatment. At present, many achievements have been made in the application of nanomaterials against urinary system tumors. This review summarizes the latest research on nanomaterials in the diagnosis and treatment of urinary system tumors and provides novel ideas for future research on nanotechnologies in this field.
Collapse
Affiliation(s)
- Zhounan Qian
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yang Zhang
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jie Yuan
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Sun Gong
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Binghai Chen
- Department of Urology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Biogenic synthesis of spherical-shaped noble metal nanoparticles using Vicia faba extract (X@VF, X = Au, Ag) for photocatalytic degradation of organic hazardous dye and their in vitro antifungal, antibacterial and anticancer activities. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Mandhata CP, Sahoo CR, Padhy RN. Biomedical Applications of Biosynthesized Gold Nanoparticles from Cyanobacteria: an Overview. Biol Trace Elem Res 2022; 200:5307-5327. [PMID: 35083708 DOI: 10.1007/s12011-021-03078-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
Recently there had been a great interest in biologically synthesized nanoparticles (NPs) as potential therapeutic agents. The shortcomings of conventional non-biological synthesis methods such as generation of toxic byproducts, energy consumptions, and involved cost have shifted the attention towards green syntheses of NPs. Among noble metal NPs, gold nanoparticles (AuNPs) are the most extensively used ones, owing to the unique physicochemical properties. AuNPs have potential therapeutic applications, as those are synthesized with biomolecules as reducing and stabilizing agent(s). The green method of AuNP synthesis is simple, eco-friendly, non-toxic, and cost-effective with the use of renewable energy sources. Among all taxa, cyanobacteria have attracted considerable attention as nano-biofactories, due to cellular uptake of heavy metals from the environment. The cellular bioactive pigments, enzymes, and polysaccharides acted as reducing and coating agents during the process of biosynthesis. However, cyanobacteria-mediated AuNPs have potential biomedical applications, namely, targeted drug delivery, cancer treatment, gene therapy, antimicrobial agent, biosensors, and imaging.
Collapse
Affiliation(s)
- Chinmayee Priyadarsani Mandhata
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed To Be University, Bhubaneswar, Odisha, India.
| |
Collapse
|
17
|
An in vivo and in vitro assessment of the anti-breast cancer activity of crude extract and fractions from Prunella vulgaris L. Heliyon 2022; 8:e11183. [PMCID: PMC9636486 DOI: 10.1016/j.heliyon.2022.e11183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/07/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Prunella vulgaris L.(P. vulgaris) is a perennial herb belonging to the Labiate family and widely distributed in China, Japan, Korea and Europe. Medical monographs and previous studies have shown that P. vulgaris has significant anti-breast cancer activity, and its use in breast treatment has a long history. However, systematically reports about the material basis and mechanism of P. vulgaris on anti-breast cancer activity are limited. In the present study, we first screened the best active fraction from the crude extract (PVE) and ethanol eluted fractions of P. vulgaris by using MDA-MB-231, MCF-7, 4T1 cell models in vitro and a 4T1-BALB/c transplanted tumour mouse breast cancer model in vivo. Furthermore, the anti-breast cancer mechanism of the best active fraction was investigated. The results demonstrated that PVE and ethanol fractions exhibited anti-breast cancer activity, especially with the 50% ethanol eluted fraction (PV50), which effectively regulated the 4T1 cell cycle, inhibited tumour cell proliferation, and promoted cancer cell apoptosis. In case of in vivo assays, PV50 inhibited tumour growth and lung metastasis, as well as inducing cell apoptosis by promoting damage of nuclear DNA and increasing expression of cleaved caspase-3. In addition, the chemical compositions of PV50 were analyzed by HPLC and UPLC-MS/MS, which were identified as flavonoids, moderately polar triterpenes, and a small amount of phenolic acid. The PV50 could be applied as natural sources against breast cancer in the pharmaceutical industry. These findings provide a basis for understanding the mechanism of the anti-breast cancer activity of P. vulgaris.
Collapse
|
18
|
Ding M, Lin J, Qin C, Wei P, Tian J, Lin T, Xu T. Application of synthetic biology in bladder cancer. Chin Med J (Engl) 2022; 135:2178-2187. [PMID: 36209735 PMCID: PMC9771244 DOI: 10.1097/cm9.0000000000002344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
ABSTRACT Bladder cancer (BC) is the most common malignant tumor of the genitourinary system. The age of individuals diagnosed with BC tends to decrease in recent years. A variety of standard therapeutic options are available for the clinical management of BC, but limitations exist. It is difficult to surgically eliminate small lesions, while radiation and chemotherapy damage normal tissues, leading to severe side effects. Therefore, new approaches are required to improve the efficacy and specificity of BC treatment. Synthetic biology is a field emerging in the last decade that refers to biological elements, devices, and materials that are artificially synthesized according to users' needs. In this review, we discuss how to utilize genetic elements to regulate BC-related gene expression periodically and quantitatively to inhibit the initiation and progression of BC. In addition, the design and construction of gene circuits to distinguish cancer cells from normal cells to kill the former but spare the latter are elaborated. Then, we introduce the development of genetically modified T cells for targeted attacks on BC. Finally, synthetic nanomaterials specializing in detecting and killing BC cells are detailed. This review aims to describe the innovative details of the clinical diagnosis and treatment of BC from the perspective of synthetic biology.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Jiaxing Lin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Caipeng Qin
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| | - Ping Wei
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jiahe Tian
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 528403, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
19
|
Daei S, Ziamajidi N, Abbasalipourkabir R, Aminzadeh Z, Vahabirad M. Silver Nanoparticles Exert Apoptotic Activity in Bladder Cancer 5637 Cells Through Alteration of Bax/Bcl-2 Genes Expression. Chonnam Med J 2022; 58:102-109. [PMID: 36245767 PMCID: PMC9535103 DOI: 10.4068/cmj.2022.58.3.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/06/2022] Open
Abstract
Bladder cancer is defined as a urinary tract malignancy that threatens men's and women's health. Due to the side effects of common chemotherapies, novel therapeutic strategies are necessary to overcome the issues concerning bladder cancer treatments. Nanotechnology has been suggested as a means to develop the next-generation objectives of cancer diagnosis and treatment among various novel therapies. Owing to the special characteristics that they can offer, silver nanoparticles (AgNPs) were investigated in this study to evaluate their apoptotic impact on bladder cancer 5637 cells. In this study, an MTT assay was conducted and appropriate concentrations of AgNPs were selected. Moreover, reactive oxygen species (ROS) production and apoptosis levels were determined using fluorimetric and Annexin/PI flow cytometry assays, respectively. Moreover, the activity of caspase 3,7, mRNA expression of Bax (Bcl-2-associated X) and Bcl-2 (B-cell lymphoma 2) were assessed based on colorimetric and qRT-PCR methods, respectively. The results indicated that AgNPs can significantly reduce the viability of 5637 cells in a dose-dependent mode as well as having the ability to elevate ROS production. Flow cytometry data showed that AgNPs lead to a remarkable increase in the apoptosis rate as compared with the control. Consistent with this, the induction of apoptosis was revealed by the overexpression of Bax, accompanied by a reduction in Bcl-2 expression compared to the control. Furthermore, AgNPs remarkably stimulated caspase 3,7 activation. In summary, AgNPs can mediate apoptosis in 5637 cells via excessive ROS formation, up-regulating Bax/Bcl-2 expression, and caspase 3,7 activation.
Collapse
Affiliation(s)
- Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.,Molecular Medicine Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Zeynab Aminzadeh
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Vahabirad
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
20
|
Du L, Zhang R, Zhao L, Tang S, Hou Z, Xue P. Comparing the Anticancer Activities of Green-Synthesized Ginsenoside and Transformed Ginsenoside Nanoconjugates (Ag, Au, and Pt). J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aim: To assess the anticancer activity of nanoparticles synthesized via a green method using American ginseng (AG). Methods: Stem-leaf saponins from AG (SAG) and heat-transformed stem-leaf saponins from AG (TSAG) were used to synthesize different SAG nanoparticles (SAG-NPs)
and TSAG nanoparticles (TSAG-NPs). The NPs were characterized, and their anticancer activity was assessed in vitro. Results: The NPs, which differed in size (16.69 nm∼253.8 nm), were spherical or polyhedral with a low PDI and good stability. The TSAG-NPs inhibited cancer
cells by inhibiting proliferation, promoting cancer cell apoptosis and directly leading cancer cells to necrosis. The small cell lung cancer cell line (SCLC) NCI-H446 was the most sensitive to the TSAG-AgNPs, with an IC50 value of 20.71±2.38 μg/mL, and the TSAG-AgNPs
inhibited invasiveness and reduced the risk of metastasis. Conclusion: TSAG-AgNPs, selected from many SAG-NPs and TSAG-NPs, are sensitive to SCLC and provide a new approach to the currently limited treatment.
Collapse
Affiliation(s)
- Lidong Du
- School of Public Health, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Ruoyu Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Lei Zhao
- School of Public Health, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People’s Republic of China
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang, 261053, People’s Republic of China
| |
Collapse
|
21
|
Green synthesis of Gold and Silver Nanoparticles: Updates on Research, Patents, and Future Prospects. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Lu Y, Wang S, Wang Y, Li M, Liu Y, Xue D. Current Researches on Nanodrug Delivery Systems in Bladder Cancer Intravesical Chemotherapy. Front Oncol 2022; 12:879828. [PMID: 35720013 PMCID: PMC9202556 DOI: 10.3389/fonc.2022.879828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/21/2022] [Indexed: 11/15/2022] Open
Abstract
Bladder cancer is one of the most common malignant tumors in urinary system. Intravesical chemotherapy is a common adjuvant therapy after transurethral resection of bladder tumors. However, it has several disadvantages such as low drug penetration rate, short residence time, unsustainable action and inability to release slowly, thus new drug delivery and new modalities in delivery carriers need to be continuously explored. Nano-drug delivery system is a novel way in treatment for bladder cancer that can increase the absorption rate and prolong the duration of drug, as well as sustain the action by controlling drug release. Currently, nano-drug delivery carriers mainly included liposomes, polymers, and inorganic materials. In this paper, we reveal current researches in nano-drug delivery system in bladder cancer intravesical chemotherapy by describing the applications and defects of liposomes, polymers and inorganic material nanocarriers, and provide a basis for the improvement of intravesical chemotherapy drugs in bladder cancer.
Collapse
Affiliation(s)
- Yilei Lu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Siqi Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yuhang Wang
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Mingshan Li
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Yili Liu
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| | - Dongwei Xue
- Department of Urology, The Forth Hospital of China Medical University, Shenyang, China
| |
Collapse
|
23
|
Daei S, Ziamajidi N, Abbasalipourkabir R, Khanaki K, Bahreini F. Anticancer Effects of Gold Nanoparticles by Inducing Apoptosis in Bladder Cancer 5637 Cells. Biol Trace Elem Res 2022; 200:2673-2683. [PMID: 34455542 DOI: 10.1007/s12011-021-02895-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
Nanotechnology is a developing and revolutionary science that has been widely recommended for diagnosis and treatment of cancer. Among the various nanoparticles used in nanotechnology, gold nanoparticles (AuNPs) have attracted much attentions due to their promising anticancer properties. Despite the potential advantages of AuNPs, their apoptotic and anti-angiogenic effects have not yet been reported on human bladder cancer 5637 cells. This motivated us to evaluate (reactive oxygen species) ROS-mediated apoptosis in 5637 cells. For this task, inhibitory effect of AuNPs was investigated after 24-h exposure to different concentrations of AuNPs by MTT assay. Also, apoptosis level was assessed by ROS production, flow cytometry, and Hoechst 33,258 staining. Besides, mRNA expression of B-cell lymphoma protein 2 (Bcl-2), Bcl-2-associated X (Bax), vascular endothelial growth factor A (VEGFA) genes, and caspase-3,7 activity were determined by qRT-PCR and colorimetric assay, respectively. Moreover, migration rate was evaluated by wound healing assay. MTT results demonstrate that AuNPs can reduce 5637-cell viability in a dose-dependent manner, while fluorimetric assay data show significant increased ROS production in 25 and 50 µg/ml-treated cells. It is also observed that AuNPs lead to Bax overexpression and downregulation of Bcl-2 and VEGFA genes. In line with this, flow cytometry results show increased levels of apoptosis in 25 and 50 µg/ml AuNP-treated cells (p < 0.05). Similarly, Hoechst staining indicates a remarkable increase in cells with apoptotic morphology after treating with AuNPs. Overall, our findings show that AuNPs significantly provoke ROS production, induce apoptosis, and suppress cell migration in bladder cancer 5637 cells.
Collapse
Affiliation(s)
- Sajedeh Daei
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Nasrin Ziamajidi
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Roghayeh Abbasalipourkabir
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Korosh Khanaki
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Bahreini
- Department of Molecular Medicine and Genetics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Gong Y, Guo X, Zhu Q. Nephroprotective properties of chitosan/sodium lignosulfonate/Au nanoparticles in streptozotocin-induced nephropathy in mice: Introducing a novel therapeutic drug for the treatment of nephropathy. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
25
|
Ou X, Karmakar B, Awwad NS, Ibrahium HA, Osman HEH, El-kott AF, Abdel-Daim MM. Au nanoparticles adorned chitosan-modified magnetic nanocomposite: An investigation towards its antioxidant and anti-hepatocarcinoma activity in vitro. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109221] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Sun W, Karmakar B, Ibrahium HA, Awwad NS, El-kott AF. Design and synthesis of nano Cu/chitosan-starch bio-composite for the treatment of human thyroid carcinoma. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
27
|
Veisi H, Sayadi M, Morakabati N, Tamoradi T, Karmakar B. Au NPs fabricated on biguanidine-modified Zr-UiO-66 MOFs: a competent reusable heterogeneous nanocatalyst in the green synthesis of propargylamines. NEW J CHEM 2022. [DOI: 10.1039/d1nj02827h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, we utilized functionalized metal organic frameworks (MOFs) as a host matrix to embed gold (Au) nanoparticles.
Collapse
Affiliation(s)
- Hojat Veisi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Marzieh Sayadi
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Neko Morakabati
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | - Taiebeh Tamoradi
- Department of Chemistry, Production Technology Research Institute-ACECR, Ahvaz, Iran
| | - Bikash Karmakar
- Department of Chemistry, Gobardanga Hindu College, 24-Parganas (North), India
| |
Collapse
|
28
|
Immobilized Au nanoparticles on chitosan-biguanidine modified Fe3O4 nanoparticles and investigation of its anti-human lung cancer activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Pouteria Caimito nutritional fruit derived silver nanoparticles and core-shell nanospheres synthesis, characterization, and their oral cancer preventive efficiency. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. Molecules 2021; 26:molecules26216389. [PMID: 34770796 PMCID: PMC8586976 DOI: 10.3390/molecules26216389] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Gold nanoparticles (AuNPs) have been widely explored and are well-known for their medical applications. Chemical and physical synthesis methods are a way to make AuNPs. In any case, the hunt for other more ecologically friendly and cost-effective large-scale technologies, such as environmentally friendly biological processes known as green synthesis, has been gaining interest by worldwide researchers. The international focus on green nanotechnology research has resulted in various nanomaterials being used in environmentally and physiologically acceptable applications. Several advantages over conventional physical and chemical synthesis (simple, one-step approach to synthesize, cost-effectiveness, energy efficiency, and biocompatibility) have drawn scientists’ attention to exploring the green synthesis of AuNPs by exploiting plants’ secondary metabolites. Biogenic approaches, mainly the plant-based synthesis of metal nanoparticles, have been chosen as the ideal strategy due to their environmental and in vivo safety, as well as their ease of synthesis. In this review, we reviewed the use of green synthesized AuNPs in the treatment of cancer by utilizing phytochemicals found in plant extracts. This article reviews plant-based methods for producing AuNPs, characterization methods of synthesized AuNPs, and discusses their physiochemical properties. This study also discusses recent breakthroughs and achievements in using green synthesized AuNPs in cancer treatment and different mechanisms of action, such as reactive oxygen species (ROS), mediated mitochondrial dysfunction and caspase activation, leading to apoptosis, etc., for their anticancer and cytotoxic effects. Understanding the mechanisms underlying AuNPs therapeutic efficacy will aid in developing personalized medicines and treatments for cancer as a potential cancer therapeutic strategy.
Collapse
|
31
|
Joshi BC, Juyal V, Sah AN, Verma P, Mukhija M. Review On Documented Medicinal Plants Used For The Treatment Of Cancer. CURRENT TRADITIONAL MEDICINE 2021. [DOI: 10.2174/2215083807666211011125110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Background:
Cancer is a frightful disease and it is the second leading cause of death worldwide. Naturally derived compounds are gaining interest of research workers as they have less toxic side effects as compared to currently used treatments such as chemotherapy. Plants are the pool of chemical compounds which provides a promising future for research on cancer.
Objective:
This review paper provides updated information gathered on medicinal plants and isolated phytoconstituents used as anticancer agents and summarises the plant extracts and their isolated chemical constituents exhibiting anticancer potential on clinical trials.
Methods:
An extensive bibliographic investigation was carried out by analysing worldwide established scientific databases like SCOPUS, PUBMED, SCIELO, ScienceDirect, Springerlink, Web of Science, Wiley, SciFinder and Google Scholar etc. In next few decades, herbal medicine may become a new epoch of medical system.
Results:
Many researches are going on medicinal plants for the treatment of cancer but it is a time to increase further experimental studies on plant extracts and their chemical constituents to find out their mechanism of action at molecular level.
Conclusion:
The article may help many researchers to start off further experimentation that might lead to the drugs for the cancer treatment.
Collapse
Affiliation(s)
- Bhuwan Chandra Joshi
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Vijay Juyal
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Archana N. Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Bhimtal Campus, Nainital-263136, India
| | - Piyush Verma
- Department of Pharmacology, School of Pharmaceutical science and Technology, Sardar Bhagwan Singh University, Dehradun-248001, India
| | - Minky Mukhija
- Department of Pharmaceutical Sciences, Ch. Devi Lal College of Pharmacy, Buria Road, Bhagwangarh, Jagadhri-135003, India
| |
Collapse
|
32
|
Ali S, Khan MR, Khan A, Khan R. In vitro anticancer activity of extracted oil from Parrotiopsis jacquemontiana (Decne) Rehder. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153697. [PMID: 34399165 DOI: 10.1016/j.phymed.2021.153697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 07/18/2021] [Accepted: 07/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Parrotiopsis jacquemontiana, commonly referred to as "Beranj" in the local community, is widely used traditionally and has numerous health benefits. However, no studies have been conducted to investigate its anticancer potential, particularly its extracted oil. PURPOSE The present study was put forth to appraise the anticancer potential of Parrotiopsis jacquemontiana extracted oil against liver (hcclm3 and hepg2) and breast cancer (mda-mb 231 and mcf-7) cell lines relative to normal cell lines (lo2 and mcf-10a) via MTT assay. METHODS Flow cytometry indicated the apoptotic effect whereas invasion and migration capabilities of oil against cancer cells were determined by Matrigel invasion chamber and wound-scratch assays. RESULTS The results of oil revealed a time and dose-dependent increase in cell proliferation inhibition, conferring to least IC50 shown against hcclm3 (144.9 ± 0.75 μg/ml) and mda-mb 231 (145.7 ± 0.32 μg/ml) cell line at 72 h, whereas no cytotoxic effect on normal cells was observed. In addition, the oil significantly (p < 0.001) suppressed the migration and invasion of hcclm3 and mda-mb 231 cells, showing noteworthy anti-metastatic potential. Furthermore, cell death was confirmed by Annexin‒V/PI staining where the maximum apoptotic percentage was calculated for oil (200 μg/ml) alongside mda-mb 231 conferring to 15.36 ± 1.22, 26.7 ± 1.2, and 36.43 ± 1.65 at 24, 48, and 72 h whereas 12.33 ± 1.05, 19.36 ± 1.62, and 29.3 ± 0.79 was recorded alongside hcclm3 at similar time intervals, respectively. CONCLUSION In conclusion, the extracted oil exhibited strong anti-proliferative, anti-metastatic, and apoptotic effects and therefore may have potential applications in cancer treatment, however, further studies of oil regarding the action mechanisms and compounds involved in anticancer therapy are necessary.
Collapse
Affiliation(s)
- Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Asghar Khan
- National Centre for Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Raees Khan
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
33
|
Zhao P, El-kott A, Ahmed AE, Khames A, Zein MA. Green synthesis of gold nanoparticles (Au NPs) using Tribulus terrestris extract: Investigation of its catalytic activity in the oxidation of sulfides to sulfoxides and study of its anti-acute leukemia activity. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108781] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Malaikolundhan H, Mookkan G, Krishnamoorthi G, Matheswaran N, Alsawalha M, Veeraraghavan VP, Krishna Mohan S, Di A. Anticarcinogenic effect of gold nanoparticles synthesized from Albizia lebbeck on HCT-116 colon cancer cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1206-1213. [PMID: 33016139 DOI: 10.1080/21691401.2020.1814313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colon cancer is one of the major prevailing types of cancer worldwide. It has been the most important public health difficulty. Thus, we planned phytoconstituents arbitrated synthesis of gold nanoparticles (AuNPs) and examined their curative efficacy against the colon cancer (HCT-116) cells. In this current study, we formulated the AuNPs by using Albizia lebbeck (AL) aqueous leaf extract by the green method and synthesized AL-AuNPs were distinguished by UV-visible spectroscopy (UV-vis), energy dispersive X-ray diffraction (XRD), selected area (electron) diffraction (SAED) pattern, Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HR-TEM). Synthesized AL-AuNPs confirmed by the UV absorption highest at 535 nm and the crystal structure of AL-AuNPs was additionally established by XRD and SAED pattern. HR-TEM images explained the size and morphology allocation of nanoparticles. FTIR analysis confirmed the presence of alkynes, aromatic compounds, and alkenes of biomolecules in AL-AuNPs. Furthermore, AL-AuNPs induced cytotoxicity at the IC50 concentration 48 µg/ml and also induced apoptosis by enhanced ROS production, decreased ΔΨm, apoptotic morphological changes by AO/EtBr and altering pro and anti-apoptotic protein expressions were analyzed in HCT-116 colon cancer cells. The findings of this investigation proved that the AL-AuNPs were revealed the potential anticancer activity against colon cancer (HCT-116) cells.
Collapse
Affiliation(s)
| | - Gowsik Mookkan
- Department of Biotechnology, Selvam College of Technology, Namakkal, India
| | | | | | - Murad Alsawalha
- Department of Chemical and Process Engineering Technology, Jubail Industrial College (JIC), Jubail Industrial City, Kingdom of Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Department of Medical Biochemistry, College of Applied Medical Sciences - Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University, Jubail Industrial City, Kingdom of Saudi Arabia
| | - Aiting Di
- Anorectal Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Green Biosynthesis of Flaxseed Gold Nanoparticles (Au-NPs) as Potent Anti-cancer Agent Against Breast Cancer Cells. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101243] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Gopi Krishna M, Miao Y, Li M, Liu S. Biomimetic synthesis of Ag NPs and their applications for use in cancer therapy in nursing care. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Vinayagam R, Santhoshkumar M, Lee KE, David E, Kang SG. Bioengineered gold nanoparticles using Cynodon dactylon extract and its cytotoxicity and antibacterial activities. Bioprocess Biosyst Eng 2021; 44:1253-1262. [PMID: 33606108 DOI: 10.1007/s00449-021-02527-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/31/2021] [Indexed: 02/08/2023]
Abstract
In this study, simple and green route approach was applied for the synthesis gold nanoparticles (AuNPs) containing an aqueous extract of Cynodon dactylon L. Pers., (C. dactylon). The synthesized AuNPs were characterized using spectral and microscopic analysis. The changes in the color pattern were observed upon synthesis by UV-vis spectrophotometer with a peak of 530 nm. The FT-IR, XRD, SEM, and TEM were used to analyze the crystal nature and morphology of the green synthesized AuNPs. The C. dactylon-loaded AuNPs in different concentrations (0.625-100 μg/ml) were used to assess cytotoxicity activity against MCF-7 cell line and where the IC50 was found to be 31.34 μg/ml by MTT assay. The C. dactylon-AuNPs were significantly increased reactive oxygen species (ROS) generation, DNA fragmentation, and mitochondrial membrane changes observed by dichlorodihydroflurescenin diacetate (DCFH-DA), 4',6-diamidino-2-phenylindole (DAPI), Rhodamine-123, and acridine orange (AO)/ethidium bromide (EtBr) staining assay. Besides the microbial study revealed that C. dactylon-AuNPs exhibited significant antibacterial activity against clinically isolated pathogenic bacteria such as Enterobacter cloacae, Staphylococus Haemolytics, Staphylococcus petrasii subsp. Pragensis and Bacillus cereus with a zone of inhibition 13, 12, 13 and 12 mm, respectively. It could be concluded that C. dactylon has the ability to be involved in the biosynthesis of AuNPs, and the pharmacological studies proved the promising cytotoxic effect on MCF-7 cell line and pathogenic bacterial species.
Collapse
Affiliation(s)
- Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Murali Santhoshkumar
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamil Nadu, 632 115, India
| | - Kyung Eun Lee
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.,Stemforce, 313 Institute of Industrial Technology, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamil Nadu, 632 115, India
| | - Sang Gu Kang
- Department of Biotechnology, Institute of Biotechnology, College of Life and Applied Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
38
|
Synthesis and application of Au NPs-chitosan nanocomposite in the treatment of acute myeloid leukemia in vitro and in vivo. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.102929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
Datkhile KD, Patil SR, Durgawale PP, Patil MN, Hinge DD, Jagdale NJ, Deshmukh VN, More AL. Biogenic synthesis of gold nanoparticles using Argemone mexicana L. and their cytotoxic and genotoxic effects on human colon cancer cell line (HCT-15). J Genet Eng Biotechnol 2021; 19:9. [PMID: 33443619 PMCID: PMC7809081 DOI: 10.1186/s43141-020-00113-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023]
Abstract
Background Nanomedicine has evolved as precision medicine in novel therapeutic approach of cancer management. The present study investigated the efficacy of biogenic gold nanoparticles synthesized using Argemone mexicana L. aqueous extract (AM-AuNPs) against the human colon cancer cell line, HCT-15. Results Biosynthesis of AM-AuNPs was determined by ultraviolet-visible spectroscopy and further characterized by transmission electron microscopy, X-ray diffraction, and Fourier transition infrared spectroscopy analysis. The cytotoxic activity of AM-AuNPs was assessed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, whereas genotoxicity was evaluated by the DNA fragmentation assay. The expression of apoptosis regulatory genes such as p53 and caspase-3 was explored through semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting to evidence apoptotic cell death in HCT-15 cells. Biogenic AM-AuNPs inhibited cell proliferation in HCT-15 cell line with a half maximal inhibitory concentration (IC50) of 20.53 μg/mL at 24 h and 12.03 μg/mL at 48 h of exposure. The altered cell morphology and increased apoptosis due to AM-AuNPs were also evidenced through nuclear DNA fragmentation and upregulated expression of p53 and caspase-3 in HCT-15 cells. Conclusion The AM-AuNPs may exert antiproliferative and genotoxic effects on HCT-15 cells by cell growth suppression and induction of apoptosis mediated by activation of p53 and caspase-3 genes.
Collapse
Affiliation(s)
- Kailas D Datkhile
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India.
| | - Satish R Patil
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Pratik P Durgawale
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Madhavi N Patil
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Dilip D Hinge
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Nilam J Jagdale
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Vinit N Deshmukh
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| | - Ashwini L More
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Taluka-Karad, Dist-Satara, Malkapur, Maharashtra, Pin-415 539, India
| |
Collapse
|
40
|
Patel A, Enman J, Gulkova A, Guntoro PI, Dutkiewicz A, Ghorbani Y, Rova U, Christakopoulos P, Matsakas L. Integrating biometallurgical recovery of metals with biogenic synthesis of nanoparticles. CHEMOSPHERE 2021; 263:128306. [PMID: 33297243 DOI: 10.1016/j.chemosphere.2020.128306] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 06/12/2023]
Abstract
Industrial activities, such as mining, electroplating, cement production, and metallurgical operations, as well as manufacturing of plastics, fertilizers, pesticides, batteries, dyes or anticorrosive agents, can cause metal contamination in the surrounding environment. This is an acute problem due to the non-biodegradable nature of metal pollutants, their transformation into toxic and carcinogenic compounds, and bioaccumulation through the food chain. At the same time, platinum group metals and rare earth elements are of strong economic interest and their recovery is incentivized. Microbial interaction with metals or metals-bearing minerals can facilitate metals recovery in the form of nanoparticles. Metal nanoparticles are gaining increasing attention due to their unique characteristics and application as antimicrobial and antibiofilm agents, biocatalysts, in targeted drug delivery, for wastewater treatment, and in water electrolysis. Ideally, metal nanoparticles should be homogenous in shape and size, and not toxic to humans or the environment. Microbial synthesis of nanoparticles represents a safe, and environmentally friendly alternative to chemical and physical methods. In this review article, we mainly focus on metal and metal salts nanoparticles synthesized by various microorganisms, such as bacteria, fungi, microalgae, and yeasts, as well as their advantages in biomedical, health, and environmental applications.
Collapse
Affiliation(s)
- Alok Patel
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Josefine Enman
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | | | - Pratama Istiadi Guntoro
- Mineral Processing, Division of Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Agata Dutkiewicz
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Yousef Ghorbani
- Mineral Processing, Division of Minerals and Metallurgical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-971 87, Luleå, Sweden.
| |
Collapse
|
41
|
Mendhulkar V, Shinde A. Anticancer activity of gold nanobioconjugates synthesized from Elephantopus scaber (linn.) leaf extract. J Cancer Res Ther 2021; 19:S0. [PMID: 37147946 DOI: 10.4103/jcrt.jcrt_1043_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Medicinal plants are the major natural resources for the treatment of human ailments including cancer therapy. The current cancer treatments such as surgery, radiation, and chemotherapy affect normal cells too. Thus, treatments like synthesized nanoscale particles using plant extracts have proven to be potential anticancer agent. Aim of the Study We hypothesize that the gold nanoparticles (AuNPs) synthesized using Elephantopus scaber hydro-methanolic extract may have anti-cancer activity along with their synergistic counterparts with adriamycin (ADR) on human breast cancer MCF-7: human breast cancer (A-549), human oral cancer (squamous cell carcinoma [SCC]-40), and COLO-205: human colon cancer cell lines. Materials and Methods The phytosynthesized AuNPs were characterized for ultraviolet-visible (UV-Vis) spectroscopy, nanoparticle tracking analysis (NTA), X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) analysis. The anticancer ability of the AuNPs against human MCF-7, A-549, SCC-40, and COLO-205 through sulforhodamine B assay has been studied. Results The synthesis of AuNPs was confirmed with the UV-Vis spectrophotometer with a peak at 540 nm. The FTIR analysis showed polyphenolic groups were major found to be the reduction and capping agent for AuNPs. According to the results obtained, AuNPs showed good anti-proliferative activity with GI50 <10 μg/ml on MCF-7 cancer cell line. The synergistic effect of AuNPs + ADR was even better for all the four cell lines than that of the AuNPs alone. Conclusion The green synthesis of AuNPs is a simple, eco-friendly, and cost-effective method with dominantly spherical morphology ranging from 20 to 40 nm confirmed by NTA and TEM analysis. The study reveals the potent therapeutic value of the AuNPs.
Collapse
|
42
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
43
|
Bhardwaj K, Dhanjal DS, Sharma A, Nepovimova E, Kalia A, Thakur S, Bhardwaj S, Chopra C, Singh R, Verma R, Kumar D, Bhardwaj P, Kuča K. Conifer-Derived Metallic Nanoparticles: Green Synthesis and Biological Applications. Int J Mol Sci 2020; 21:E9028. [PMID: 33261095 PMCID: PMC7729856 DOI: 10.3390/ijms21239028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
The use of metallic nanoparticles in engineering and biomedicine disciplines has gained considerable attention. Scientists are exploring new synthesis protocols of these substances considering their small size and lucrative antimicrobial potential. Among the most economical techniques of synthesis of metallic nanoparticles via chemical routes, which includes the use of chemicals as metal reducing agents, is considered to generate nanoparticles possessing toxicity and biological risk. This limitation of chemically synthesized nanoparticles has engendered the exploration for the ecofriendly synthesis process. Biological or green synthesis approaches have emerged as an effective solution to address the limitations of conventionally synthesized nanoparticles. Nanoparticles synthesized via biological entities obtained from plant extracts exhibit superior effect in comparison to chemical methods. Recently, conifer extracts have been found to be effective in synthesizing metallic nanoparticles through a highly regulated process. The current review highlights the importance of conifers and its extracts in synthesis of metallic nanoparticles. It also discusses the different applications of the conifer extract mediated metallic nanoparticles.
Collapse
Affiliation(s)
- Kanchan Bhardwaj
- Department of Botany, School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Daljeet Singh Dhanjal
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anirudh Sharma
- Department of Chemistry, School of Chemistry, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Shabnam Thakur
- Department of Botany, School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Sonali Bhardwaj
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Chirag Chopra
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Reena Singh
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Rachna Verma
- Department of Botany, School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Dinesh Kumar
- School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Prerna Bhardwaj
- Department of Botany, School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
44
|
Teodor ED, Radu GL. Phyto-synthesized Gold Nanoparticles as Antitumor Agents. Pharm Nanotechnol 2020; 9:51-60. [PMID: 33231152 DOI: 10.2174/2211738508999201123213504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phyto, or plant-derived metal nanoparticles, are an interesting and intensive studied group of green synthesized nanoparticles. In the last decade, numerous medicinal plant extracts were used for the synthesis of stable gold or silver nanoparticles with diverse biological effects, such as antioxidant activity, antimicrobial activity, anti-inflammatory activity, hypoglycemic effect, antitumor activity and catalytic activity. RESULTS This review has systematized and discussed information from the last 5 years about the research regarding antitumor/anticancer potential of gold nanoparticles obtained via medicinal plant extracts, with special attention on their selective cytotoxicity on tumor cells and on their mechanism of action, in vitro and in vivo assessments. CONCLUSION Much more in vivo and clinical studies are needed before considering phyto-synthesized gold nanoparticles as significant for future medicine.
Collapse
Affiliation(s)
| | - Gabriel Lucian Radu
- Faculty of Applied Chemistry and Materials Science, University Politehnica, Bucharest, Romania
| |
Collapse
|
45
|
Du L, Zhang R, Yang H, Tang S, Hou Z, Jing J, Lin B, Zhang S, Lu Z, Xue P. Synthesis, characteristics and medical applications of plant nanomaterials. PLANTA 2020; 252:108. [PMID: 33219487 DOI: 10.1007/s00425-020-03509-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
The recent preparations of metal nanoparticles using plant extracts as reducing agents are summarized here. The synthesis and characterization of plant-metal nanomaterials and the progress in antibacterial and anti-inflammatory medical applications are detailed, providing a new vision for plant-based medical applications. The medical application of plant-metal nanoparticles is becoming a research hotspot. Compared with traditional preparation methods, the synthesis of plant-metal nanoparticles is less toxic and more eco-friendly, increasing application potential. Highly efficient plant-metal nanoparticles are usually smaller than 100 nm. This review describes the synthesis, characterization and bioactivities of gold- and silver-plant nanoparticles as examples and clearly explained their antibacterial and anticancer mechanisms. An analysis of actual cases shows that the synthetic method and type of plant extract affect the activities of the products.
Collapse
Affiliation(s)
- Lidong Du
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Ruoyu Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Hanchao Yang
- Affiliated Hospital of Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Shaojian Tang
- School of Pharmacy, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhaohua Hou
- College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, People's Republic of China
| | - Jinjin Jing
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Bingjie Lin
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Shujie Zhang
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China
| | - Zhong Lu
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, People's Republic of China.
- Affiliated Hospital of Weifang Medical University, Weifang, 261053, People's Republic of China.
| | - Peng Xue
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.
| |
Collapse
|
46
|
Li Y, Li N, Jiang W, Ma G, Zangeneh MM. In situ decorated Au NPs on pectin-modified Fe 3O 4 NPs as a novel magnetic nanocomposite (Fe 3O 4/Pectin/Au) for catalytic reduction of nitroarenes and investigation of its anti-human lung cancer activities. Int J Biol Macromol 2020; 163:2162-2171. [PMID: 32961190 DOI: 10.1016/j.ijbiomac.2020.09.102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
In recent days, the green synthesized nanomagnetic biocomposites have been evolved with tremendous potential as the future catalysts. This has encouraged us to design and synthesis of a novel Au NPs immobilized pectin modified magnetic nanoparticles (Fe3O4/Pectin/Au). It was meticulously characterized using advanced analytical techniques like FT-IR, FESEM, TEM, EDX, XPS, VSM, XRD and ICP-OES. We investigated the chemical applications of the material in the catalytic reduction of nitroarenes using N2H4.H2O as the reducing agent in the EtOH/H2O solvent without any promoters or ligands. Due to strong paramagnetism, the catalyst was easily recovered and reused in 11 cycles without considerable leaching or loss in reactivity. The green protocol involves several advantages like mild conditions, easy workup, high yields, and reusability of the catalyst. Furthermore, the desired nanocomposite was employed in biological studies like anti-oxidant assay by DPPH radical scavenging test. Subsequently, on exhibiting a good IC50 value in the DPPH assay, we extended the bio-application of the Fe3O4/Pectin/Au in the anticancer study of adenocarcinoma cells of human lungs using three cancer cell lines, PC-14, LC-2/ad and HLC-1 and a normal cell line HUVEC. The best result was accomplished in PC-14 cell lines with the lowest IC50 values.
Collapse
Affiliation(s)
- Yun Li
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Huaiyin District, Jinan, Shandong Province 250021, China.
| | - Na Li
- Department of Nephrology, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, China
| | - Wei Jiang
- Department of Cardio-Thoracic Surgery, The People's Hospital of Zhangqiu Area, Jinan, Shandong 250200, China
| | - Guoyuan Ma
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, Huaiyin District, Jinan, Shandong Province 250021, China
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran.; Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
47
|
Biosynthesis of copperoxide nanoparticles using Abies spectabilis plant extract and analyzing its antinociceptive and anti-inflammatory potency in various mice models. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Abu-Tahon MA, Ghareib M, Abdallah WE. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Nagra U, Shabbir M, Zaman M, Mahmood A, Barkat K. Review on Methodologies Used in the Synthesis of Metal Nanoparticles: Significance of Phytosynthesis Using Plant Extract as an Emerging Tool. Curr Pharm Des 2020; 26:5188-5204. [PMID: 32473619 DOI: 10.2174/1381612826666200531150218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.
Collapse
Affiliation(s)
- Uzair Nagra
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Maryam Shabbir
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Punjab, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| |
Collapse
|
50
|
Wang Y, Xu J, Shi L, Yang H. Recent advances in the antilung cancer activity of biosynthesized gold nanoparticles. J Cell Physiol 2020; 235:8951-8957. [DOI: 10.1002/jcp.29789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Yadong Wang
- Department of Toxicology Henan Center for Disease Control and Prevention Zhengzhou China
| | - Jie Xu
- Department of Epidemiology School of Public Health, Zhengzhou University Zhengzhou China
| | - Li Shi
- Department of Epidemiology School of Public Health, Zhengzhou University Zhengzhou China
| | - Haiyan Yang
- Department of Epidemiology School of Public Health, Zhengzhou University Zhengzhou China
| |
Collapse
|