1
|
Maity S, Bhuyan T, Jewell C, Kawakita S, Sharma S, Nguyen HT, Najafabadi AH, Ermis M, Falcone N, Chen J, Mandal K, Khorsandi D, Yilgor C, Choroomi A, Torres E, Mecwan M, John JV, Akbari M, Wang Z, Moniz-Garcia D, Quiñones-Hinojosa A, Jucaud V, Dokmeci MR, Khademhosseini A. Recent Developments in Glioblastoma-On-A-Chip for Advanced Drug Screening Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405511. [PMID: 39535474 PMCID: PMC11719323 DOI: 10.1002/smll.202405511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/08/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GBM) is an aggressive form of cancer, comprising ≈80% of malignant brain tumors. However, there are no effective treatments for GBM due to its heterogeneity and the presence of the blood-brain barrier (BBB), which restricts the delivery of therapeutics to the brain. Despite in vitro models contributing to the understanding of GBM, conventional 2D models oversimplify the complex tumor microenvironment. Organ-on-a-chip (OoC) models have emerged as promising platforms that recapitulate human tissue physiology, enabling disease modeling, drug screening, and personalized medicine. There is a sudden increase in GBM-on-a-chip models that can significantly advance the knowledge of GBM etiology and revolutionize drug development by reducing animal testing and enhancing translation to the clinic. In this review, an overview of GBM-on-a-chip models and their applications is reported for drug screening and discussed current challenges and potential future directions for GBM-on-a-chip models.
Collapse
Affiliation(s)
- Surjendu Maity
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Department of Orthopedic Surgery, Duke University School of
Medicine, Duke University, Durham, NC 27705
| | - Tamanna Bhuyan
- Department of Applied Biology, School of Biological
Sciences, University of Science & Technology Meghalaya, Meghalaya, 793101,
India
| | - Christopher Jewell
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Satoru Kawakita
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Saurabh Sharma
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Huu Tuan Nguyen
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Center of Excellence in Biomaterials and Tissue
Engineering, Middle East Technical University, Ankara, Turkey
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Junjie Chen
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Danial Khorsandi
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Can Yilgor
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Auveen Choroomi
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Emily Torres
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Johnson V. John
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
- Laboratoryfor Innovations in Micro Engineering (LiME),
Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2,
Canada
- Biotechnology Center, Silesian University of Technology,
Akademicka 2A, 44-100 Gliwice, Poland
| | - Zhaohui Wang
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | | | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| | | | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles,
CA, 90064 USA
| |
Collapse
|
2
|
Sarantopoulos A, Ene C, Aquilanti E. Therapeutic approaches to modulate the immune microenvironment in gliomas. NPJ Precis Oncol 2024; 8:241. [PMID: 39443641 PMCID: PMC11500177 DOI: 10.1038/s41698-024-00717-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024] Open
Abstract
Immunomodulatory therapies, including immune checkpoint inhibitors, have drastically changed outcomes for certain cancer types over the last decade. Gliomas are among the cancers that have seem limited benefit from these agents, with most trials yielding negative results. The unique composition of the glioma immune microenvironment is among the culprits for this lack of efficacy. In recent years, several efforts have been made to improve understanding of the glioma immune microenvironment, aiming to pave the way for novel therapeutic interventions. In this review, we discuss some of the main components of the glioma immune microenvironment, including macrophages, myeloid-derived suppressor cells, neutrophils and microglial cells, as well as lymphocytes. We then provide a comprehensive overview of novel immunomodulatory agents that are currently in clinical development, namely oncolytic viruses, vaccines, cell-based therapies such as CAR-T cells and CAR-NK cells as well as antibodies and peptides.
Collapse
Affiliation(s)
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Elisa Aquilanti
- Center for Neuro-Oncology, Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
3
|
Batchu S, Hanafy KA, Redjal N, Godil SS, Thomas AJ. Single-cell analysis reveals diversity of tumor-associated macrophages and their interactions with T lymphocytes in glioblastoma. Sci Rep 2023; 13:20874. [PMID: 38012322 PMCID: PMC10682178 DOI: 10.1038/s41598-023-48116-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive primary CNS malignancy and clinical outcomes have remained stagnant despite introduction of new treatments. Understanding the tumor microenvironment (TME) in which tumor associated macrophages (TAMs) interact with T cells has been of great interest. Although previous studies examining TAMs in GBM have shown that certain TAMs are associated with specific clinical and/or pathologic features, these studies used an outdated M1/M2 paradigm of macrophage polarization and failed to include the continuum of TAM states in GBM. Perhaps most significantly, the interactions of TAMs with T cells have yet to be fully explored. Our study uses single-cell RNA sequencing data from adult IDH-wildtype GBM, with the primary aim of deciphering the cellular interactions of the 7 TAM subtypes with T cells in the GBM TME. Furthermore, the interactions discovered herein are compared to IDH-mutant astrocytoma, allowing for focus on the cellular ecosystem unique to GBM. The resulting ligand-receptor interactions, signaling sources, and global communication patterns discovered provide a framework for future studies to explore methods of leveraging the immune system for treating GBM.
Collapse
Affiliation(s)
- Sai Batchu
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Khalid A Hanafy
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Department of Neurology, Cooper University Health Care, Camden, NJ, USA
| | - Navid Redjal
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, USA
| | - Saniya S Godil
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, USA
| | - Ajith J Thomas
- Cooper Medical School of Rowan University, Camden, NJ, 08103, USA.
- Department of Neurosurgery, Cooper University Health Care, Camden, NJ, USA.
| |
Collapse
|
4
|
Neurovascular dysfunction in GRN-associated frontotemporal dementia identified by single-nucleus RNA sequencing of human cerebral cortex. Nat Neurosci 2022; 25:1034-1048. [PMID: 35879464 DOI: 10.1038/s41593-022-01124-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/16/2022] [Indexed: 12/13/2022]
Abstract
Frontotemporal dementia (FTD) is the second most prevalent form of early-onset dementia, affecting predominantly frontal and temporal cerebral lobes. Heterozygous mutations in the progranulin gene (GRN) cause autosomal-dominant FTD (FTD-GRN), associated with TDP-43 inclusions, neuronal loss, axonal degeneration and gliosis, but FTD-GRN pathogenesis is largely unresolved. Here we report single-nucleus RNA sequencing of microglia, astrocytes and the neurovasculature from frontal, temporal and occipital cortical tissue from control and FTD-GRN brains. We show that fibroblast and mesenchymal cell numbers were enriched in FTD-GRN, and we identified disease-associated subtypes of astrocytes and endothelial cells. Expression of gene modules associated with blood-brain barrier (BBB) dysfunction was significantly enriched in FTD-GRN endothelial cells. The vasculature supportive function and capillary coverage by pericytes was reduced in FTD-GRN tissue, with increased and hypertrophic vascularization and an enrichment of perivascular T cells. Our results indicate a perturbed BBB and suggest that the neurovascular unit is severely affected in FTD-GRN.
Collapse
|
5
|
van Santwijk L, Kouwenberg V, Meijer F, Smits M, Henssen D. A systematic review and meta-analysis on the differentiation of glioma grade and mutational status by use of perfusion-based magnetic resonance imaging. Insights Imaging 2022; 13:102. [PMID: 35670981 PMCID: PMC9174367 DOI: 10.1186/s13244-022-01230-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 01/17/2023] Open
Abstract
Background Molecular characterization plays a crucial role in glioma classification which impacts treatment strategy and patient outcome. Dynamic susceptibility contrast (DSC) and dynamic contrast enhanced (DCE) perfusion imaging have been suggested as methods to help characterize glioma in a non-invasive fashion. This study set out to review and meta-analyze the evidence on the accuracy of DSC and/or DCE perfusion MRI in predicting IDH genotype and 1p/19q integrity status. Methods After systematic literature search on Medline, EMBASE, Web of Science and the Cochrane Library, a qualitative meta-synthesis and quantitative meta-analysis were conducted. Meta-analysis was carried out on aggregated AUC data for different perfusion metrics. Results Of 680 papers, twelve were included for the qualitative meta-synthesis, totaling 1384 patients. It was observed that CBV, ktrans, Ve and Vp values were, in general, significantly higher in IDH wildtype compared to IDH mutated glioma. Meta-analysis comprising of five papers (totaling 316 patients) showed that the AUC of CBV, ktrans, Ve and Vp were 0.85 (95%-CI 0.75–0.93), 0.81 (95%-CI 0.74–0.89), 0.84 (95%-CI 0.71–0.97) and 0.76 (95%-CI 0.61–0.90), respectively. No conclusive data on the prediction of 1p/19q integrity was available from these studies. Conclusions Future research should aim to predict 1p/19q integrity based on perfusion MRI data. Additionally, correlations with other clinically relevant outcomes should be further investigated, including patient stratification for treatment and overall survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01230-7.
Collapse
Affiliation(s)
- Lusien van Santwijk
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Valentina Kouwenberg
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dylan Henssen
- Department of Medical Imaging, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 EZ, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Tang J, Li Y, Liu B, Liang W, Hu S, Shi M, Zeng J, Li M, Huang M. Uncovering a Key Role of ETS1 on Vascular Abnormality in Glioblastoma. Pathol Oncol Res 2021; 27:1609997. [PMID: 34867089 PMCID: PMC8641556 DOI: 10.3389/pore.2021.1609997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/28/2021] [Indexed: 12/02/2022]
Abstract
Glioblastoma (GBM) is the most aggressive type of brain tumor. Microvascular proliferation and abnormal vasculature are the hallmarks of the GBM, aggravating disease progression and increasing patient morbidity. Here, we uncovered a key role of ETS1 on vascular abnormality in glioblastoma. ETS1 was upregulated in endothelial cells from human tumors compared to endothelial cells from paired control brain tissue. Knockdown of Ets1 in mouse brain endothelial cells inhibited cell migration and proliferation, and suppressed expression of genes associated with vascular abnormality in GBM. ETS1 upregulation in tumor ECs was dependent on TGFβ signaling, and targeting TGFβ signaling by inhibitor decreased tumor angiogenesis and vascular abnormality in CT-2A glioma model. Our results identified ETS1 as a key factor regulating tumor angiogenesis, and suggested that TGFβ inhibition may suppress the vascular abnormality driven by ETS1.
Collapse
Affiliation(s)
- Jiefu Tang
- Trauma Center, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Yaling Li
- Department of Obstetrics and Gynaecology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, China
| | - Boxuan Liu
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | - Wei Liang
- Department of Orthopaedics, The Second People's Hospital of Huaihua, Huaihua, China
| | - Sanbao Hu
- Department of Orthopaedics, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Meilian Shi
- Department of Infectious Diseases, The Second People's Hospital of Huaihua, Huaihua, China
| | - Jie Zeng
- Department of Orthopaedics, The Second People's Hospital of Huaihua, Huaihua, China
| | - Mingzhen Li
- Precision Medicine Center, The Second People's Hospital of Huaihua, Huaihua, China
| | | |
Collapse
|
7
|
Zhang L, He L, Lugano R, Roodakker K, Bergqvist M, Smits A, Dimberg A. IDH mutation status is associated with distinct vascular gene expression signatures in lower-grade gliomas. Neuro Oncol 2019; 20:1505-1516. [PMID: 29846705 PMCID: PMC6176806 DOI: 10.1093/neuonc/noy088] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Vascular gene expression patterns in lower-grade gliomas (LGGs; diffuse World Health Organization [WHO] grades II–III gliomas) have not been thoroughly investigated. The aim of this study was to molecularly characterize LGG vessels and determine if tumor isocitrate dehydrogenase (IDH) mutation status affects vascular phenotype. Methods Gene expression was analyzed using an in-house dataset derived from microdissected vessels and total tumor samples from human glioma in combination with expression data from 289 LGG samples available in the database of The Cancer Genome Atlas. Vascular protein expression was examined by immunohistochemistry in human brain tumor tissue microarrays (TMAs) representing WHO grades II–IV gliomas and nonmalignant brain samples. Regulation of gene expression was examined in primary endothelial cells in vitro. Results Gene expression analysis of WHO grade II glioma indicated an intermediate stage of vascular abnormality, less severe than that of glioblastoma vessels but distinct from normal vessels. Enhanced expression of laminin subunit alpha 4 (LAMA4) and angiopoietin 2 (ANGPT2) in WHO grade II glioma was confirmed by staining of human TMAs. IDH wild-type LGGs displayed a specific angiogenic gene expression signature, including upregulation of ANGPT2 and serpin family H (SERPINH1), connected to enhanced endothelial cell migration and matrix remodeling. Transcription factor analysis indicated increased transforming growth factor beta (TGFβ) and hypoxia signaling in IDH wild-type LGGs. A subset of genes specifically induced in IDH wild-type LGG vessels was upregulated by stimulation of endothelial cells with TGFβ2, vascular endothelial growth factor, or cobalt chloride in vitro. Conclusion IDH wild-type LGG vessels are molecularly distinct from the vasculature of IDH-mutated LGGs. TGFβ and hypoxia-related signaling pathways may be potential targets for anti-angiogenic therapy of IDH wild-type LGG.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Liqun He
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-Repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, China
| | - Roberta Lugano
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Kenney Roodakker
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden
| | - Michael Bergqvist
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Center for Research and Development, Uppsala University, Gävle Hospital, Gävle, Sweden.,Department of Radiation Sciences and Oncology, Umeå University Hospital, Umeå, Sweden
| | - Anja Smits
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China.,Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Dimberg
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
8
|
Huang JF, Jiang HY, Cai H, Liu Y, Zhu YQ, Lin SS, Hu TT, Wang TT, Yang WJ, Xiao B, Sun SH, Ma LY, Yin HR, Wang F. Genome-wide screening identifies oncofetal lncRNA Ptn-dt promoting the proliferation of hepatocellular carcinoma cells by regulating the Ptn receptor. Oncogene 2019; 38:3428-3445. [PMID: 30643194 DOI: 10.1038/s41388-018-0643-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 10/04/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
Oncofetal genes are genes that express abundantly in both fetal and tumor tissues yet downregulated or undetected in adult tissues, and can be used as tumor markers for cancer diagnosis and treatment. Meanwhile, long noncoding RNAs (lncRNAs) are known to play crucial roles in the pathogenesis of hepatocellular carcinoma (HCC), including tumor growth, proliferation, metastasis, invasion, and recurrence. We performed a genome-wide screening using microarrays to detect the lncRNA expression profiles in fetal livers, adult livers, and liver cancer tissues from mice to identify oncofetal lncRNAs in HCC. From the microarray data analysis, we identified lncRNA Ptn-dt as a possible oncofetal gene. Both in vitro and in vivo experiments results confirmed that overexpression of Ptn-dt significantly promoted the proliferation of mouse HCC cells. RNA pulldown assay showed that Ptn-dt could interact with the HuR protein. Interestingly, miR-96 binds with HuR to maintain its stability as well. Overexpression of lncRNA Ptn-dt led to the downregulation of miR-96, which might be due to the interaction between Ptn-dt and HuR. Meanwhile, previous studies have reported that Ptn can promote tumor growth and vascular abnormalization via anaplastic lymphoma kinase (Alk) signaling. In our study, we found that overexpression of Ptn-dt could promote the expression of Alk through repressing miR-96 via interacting with HuR, thus enhancing the biologic function of Ptn. In summary, a new oncofetal lncRNA Ptn-dt is identified, and it can promote the proliferation of HCC cells by regulating the HuR/miR-96/Alk pathway and Ptn-Alk axis.
Collapse
Affiliation(s)
- Jin-Feng Huang
- Department of Medical Genetics, Second Military Medical University, 200433, Shanghai, China.,Department of Clinical Genetics, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Hong-Yue Jiang
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Hui Cai
- Department of General Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Yan Liu
- Department of Medical Genetics, Second Military Medical University, 200433, Shanghai, China
| | - Yi-Qing Zhu
- Department of Medical Genetics, Second Military Medical University, 200433, Shanghai, China
| | - Sha-Sha Lin
- Center of Reproductive Medicine, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Ting-Ting Hu
- Center of Reproductive Medicine, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Tian-Tian Wang
- Department of Medical Genetics, Second Military Medical University, 200433, Shanghai, China.,Department of Clinical Genetics, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Wen-Jun Yang
- Department of Medical Genetics, Second Military Medical University, 200433, Shanghai, China
| | - Bang Xiao
- Department of Medical Genetics, Second Military Medical University, 200433, Shanghai, China
| | - Shu-Han Sun
- Department of Medical Genetics, Second Military Medical University, 200433, Shanghai, China.,Department of Clinical Genetics, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China
| | - Li-Ye Ma
- Department of General Surgery, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China.
| | - Hui-Rong Yin
- Center of Reproductive Medicine, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China.
| | - Fang Wang
- Department of Medical Genetics, Second Military Medical University, 200433, Shanghai, China. .,Department of Clinical Genetics, Changhai Hospital, Second Military Medical University, 200433, Shanghai, China.
| |
Collapse
|
9
|
Chiba R, Akiya M, Hashimura M, Oguri Y, Inukai M, Hara A, Saegusa M. ALK signaling cascade confers multiple advantages to glioblastoma cells through neovascularization and cell proliferation. PLoS One 2017; 12:e0183516. [PMID: 28837676 PMCID: PMC5570309 DOI: 10.1371/journal.pone.0183516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/04/2017] [Indexed: 02/04/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK), which is a receptor tyrosine kinase, is essentially and transiently expressed in the developing nervous system. Here we examined the functional role of the ALK gene in glioblastomas (GBMs). In clinical samples of GBMs, high ALK expression without gene rearrangements or mutations was frequently observed in perivascular lesions, in contrast to the relatively low expression in the perinecrotic areas, which was positively correlated with N-myc and phosphorylated (p) Stat3 scores and Ki-67 labeling indices. ALK immunoreactivity was also found to be associated with neovascular features including vascular co-option and vascular mimicry. In astrocytoma cell lines, cells stably overexpressing full-length ALK showed an increase in expression of pStat3 and pAkt proteins, as well as hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) mRNAs, in contrast to cells with knockdown of endogenous ALK which showed decreased expression of these molecules. Transfection of the constitutively active form of Stat3 induced an increase in HIF-1α promoter activity, and the overexpression of HIF-1α in turn resulted in enhancement of VEGF-A promoter activity. In addition, cells with overexpression or knockdown of ALK also showed a tendency toward increased and decreased proliferation, respectively, through changes in expression of pAkt and pStat3. Finally, ALK promoter was significantly activated by transfection of Sox4 and N-myc, which are known to contribute to neuronal properties. These findings therefore suggest that N-myc/Sox4-mediated ALK signaling cascades containing Stat3, Akt, HIF-1α, and VEGF-A confer multiple advantages to tumor growth through alterations in neovascularization and cell proliferation in GBMs.
Collapse
Affiliation(s)
- Risako Chiba
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Masashi Akiya
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Miki Hashimura
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Yasuko Oguri
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Madoka Inukai
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Atsuko Hara
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
| | - Makoto Saegusa
- Department of Pathology, Kitasato University School of Medicine, Minami-ku, Sagamihara, Kanagawa, Japan
- * E-mail:
| |
Collapse
|