1
|
Cacace E, Tietgen M, Steinhauer M, Mateus A, Schultze TG, Eckermann M, Galardini M, Varik V, Koumoutsi A, Parzeller JJ, Corona F, Orakov A, Knopp M, Brauer-Nikonow A, Bork P, Romao CV, Zimmermann M, Cloetens P, Savitski MM, Typas A, Göttig S. Uncovering nitroxoline activity spectrum, mode of action and resistance across Gram-negative bacteria. Nat Commun 2025; 16:3783. [PMID: 40263263 PMCID: PMC12015411 DOI: 10.1038/s41467-025-58730-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Nitroxoline is a bacteriostatic quinoline antibiotic, known to form complexes with metals. Its clinical indications are limited to uncomplicated urinary tract infections, with a susceptibility breakpoint only available for Escherichia coli. Here, we test > 1000 clinical isolates and demonstrate a much broader activity spectrum and species-specific bactericidal activity, including Gram-negative bacteria for which therapeutic options are limited due to multidrug resistance. By combining genetic and proteomic approaches with direct measurement of intracellular metals, we show that nitroxoline acts as a metallophore, inducing copper and zinc intoxication in bacterial cells. The compound displays additional effects on bacterial physiology, including alteration of outer membrane integrity, which underpins nitroxoline's synergies with large-scaffold antibiotics and resensitization of colistin-resistant Enterobacteriaceae in vitro and in vivo. Furthermore, we identify conserved resistance mechanisms across bacterial species, often leading to nitroxoline efflux.
Collapse
Affiliation(s)
- Elisabetta Cacace
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Manuela Tietgen
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Meike Steinhauer
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - André Mateus
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Tilman G Schultze
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Marina Eckermann
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
- Institute of Applied Physics, University of Bern, Bern, Switzerland
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Vallo Varik
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Alexandra Koumoutsi
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Jordan J Parzeller
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany
| | - Federico Corona
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Michael Knopp
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Amber Brauer-Nikonow
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Celia V Romao
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Michael Zimmermann
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Peter Cloetens
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - Mikhail M Savitski
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Stephan Göttig
- Goethe University Frankfurt, University Hospital, Institute for Medical Microbiology and Infection Control, Frankfurt, Germany.
| |
Collapse
|
2
|
Chen L, Han W, Jing W, Feng M, Zhou Q, Cheng X. Nitroxoline evidence amoebicidal activity against Acanthamoeba castellanii through DNA damage and the stress response pathways. Int J Parasitol Drugs Drug Resist 2025; 27:100578. [PMID: 39764873 PMCID: PMC11762632 DOI: 10.1016/j.ijpddr.2025.100578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/29/2025]
Abstract
Acanthamoeba castellanii is a widespread unicellular eukaryote found in diverse environments, including tap water, soil, and swimming pools. It is responsible for severe infections, such as Acanthamoeba keratitis and granulomatous amebic encephalitis, particularly in individuals with immunocompromisation. The ability of protozoans to form dormant and persistent cysts complicates treatment, as current therapies are ineffective against cyst stages and suffer from poor specificity and side effects. Nitroxoline, a quinoline derivative with well-established antibacterial, antifungal, and antiviral properties, is a promising therapeutic candidate. This study aimed to elucidate cellular signalling events that counteract the effects of nitroxoline. In this study, nitroxoline significantly reduced the viability of A. castellanii trophozoites in a dose- and time-dependent manner, inducing morphological changes and apoptosis. Transcriptomic analysis revealed substantial alterations in gene expression, including enrichment of metabolic pathways, DNA damage responses, and iron ion binding. Nitroxoline treatment upregulated genes involved in DNA repair and oxidative stress response while regulating genes in the methionine and cysteine cycles. It also decreased the mitochondrial membrane potential, H₂S production, and total iron amount in A. castellanii. Bioinformatic analyses and molecular docking studies suggest direct interactions between nitroxoline and several A. castellanii proteins. Our research provides a comprehensive molecular map of the response of A. castellanii to nitroxoline, revealing significant changes in gene expression related to the stress response and metabolic pathways. These findings underscore the potential of nitroxoline as a potent anti-Acanthamoeba agent, offering new insights into its mechanism of action and paving the way for effective combinational therapeutic strategies.
Collapse
Affiliation(s)
- Lijun Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Han
- Translational Center for Medical Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenwen Jing
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qingtong Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Iovleva A, Fowler VG, Doi Y. Treatment Approaches for Carbapenem-Resistant Acinetobacter baumannii Infections. Drugs 2025; 85:21-40. [PMID: 39607595 PMCID: PMC11950131 DOI: 10.1007/s40265-024-02104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2024] [Indexed: 11/29/2024]
Abstract
Carbapenem-resistant Acinetobacter baumannii has been associated with over three hundred thousand annual deaths globally. It is resistant to most available antibiotics and associated with high morbidity and mortality. No global consensus currently exists for treatment strategies that balance safety and efficacy because of heterogeneity of treatment regimens in current clinical practice and scarcity of large-scale controlled studies arising from difficulties in establishing robust clinical outcomes. This review outlines the epidemiology and resistance mechanisms of carbapenem-resistant A. baumannii, then summarizes available clinical data on each approved agent with activity against this pathogen. Emerging treatment options such as cefiderocol and sulbactam-durlobactam show promise, but their success hinges on comprehensive clinical validation and access in regions most impacted by this pathogen. New therapeutic modalities that are in various stages of clinical development are also discussed.
Collapse
Affiliation(s)
- Alina Iovleva
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Vance G Fowler
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Yohei Doi
- Center for Innovative Antimicrobial Therapy, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Departments of Microbiology and Infectious Diseases, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
4
|
Wang N, Yu H, Zhu Z, Wang H, Wei Y, Wang Q, Zhou Y, Fang T, Zhang Y, Cui M, Ma H, Deng X, Wang J, Xia J, Wu S, Teng Z. Novel methyldithiocarbazate derivatives as NDM-1 inhibitors to combat multidrug-resistant bacterial infection with β-lactams. Bioorg Chem 2025; 154:108104. [PMID: 39740308 DOI: 10.1016/j.bioorg.2024.108104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/02/2025]
Abstract
Given the ever-evolving landscape of antimicrobial resistance, the emergence of New Delhi metallo-β-lactamase-1 (NDM-1) has introduced a formidable challenge to global public health. In previous research, we identified the Compound Zndm19 as an NDM-1 inhibitor and reported Zndm19 derivatives, which exhibited moderate antibacterial activity when combined with meropenem (MEM). This moderate activity may have been due to the inability of Zndm19 to efficiently penetrate the bacterial outer membrane or its susceptibility to hydrolysis, which prevented it from exerting strong enzyme inhibition in synergy with bacterial cells. In this study, we aimed to overcome these limitations by employing a scaffold hopping strategy, abandoning the original core structure. We designed and synthesized 21 compounds and discovered that Compound A8 could effectively restore the antibacterial activity of MEM against NDM-1-positive Escherichia coli (E. coli). Compound A8 restored the ability of MEM to penetrate the cell wall of gram-negative bacteria, leading to oxidative stress-induced disarray within bacterial cells. This disruption ultimately led to the impairment of bacterial cell membrane integrity and permeability, consequently amplifying the synergistic antimicrobial efficacy of the combined treatment. Furthermore, compared with Zndm19, Compound A8 demonstrated broader therapeutic applications in the Galleria mellonella infection model and the murine peritonitis infection model. Molecular docking, site-directed mutagenesis, and fluorescence quenching assays confirmed that Compound A8 could directly interact with NDM-1, thereby further inhibiting its hydrolytic activity. These findings elucidate the antimicrobial mechanism of novel methyl dithiocarbamate derivatives and provide new insights for the development of new NDM-1 inhibitors.
Collapse
Affiliation(s)
- Nan Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hui Yu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Beijing Double Crane Runchuang Technology Co., Ltd, Beijing, China
| | - Heng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yunfei Wei
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Qi Wang
- College of Life Science, Jilin Agricultural University, 130118 Changchun, China
| | - Yonglin Zhou
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Tianqi Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yan Zhang
- Hospital of Stomatology, Jilin University, Changchun, China
| | - Minhe Cui
- Jilin Mushuo Breeding Co., Ltd, Changchun 130052, Jilin, China
| | - Hongxia Ma
- College of Life Science, Jilin Agricultural University, 130118 Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zihao Teng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
5
|
Zhao Y, Zhang T, Liang Y, Xie X, Pan H, Cao M, Wang S, Wu D, Wang J, Wang C, Hu W. Combination of aloe emodin, emodin, and rhein from Aloe with EDTA sensitizes the resistant Acinetobacter baumannii to polymyxins. Front Cell Infect Microbiol 2024; 14:1467607. [PMID: 39346899 PMCID: PMC11428196 DOI: 10.3389/fcimb.2024.1467607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Background The continuous emergence and spread of polymyxin-resistant Acinetobacter baumannii pose a significant global health challenge, necessitating the development of novel therapeutic strategies. Aloe, with its long-standing history of medicinal use, has recently been the subject of substantial research for its efficacy against pathogenic infections. Methods This study investigates the potential application of anthraquinone components in aloe against polymyxin-resistant A. baumannii by liquid chromatography-mass spectrometry, in vitro activity assessment, and construction of animal infection models. Results The findings demonstrate that aloe emodin, emodin, rhein, and their mixtures in equal mass ratios (EAR) exhibit strain-specific antibacterial activities against polymyxin-resistant A. baumannii. Co-administration of EAR with EDTA synergistically and universally enhanced the antibacterial activity and bactericidal efficacy of polymyxins against polymyxin-resistant A. baumannii, while also reducing the frequency of polymyxin-resistant mutations in polymyxinssensitive A. baumannii. Following toxicity assessment on human hepatic and renal cell lines, the combination therapy was applied to skin wounds in mice infected with polymyxin-resistant A. baumannii. Compared to monotherapy, the combination therapy significantly accelerated wound healing and reduced bacterial burden. Conclusions The combination of EAR and EDTA with polymyxins offers a novel therapeutic approach for managing skin infections caused by polymyxinresistant A. baumannii.
Collapse
Affiliation(s)
- Yue Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiaoqing Xie
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Hongwei Pan
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Cao
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Shuhua Wang
- Research and Development Center, Shandong Aobo Biotechnology Co., Ltd, Liaocheng, Shandong, China
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Jing Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuandong Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
6
|
Paterson DL. Antibacterial agents active against Gram Negative Bacilli in phase I, II, or III clinical trials. Expert Opin Investig Drugs 2024; 33:371-387. [PMID: 38445383 DOI: 10.1080/13543784.2024.2326028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/28/2024] [Indexed: 03/07/2024]
Abstract
INTRODUCTION Antimicrobial resistance is a major threat to modern healthcare, and it is often regarded that the antibiotic pipeline is 'dry.' AREAS COVERED Antimicrobial agents active against Gram negative bacilli in Phase I, II, or III clinical trials were reviewed. EXPERT OPINION Nearly 50 antimicrobial agents (28 small molecules and 21 non-traditional antimicrobial agents) active against Gram-negative bacilli are currently in clinical trials. These have the potential to provide substantial improvements to the antimicrobial armamentarium, although it is known that 'leakage' from the pipeline occurs due to findings of toxicity during clinical trials. Significantly, a lack of funding for large phase III clinical trials is likely to prevent trials occurring for the indications most relevant to loss of life attributed to antimicrobial resistance such as ventilator-associated pneumonia. Non-traditional antimicrobial agents face issues in clinical development such as a lack of readily available and reliable susceptibility tests, and the potential need for superiority trials rather than non-inferiority trials. Most importantly, concrete plans must be made during clinical development for access of new antimicrobial agents to areas of the world where resistance to Gram negative bacilli is most frequent.
Collapse
Affiliation(s)
- David L Paterson
- ADVANCE-ID, Saw Swee Hock School of Public Health, National University of Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|