1
|
Staveri C, Lykoura C, Melissaropoulos K, Liossis SNC. Favorable outcomes for patients with refractory systemic lupus erythematosus treated with rituximab as evidenced with a follow-up of ≥ 10 years: a real-world evidence study. Rheumatol Int 2025; 45:127. [PMID: 40293524 PMCID: PMC12037659 DOI: 10.1007/s00296-025-05879-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Treatment of Systemic Lupus Erythematosus (SLE) remains challenging. The aim of this real-world evidence study of patients with refractory SLE treated with rituximab (RTX) was to explore for any potential long-term effect(s) of this particular B cell depletion approach. This study included patients with SLE who had i) received at least 1 cycle of RTX and had ii) an at least 10 yr of follow-up after their first RTX infusion. Outcomes were assessed at 1 year and at their latest evaluation that was ≥ 10 yr after RTX treatment initiation. In cases where the SLE Disease Activity Index 2000 (cSLEDAI-2 k) was employed, a response was defined as a cSLEDAI-2 k of less than 4 in cases where the cSLEDAI-2 k was ≥ 4. In cases where the cSLEDAI-2 k was 2-4 at baseline, a response was defined as a cSLEDAI-2 k of 0. RTX was administered in 62 patients with SLE. For this real-world evidence study 23 patients (25 cases) with SLE (all Caucasian female, age range: 14-72 yr, mean: 31 yr) with active or relapsing disease, fulfilling inclusion criteria were enrolled. RTX treatment was associated with a response rate of 68.75% after 1 yr and 75% after ≥ 10 yr. The median cSLEDAI-2 K score decreased from 5.83 ± 3.70 at baseline to 1.95 ± 2.40 (p < 0.001) at 1 yr and to 2.37 ± 3.00 (p < 0.001) at the ≥ 10 yr time-point of follow-up. Our data suggest that RTX may indeed represent an alternative therapeutic option in patients with SLE refractory to standard treatment with an acceptable safety profile.
Collapse
Affiliation(s)
- Chrysanthi Staveri
- Division of Rheumatology, 1st Floor, Patras University Hospital, 26504, Rion, Patras, Greece
| | - Chrysa Lykoura
- Division of Rheumatology, 1st Floor, Patras University Hospital, 26504, Rion, Patras, Greece
| | | | - Stamatis-Nick C Liossis
- Division of Rheumatology, 1st Floor, Patras University Hospital, 26504, Rion, Patras, Greece.
- Division of Rheumatology, Department of Internal Medicine, University of Patras School of Medicine, Patras, Greece.
| |
Collapse
|
2
|
Athanassiou P, Athanassiou L, Kostoglou-Athanassiou I, Shoenfeld Y. Targeted Cellular Treatment of Systemic Lupus Erythematosus. Cells 2025; 14:210. [PMID: 39937001 PMCID: PMC11816398 DOI: 10.3390/cells14030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease affecting all organ systems. The disease preferentially affects females of childbearing age. It runs a variable course. It may run a mild course that may never lead to severe disease and manifestations from critical organ systems. However, it may also run an undulating course with periods of mild and severe disease. It may run as a mild disease, quickly deteriorating to severe disease and affecting multiple organ systems. Various immune pathways related both to the innate and adaptive immune response are involved in the pathogenesis of SLE. Various drugs have been developed targeting cellular and molecular targets in these pathways. Interferons are involved in the pathogenesis of SLE, and various drugs have been developed to target this pathway. T and B lymphocytes are involved in the pathophysiology of SLE. Various treatment modalities targeting cellular targets are available for the treatment of SLE. These include biologic agents targeting B lymphocytes. However, some patients have disease refractory to these treatment modalities. For these patients, cell-based therapies may be used. Hematopoietic stem cell transplantation involving autologous cells is an option in the treatment of refractory SLE. Mesenchymal stem cells are also applied in the treatment of SLE. Chimeric antigen receptor (CAR)-T cell therapy is a novel treatment also used in SLE management. This novel treatment method holds major promise for the management of autoimmune diseases and, in particular, SLE. Major hurdles to be overcome are the logistics involved, as well as the need for specialized facilities. This review focuses on novel treatment modalities in SLE targeting cellular and molecular targets in the immune system.
Collapse
Affiliation(s)
| | - Lambros Athanassiou
- Department of Rheumatology, Asclepeion Hospital, Voula, 16673 Athens, Greece;
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University, Herzliya 4610101, Israel;
| |
Collapse
|
3
|
Lin RR, Warp PV, Hartoyo MA, Elman SA, Maderal AD. Innovations in Cutaneous Lupus. Dermatol Clin 2025; 43:123-136. [PMID: 39542560 DOI: 10.1016/j.det.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Cutaneous lupus erythematosus (CLE) is an autoimmune-mediated skin disease under the family of lupus erythematosus. Systemic immunosuppressants and topical treatments have been used to manage CLE; however, these treatments tend to be moderately efficacious and leave patients with unmet therapeutic needs. There is a need for medications that target pruritus, scarring, dyspigmentation, and other symptoms of chronic CLE that contribute to decreased quality of life. The introduction of new biologics and other systemic medications has expanded dermatologists' and rheumatologists' ability to manage CLE. This article discusses new pharmaceuticals and guidelines providing an updated overview of the clinical management of CLE.
Collapse
Affiliation(s)
- Rachel R Lin
- Department of Dermatology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 9, Miami, FL 33136, USA.
| | - Peyton V Warp
- Department of Dermatology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 9, Miami, FL 33136, USA
| | - Mara A Hartoyo
- Department of Dermatology, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 9, Miami, FL 33136, USA
| | - Scott A Elman
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 9, Miami, FL 33136, USA
| | - Andrea D Maderal
- Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, 1120 Northwest 14th Street, Suite 9, Miami, FL 33136, USA
| |
Collapse
|
4
|
Ramírez-Valle F, Maranville JC, Roy S, Plenge RM. Sequential immunotherapy: towards cures for autoimmunity. Nat Rev Drug Discov 2024; 23:501-524. [PMID: 38839912 DOI: 10.1038/s41573-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/07/2024]
Abstract
Despite major progress in the treatment of autoimmune diseases in the past two decades, most therapies do not cure disease and can be associated with increased risk of infection through broad suppression of the immune system. However, advances in understanding the causes of autoimmune disease and clinical data from novel therapeutic modalities such as chimeric antigen receptor T cell therapies provide evidence that it may be possible to re-establish immune homeostasis and, potentially, prolong remission or even cure autoimmune diseases. Here, we propose a 'sequential immunotherapy' framework for immune system modulation to help achieve this ambitious goal. This framework encompasses three steps: controlling inflammation; resetting the immune system through elimination of pathogenic immune memory cells; and promoting and maintaining immune homeostasis via immune regulatory agents and tissue repair. We discuss existing drugs and those in development for each of the three steps. We also highlight the importance of causal human biology in identifying and prioritizing novel immunotherapeutic strategies as well as informing their application in specific patient subsets, enabling precision medicine approaches that have the potential to transform clinical care.
Collapse
|
5
|
Zheng X, Dozmorov MG, Strohlein CE, Bastacky S, Sawalha AH. Ezh2 Knockout in B Cells Impairs Plasmablast Differentiation and Ameliorates Lupus-like Disease in MRL/lpr Mice. Arthritis Rheumatol 2023; 75:1395-1406. [PMID: 36897808 PMCID: PMC10492897 DOI: 10.1002/art.42492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 01/25/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVES EZH2 regulates B cell development and differentiation. We previously demonstrated increased EZH2 expression in peripheral blood mononuclear cells from lupus patients. The goal of this study was to evaluate the role of EZH2 expression in B cells in the pathogenesis of lupus. METHODS We generated an MRL/lpr mouse with floxed Ezh2, which was crossed with CD19-Cre mice to examine the effect of B cell EZH2 deficiency in MRL/lpr lupus-prone mice. Differentiation of B cells was assessed using flow cytometry. Single-cell RNA sequencing and single-cell B cell receptor sequencing were performed. In vitro B cell culture with an X-box binding protein 1 (XBP1) inhibitor was performed. EZH2 and XBP1 messenger RNA levels in CD19+ B cells isolated from lupus patients and healthy controls were analyzed. RESULTS We show that Ezh2 deletion in B cells significantly decreased autoantibody production and improved glomerulonephritis. B cell development was altered in the bone marrow and spleen of EZH2-deficient mice. Differentiation of germinal center B cells and plasmablasts was impaired. Single-cell RNA sequencing showed that XBP1, a key transcription factor in B cell development, is down-regulated in the absence of EZH2. Inhibiting XBP1 in vitro impairs plasmablast development similar to EZH2 deficiency in mice. Single-cell B cell receptor RNA sequencing revealed defective immunoglobulin class-switch recombination in EZH2-deficient mice. In human lupus B cells, we observed a strong correlation between EZH2 and XBP1 messenger RNA expression levels. CONCLUSION EZH2 overexpression in B cells contributes to disease pathogenesis in lupus.
Collapse
Affiliation(s)
- Xiaoqing Zheng
- Department of Pediatrics, Division of Rheumatology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, Virginia
| | - Colleen E Strohlein
- Department of Pediatrics, Division of Rheumatology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amr H Sawalha
- Department of Pediatrics, Division of Rheumatology, Children's Hospital of Pittsburgh, Department of Medicine, Division of Rheumatology and Clinical Immunology, Lupus Center of Excellence, and Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Effer B, Perez I, Ulloa D, Mayer C, Muñoz F, Bustos D, Rojas C, Manterola C, Vergara-Gómez L, Dappolonnio C, Weber H, Leal P. Therapeutic Targets of Monoclonal Antibodies Used in the Treatment of Cancer: Current and Emerging. Biomedicines 2023; 11:2086. [PMID: 37509725 PMCID: PMC10377242 DOI: 10.3390/biomedicines11072086] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer is one of the leading global causes of death and disease, and treatment options are constantly evolving. In this sense, the use of monoclonal antibodies (mAbs) in immunotherapy has been considered a fundamental aspect of modern cancer therapy. In order to avoid collateral damage, it is indispensable to identify specific molecular targets or biomarkers of therapy and/or diagnosis (theragnostic) when designing an appropriate immunotherapeutic regimen for any type of cancer. Furthermore, it is important to understand the currently employed mAbs in immunotherapy and their mechanisms of action in combating cancer. To achieve this, a comprehensive understanding of the biology of cancer cell antigens, domains, and functions is necessary, including both those presently utilized and those emerging as potential targets for the design of new mAbs in cancer treatment. This review aims to provide a description of the therapeutic targets utilized in cancer immunotherapy over the past 5 years, as well as emerging targets that hold promise as potential therapeutic options in the application of mAbs for immunotherapy. Additionally, the review explores the mechanisms of actin of the currently employed mAbs in immunotherapy.
Collapse
Affiliation(s)
- Brian Effer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Isabela Perez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Daniel Ulloa
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Carolyn Mayer
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Francisca Muñoz
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Diego Bustos
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Claudio Rojas
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Carlos Manterola
- Programa de Doctorado en Ciencias Médicas, Universidad de la Frontera, Temuco 4811230, Chile
- Centro de Estudios Morfológicos y Quirúrgicos de La, Universidad de La Frontera, Temuco 4811230, Chile
| | - Luis Vergara-Gómez
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Camila Dappolonnio
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Helga Weber
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Pamela Leal
- Center of Excellence in Translational Medicine (CEMT) and Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4810296, Chile
| |
Collapse
|
7
|
Athanassiou P, Athanassiou L. Current Treatment Approach, Emerging Therapies and New Horizons in Systemic Lupus Erythematosus. Life (Basel) 2023; 13:1496. [PMID: 37511872 PMCID: PMC10381582 DOI: 10.3390/life13071496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic lupus erythematosus (SLE), the prototype of systemic autoimmune diseases is characterized by extreme heterogeneity with a variable clinical course. Renal involvement may be observed and affects the outcome. Hydroxychloroquine should be administered to every lupus patient irrespective of organ involvement. Conventional immunosuppressive therapy includes corticosteroids, methotrexate, cyclophosphamide, mycophenolate mofetil, azathioprine, cyclosporine and tacrolimus. However, despite conventional immunosuppressive treatment, flares occur and broad immunosuppression is accompanied by multiple side effects. Flare occurrence, target organ involvement, side effects of broad immunosuppression and increased knowledge of the pathogenetic mechanisms involved in SLE pathogenesis as well as the availability of biologic agents has led to the application of biologic agents in SLE management. Biologic agents targeting various pathogenetic paths have been applied. B cell targeting agents have been used successfully. Belimumab, a B cell targeting agent, has been approved for the treatment of SLE. Rituximab, an anti-CD20 targeting agent is also used in SLE. Anifrolumab, an interferon I receptor-targeting agent has beneficial effects on SLE. In conclusion, biologic treatment is applied in SLE and should be further evaluated with the aim of a good treatment response and a significant improvement in quality of life.
Collapse
Affiliation(s)
| | - Lambros Athanassiou
- Department of Rheumatology, Asclepeion Hospital, Voula, GR16673 Athens, Greece
| |
Collapse
|
8
|
Gao Y, Zhou J, Huang Y, Wang M, Zhang Y, Zhang F, Gao Y, Zhang Y, Li H, Sun J, Xie Z. Jiedu-Quyu-Ziyin Fang (JQZF) inhibits the proliferation and activation of B cells in MRL/lpr mice via modulating the AKT/mTOR/c-Myc signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023:116625. [PMID: 37236380 DOI: 10.1016/j.jep.2023.116625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/02/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiedu-Quyu-Ziyin Fang (JQZF) is a new herbal formula improved based on "Sheng Ma Bie Jia Tang" in the Golden Chamber, has been proved to be effective in the treatment of SLE. The ability of JQZF to prevent lymphocyte growth and survival has been demonstrated in earlier investigations. However, the specific mechanism of JQZF on SLE has not been fully investigated. AIM OF THE STUDY To reveal the potential mechanisms of JQZF inhibiting B cell proliferation and activation in MRL/lpr mice. MATERIALS AND METHODS MRL/lpr mice were treated with low-dose, high-dose JQZF and normal saline for 6 weeks. The effect of JQZF on disease improvement in MRL/lpr mice was studied using enzyme-linked immunosorbent assay (ELISA), histopathological staining, serum biochemical parameters and urinary protein levels. The changes of B lymphocyte subsets in the spleen were analyzed by flow cytometry. The contents of ATP and PA in B lymphocytes from the spleens of mice were determined by ATP content assay kit and PA assay kit. Raji cells (a B lymphocyte line) were selected as the cell model in vitro. The effects of JQZF on the proliferation and apoptosis of B cells were detected by flow cytometry and CCK8. The effect of JQZF on the AKT/mTOR/c-Myc signaling pathway in B cells were detected via western blot. RESULTS JQZF, especially at high dose, significantly improved the disease development of MRL/lpr mice. Flow cytometry results showed that JQZF affected the proliferation and activation of B cells. In addition, JQZF inhibited the production of ATP and PA in B lymphocytes. In vitro cell experiments further confirmed that JQZF can inhibit Raji proliferation and promote cell apoptosis through AKT/mTOR/c-Myc signaling pathway. CONCLUSION JQZF may affect the proliferation and activation of B cells by inhibiting the AKT/mTOR/c-Myc signaling pathway.
Collapse
Affiliation(s)
- YiNi Gao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - JiaWang Zhou
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yao Huang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - MeiJiao Wang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yi Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - FengQi Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Gao
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - YiYang Zhang
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - HaiChang Li
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing Sun
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| | - ZhiJun Xie
- Key Laboratory of Chinese Medicine Rheumatology of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
9
|
Giordano D, Kuley R, Draves KE, Elkon KB, Giltiay NV, Clark EA. B cell-activating factor (BAFF) from dendritic cells, monocytes and neutrophils is required for B cell maturation and autoantibody production in SLE-like autoimmune disease. Front Immunol 2023; 14:1050528. [PMID: 36923413 PMCID: PMC10009188 DOI: 10.3389/fimmu.2023.1050528] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Purpose and methods B cell-activating factor (BAFF) contributes to the pathogenesis of autoimmune diseases including systemic lupus erythematosus (SLE). Although several anti-BAFF Abs and derivatives have been developed for the treatment of SLE, the specific sources of BAFF that sustain autoantibody (auto-Ab) producing cells have not been definitively identified. Using BAFF-RFP reporter mice, we identified major changes in BAFF-producing cells in two mouse spontaneous lupus models (Tlr7 Tg mice and Sle1), and in a pristane-induced lupus (PIL) model. Results First, we confirmed that similar to their wildtype Tlr7 Tg and Sle1 mice counterparts, BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice had increased BAFF serum levels, which correlated with increases in plasma cells and auto-Ab production. Next, using the RFP reporter, we defined which cells had dysregulated BAFF production. BAFF-producing neutrophils (Nphs), monocytes (MOs), cDCs, T cells and B cells were all expanded in the spleens of BAFF-RFP Tlr7 Tg mice and BAFF-RFP Sle1 mice compared to controls. Furthermore, Ly6Chi inflammatory MOs and T cells had significantly increased BAFF expression per cell in both spontaneous lupus models, while CD8- DCs up-regulated BAFF expression only in the Tlr7 Tg mice. Similarly, pristane injection of BAFF-RFP mice induced increases in serum BAFF levels, auto-Abs, and the expansion of BAFF-producing Nphs, MOs, and DCs in both the spleen and peritoneal cavity. BAFF expression in MOs and DCs, in contrast to BAFF from Nphs, was required to maintain homeostatic and pristane-induced systemic BAFF levels and to sustain mature B cell pools in spleens and BMs. Although acting through different mechanisms, Nph, MO and DC sources of BAFF were each required for the development of auto-Abs in PIL mice. Conclusions Our findings underscore the importance of considering the relative roles of specific myeloid BAFF sources and B cell niches when developing treatments for SLE and other BAFF-associated autoimmune diseases.
Collapse
Affiliation(s)
- Daniela Giordano
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- *Correspondence: Daniela Giordano,
| | - Runa Kuley
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Kevin E. Draves
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Keith B. Elkon
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Natalia V. Giltiay
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
| | - Edward A. Clark
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA, United States
- Department of Microbiology, University of Washington, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
| |
Collapse
|
10
|
Miao YR, Thakkar K, Cenik C, Jiang D, Mizuno K, Jia C, Li CG, Zhao H, Diep A, Xu Y, Zhang XE, Yang TTC, Liedtke M, Abidi P, Leung WS, Koong AC, Giaccia AJ. Developing high-affinity decoy receptors to treat multiple myeloma and diffuse large B cell lymphoma. J Exp Med 2022; 219:213366. [PMID: 35881112 PMCID: PMC9428257 DOI: 10.1084/jem.20220214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 06/17/2022] [Indexed: 11/12/2022] Open
Abstract
Disease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF. While wild-type sBCMA-Fc effectively blocked APRIL signaling in MM, it lacked activity in DLBCL due to its weak BAFF binding. To expand the therapeutic utility of sBCMA-Fc, we engineered an affinity-enhanced mutant sBCMA-Fc fusion molecule (sBCMA-Fc V3) 4- and 500-fold stronger in binding to APRIL and BAFF, respectively. The mutant sBCMA-Fc V3 clone significantly enhanced antitumor activity against both MM and DLBCL. Importantly, we also demonstrated an adequate toxicity profile and on-target mechanism of action in nonhuman primate studies.
Collapse
Affiliation(s)
- Yu Rebecca Miao
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Kaushik Thakkar
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Dadi Jiang
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Kazue Mizuno
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | | | - Caiyun Grace Li
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Hongjuan Zhao
- Department of Urology, Stanford University, Stanford, CA
| | - Anh Diep
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Yu Xu
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Xin Eric Zhang
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | | | - Michaela Liedtke
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Parveen Abidi
- Department of Medicine (Hematology), Stanford University, Stanford, CA
| | - Wing-Sze Leung
- Department of Radiation Oncology, Stanford University, Stanford, CA
| | - Albert C Koong
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, CA.,Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022; 137:1-19. [PMID: 34687954 PMCID: PMC8678319 DOI: 10.1016/j.actbio.2021.10.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
B cells play multiple roles in immune responses related to autoimmune diseases as well as different types of cancers. As such, strategies focused on B cell targeting attracted wide interest and developed intensively. There are several common mechanisms various B cell targeting therapies have relied on, including direct B cell depletion, modulation of B cell antigen receptor (BCR) signaling, targeting B cell survival factors, targeting the B cell and T cell costimulation, and immune checkpoint blockade. Nanocarriers, used as drug delivery vehicles, possess numerous advantages to low molecular weight drugs, reducing drug toxicity, enhancing blood circulation time, as well as augmenting targeting efficacy and improving therapeutic effect. Herein, we review the commonly used targets involved in B cell targeting approaches and the utilization of various nanocarriers as B cell-targeted delivery vehicles. STATEMENT OF SIGNIFICANCE: As B cells are engaged significantly in the development of many kinds of diseases, utilization of nanomedicines in B cell depletion therapies have been rapidly developed. Although numerous studies focused on B cell targeting have already been done, there are still various potential receptors awaiting further investigation. This review summarizes the most relevant studies that utilized nanotechnologies associated with different B cell depletion approaches, providing a useful tool for selection of receptors, agents and/or nanocarriers matching specific diseases. Along with uncovering new targets in the function map of B cells, there will be a growing number of candidates that can benefit from nanoscale drug delivery.
Collapse
Affiliation(s)
- Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
12
|
CAR Treg: A new approach in the treatment of autoimmune diseases. Int Immunopharmacol 2021; 102:108409. [PMID: 34863655 DOI: 10.1016/j.intimp.2021.108409] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/07/2021] [Accepted: 11/23/2021] [Indexed: 12/22/2022]
Abstract
Regulatory T cells (Tregs) have the role of regulating self-tolerance, and suppressing immune responses. Defects in Treg function and number can lead to in loss of tolerance or autoimmune disease. To treat or control autoimmune diseases, one of the options is to develop immune tolerance for Tregs cell therapy, which includes promotion and activation. Recently, cell-based treatment as a promising approach to increase cells function and number has been developed. Cell therapy by chimeric T antigen receptor (CAR-T) cells has shown significant efficacy in the treatment of leukemia, which has led researchers to use CAR-T cells in other diseases like autoimmune diseases. Here, we describe the existing treatments for autoimmune diseases and the available treatments based on Treg, their benefits and restrictions for implementation in clinical trials. We also discussed potential solutions to overcome these limitations. It seems novel designs of CARs to be new hope for autoimmune diseases and expected to be a potential cure option in a wide array of disease in the future. Therefore, it is very important to address this issue and increase information about it.
Collapse
|
13
|
Kitanaga Y, Yamajuku D, Kubo S, Nakamura K, Maeda M, Seki M, Kaneko Y, Kinugasa F, Morokata T, Kondo Y, Yoshinari H, Nakayamada S, Sumida T, Tanaka Y. Discovery of a novel Igβ and FcγRIIB cross-linking antibody, ASP2713, and its potential application in the treatment of systemic lupus erythematosus. Int Immunopharmacol 2021; 101:108343. [PMID: 34781122 DOI: 10.1016/j.intimp.2021.108343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022]
Abstract
B cell-targeted therapies have evolved as established therapies for systemic lupus erythematosus (SLE); however, existing approaches still do not thoroughly satisfy clinical requirements due to limited efficacy against memory B cells, autoantibody-producing plasmablasts and disease heterogeneity. To provide a new treatment option for SLE, we created a novel anti-Igβ antibody with enhanced affinity for Fc gamma receptor (FcγR) IIB called ASP2713. ASP2713 cross-reacted with both human and cynomolgus monkey Igβ and showed increased binding affinity for human and monkey FcγRIIB compared to native human IgG1. This binding property allows dominant B cell binding and induction of intrinsic negative feedback signals. In human B cells, ASP2713 significantly and concentration-dependently induced FcγRIIB ITIM phosphorylation, while suppressing proliferation under B cell receptor stimulation. This pharmacological effect was also confirmed in in vitro B cell proliferation and antibody production assays using peripheral B cells isolated from patients with SLE. In a cynomolgus monkey tetanus toxoid-induced antibody production model, ASP2713 almost completely inhibited the increase in antigen-specific antibodies with superior efficacy to rituximab. Additionally, ASP2713 significantly suppressed recall antibody production in response to secondary tetanus toxoid immunization, indicating the memory B cell- and plasmablast-targeting potential of ASP2713. Our results suggest that ASP2713 may have therapeutic potential as a treatment for SLE, where B cells play a pathogenic role.
Collapse
Affiliation(s)
- Yukihiro Kitanaga
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan; First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan.
| | - Daisuke Yamajuku
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Satoshi Kubo
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Koji Nakamura
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Masashi Maeda
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Mutsumi Seki
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Yoko Kaneko
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Fumitaka Kinugasa
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Tatsuaki Morokata
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Ibaraki, Japan
| | - Yuya Kondo
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroko Yoshinari
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Shingo Nakayamada
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiya Tanaka
- First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
14
|
Yarahmadi P, Alirezaei M, Forouzannia SM, Naser Moghadasi A. The Outcome of COVID-19 in Patients with a History of Taking Rituximab: A Narrative Review. IRANIAN JOURNAL OF MEDICAL SCIENCES 2021; 46:411-419. [PMID: 34840381 PMCID: PMC8611224 DOI: 10.30476/ijms.2021.88717.1946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/26/2021] [Accepted: 03/13/2021] [Indexed: 01/16/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a recently emerging disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Notably, the safety of immunosuppressive medications is a major concern during an infectious disease pandemic. Rituximab (RTX), as a monoclonal antibody against CD20 molecule, is widely used for the treatment of various diseases, mostly autoimmune diseases and some malignancies. Previous studies indicated that RTX, as an immunosuppressive medication, may be associated with the increased risk of infections. Moreover, given the wide use of RTX, a necessity of determining the different aspects of RTX use in the COVID-19 era is strongly felt. We reviewed current studies on the clinical courses of patients with SARS-CoV-2 infection. It appears that the use of RTX does not increase morbidity and mortality in most patients. However, underlying diseases and other concomitant medications may play a role in the disease course, while the concerns of vaccine efficacy in patients receiving RTX still need to be addressed. Therefore, more controlled studies are needed for a better conclusion.
Collapse
Affiliation(s)
- Pourya Yarahmadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Alirezaei
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Forouzannia
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdorreza Naser Moghadasi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
B-cell activating factor BAFF as a novel alert marker for the immunological risk stratification after kidney transplantation. Immunol Res 2021; 69:487-495. [PMID: 34373996 PMCID: PMC8580904 DOI: 10.1007/s12026-021-09205-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
The B cell activating factor BAFF has gained importance in the context of kidney transplantation due to its role in B cell survival. Studies have shown that BAFF correlates with an increased incidence of antibody-mediated rejection and the development of donor-specific antibodies. In this study, we analyzed a defined cohort of kidney transplant recipients who were treated with standardized immunosuppressive regimens according to their immunological risk profile. The aim was to add BAFF as an awareness marker in the course after transplantation to consider patient’s individual immunological risk profile. Included patients were transplanted between 2016 and 2018. Baseline data, graft function, the occurrence of rejection episodes, signs of microvascular infiltration, and DSA kinetics were recorded over 3 years. BAFF levels were determined 14 d, 3 and 12 months post transplantation. Although no difference in graft function could be observed, medium-risk patients showed a clear dynamic in their BAFF levels with low levels shortly after transplantation and an increase in values of 123% over the course of 1 year. Patients with high BAFF values were more susceptible to rejection, especially antibody-mediated rejection and displayed intensified microvascular inflammation; the combination of high BAFF + DSA puts patients at risk. The changing BAFF kinetics of the medium risk group as well as the increased occurrence of rejections at high BAFF values enables BAFF to be seen as an awareness factor. To compensate the changing immunological risk, a switch from a weaker induction therapy to an intensified maintenance therapy is required.
Collapse
|
16
|
Patil S, Gs V, Sarode GS, Sarode SC, Khurayzi TA, Mohamed Beshir SE, Gadbail AR, Gondivkar S. Exploring the role of immunotherapeutic drugs in autoimmune diseases: A comprehensive review. J Oral Biol Craniofac Res 2021; 11:291-296. [PMID: 33948430 PMCID: PMC8080637 DOI: 10.1016/j.jobcr.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
Autoimmune diseases are group of disorders where an immune response is mounted against the self. The prevalence and burden of this well established and recognised entity is on the rise. Irrespective of being a systemic or organ specific autoimmune disorder, the common underlying mechanism of action, is the imbalance in immune system resulting in loss of tolerance to self-antigens. The oral cavity is no alien to these disorders or to their influences. Pemphigus group of lesions, systemic lupus erythematosus, psoriasis and even Sjogren's syndrome are some of the established autoimmune disorders with prominent oral manifestations. Though these diseases are well documented and enumerated, however addressing them is where the dilemma lies. Science, research and discoveries are a crucial part of medical discipline which help in looking beyond the horizon. With the introduction of selective targeted immunotherapies for autoimmune diseases as a treatment modality either in solitary or in combination with the conventional immunosuppressive treatments, are emerging as a promising elixir for patients enduring them. However, being unique, exploration of these biologics from its inception, to its mechanism of action, recognition of its application and evaluation of its safety norms are equally vital. Therefore, this review aims to provide a comprehensive particular on the novel biologics, the immunotherapies in autoimmune disorders targeting the different cells, their receptors or cytokines of the immune system.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Vidya Gs
- Sree NRJV Specialists Dental Clinic, Bangalore, Karnataka, India
| | - Gargi S. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaramnagar, Pimpri, Pune, 411018, Maharashtra, India
| | - Sachin C. Sarode
- Department of Oral Pathology and Microbiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Sant-Tukaramnagar, Pimpri, Pune, 411018, Maharashtra, India
| | - Turki Abdu Khurayzi
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Saiid Elshafey Mohamed Beshir
- Maxillofacial Surgery and Diagnostic Sciences Department, Oral and Maxillofacial Surgery Division, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Amol R. Gadbail
- Department of Dentistry, Indira Gandhi Government Medical College & Hospital, Nagpur, Maharashtra State, India
| | - Shailesh Gondivkar
- Department of Oral Medicine & Radiology, Government Dental College & Hospital, Nagpur, Maharashtra, India
| |
Collapse
|
17
|
Zian Z, Berry SPDG, Bahmaie N, Ghotbi D, Kashif A, Madkaikar M, Bargir UA, Abdullahi H, Khan H, Azizi G. The clinical efficacy of Rituximab administration in autoimmunity disorders, primary immunodeficiency diseases and malignancies. Int Immunopharmacol 2021; 95:107565. [PMID: 33773205 DOI: 10.1016/j.intimp.2021.107565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Rituximab (RTX), as a monoclonal antibody-based immunotherapeutic intervention targeting CD20 on B cells, has proven efficacy in the treatment of patients with some immune-mediated diseases. In the present review, we provided information on the immunobiological mechanisms of signaling for RTX and its clinical applications, according to the immune-pathophysiology involved in the microenvironment of multiple diseases. We highlighted combination therapy, dose schedules, and laboratory monitoring, as well as the associated common and rare side effects to avoid. We also discussed the efficacy and safety of RTX-based therapeutic strategies and whether RTX therapy can be used as a promising treatment regimen for autoimmune diseases, primary immunodeficiency diseases, and malignancies. Our review highlights and supports the importance of collaboration between basic medical researchers and clinical specialists when considering the use of RTX in the treatment of various immune-mediated disorders.
Collapse
Affiliation(s)
- Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, P.B. 416, Abdelmalek Essaadi University, Tetouan, Morocco
| | - S P Déo-Gracias Berry
- Centre de Recherches Médicales (CERMEL) de Lambaréné, B.P: 242, Gabon; Technical University of Munich, 80333, Germany
| | - Nazila Bahmaie
- Department of Allergy and Immunology, Faculty of Medicine, Graduate School of Health Science, Near East University (NEU), Nicosia, 99138, Northern Cyprus, Cyprus
| | - Dana Ghotbi
- Faculty of Biological Sciences, University of Kharazmi, Tehran 14911-15719, Iran
| | - Ali Kashif
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Manisha Madkaikar
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, Mumbai 400070, India
| | - Umair Ahmed Bargir
- Department of Pediatric Immunology and Leukocyte Biology, ICMR-National Institute of Immunohaematology, Mumbai 400070, India
| | - Hamisu Abdullahi
- Department of Immunology, School of Medical Laboratory Sciences, Usmanu Danfodiyo University Sokoto, 840232, Nigeria
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj 3149779453, Iran.
| |
Collapse
|
18
|
Bacalao MA, Satterthwaite AB. Recent Advances in Lupus B Cell Biology: PI3K, IFNγ, and Chromatin. Front Immunol 2021; 11:615673. [PMID: 33519824 PMCID: PMC7841329 DOI: 10.3389/fimmu.2020.615673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
In the autoimmune disease Systemic Lupus Erythematosus (SLE), autoantibodies are formed that promote inflammation and tissue damage. There has been significant interest in understanding the B cell derangements involved in SLE pathogenesis. The past few years have been particularly fruitful in three domains: the role of PI3K signaling in loss of B cell tolerance, the role of IFNγ signaling in the development of autoimmunity, and the characterization of changes in chromatin accessibility in SLE B cells. The PI3K pathway coordinates various downstream signaling molecules involved in B cell development and activation. It is governed by the phosphatases PTEN and SHIP-1. Murine models lacking either of these phosphatases in B cells develop autoimmune disease and exhibit defects in B cell tolerance. Limited studies of human SLE B cells demonstrate reduced expression of PTEN or increased signaling events downstream of PI3K in some patients. IFNγ has long been known to be elevated in both SLE patients and mouse models of lupus. New data suggests that IFNγR expression on B cells is required to develop autoreactive germinal centers (GC) and autoantibodies in murine lupus. Furthermore, IFNγ promotes increased transcription of BCL6, IL-6 and T-bet in B cells, which also promote GC and autoantibody formation. IFNγ also induces epigenetic changes in human B cells. SLE B cells demonstrate significant epigenetic reprogramming, including enhanced chromatin accessibility at transcription factor motifs involved in B cell activation and plasma cell (PC) differentiation as well as alterations in DNA methylation and histone modifications. Histone deacetylase inhibitors limit disease development in murine lupus models, at least in part via their ability to prevent B cell class switching and differentiation into plasma cells. This review will discuss relevant discoveries of the past several years pertaining to these areas of SLE B cell biology.
Collapse
Affiliation(s)
- Maria A. Bacalao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anne B. Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
19
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with extreme heterogeneity and potentially involvement of any organ or system. Numerous unanswered questions and challenges in SLE always prompt further exploration. In 2019, great progress in various aspects of SLE emerged. Both the classification criteria and management recommendation for SLE were updated. New promising medications have been widely developed and tested, although subsequent clinical studies are warranted. As an emerging number of most notable studies in SLE were published in both clinical area and basic research in 2019, we aim to summarize the highest quality data on SLE regarding novel insights of pathogenesis, updated recommendations, hot-spot issues on clinical manifestations, new understanding of disease prognosis, and most importantly, the therapeutic advances in SLE in this review.
Collapse
Affiliation(s)
- Yong Fan
- Department of Rheumatology and Clinical Immunology, Peking University First Hospital, Beijing 100034, China
| | | | | |
Collapse
|
20
|
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterised by diverse organ damages resulting from various autoantibodies, such as antinuclear or anti-DNA antibodies. Neuropsychiatric lupus (NPSLE) refers to the neurological and psychiatric disorders complicated with SLE and can be challenging for physicians to manage. NPSLE has a broad spectrum and high heterogeneity of clinical phenotypes, including headaches, psychiatric symptoms and peripheral neuropathy. Additionally, various immune effectors have been reported to contribute to the pathogenesis, including cytokines, cell-mediated inflammation and brain-reactive autoantibodies. In some patients with SLE, neuropsychiatric symptoms develop for the first time after the initiation of the steroid treatment, hindering the differentiation from steroid psychosis. The administration of high doses of steroids in patients with SLE is believed to trigger psychiatric symptoms. No clear evidence has yet been found regarding the treatment of NPSLE. Therefore, NPSLE-specific markers need to be developed, and treatment guidelines should be established. This article provides an overview of NPSLE as well as its pathogenesis and treatment.
Collapse
Affiliation(s)
- Yuichiro Fujieda
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Wardowska A, Komorniczak M, Skoniecka A, Bułło-Piontecka B, Lisowska KA, Dębska-Ślizień MA, Pikuła M. Alterations in peripheral blood B cells in systemic lupus erythematosus patients with renal insufficiency. Int Immunopharmacol 2020; 83:106451. [PMID: 32248020 DOI: 10.1016/j.intimp.2020.106451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/25/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is one of the autoimmune diseases, believed to be closely related to hyperactivity of B cells, overproduction of autoantibodies and immune complex formation and deposition in affected tissue. The autoreactive inflammation leads to multiorgan damage with kidney dysfunction in the forefront. Studies on lupus nephritis (LN), affecting the majority of SLE patients, are mainly focused on cells causing local inflammation. The aim of our work was to detect alterations in more accessible peripheral blood B cells in the course of SLE focusing on the influence of renal insufficiency (RI) on those parameters. METHODS We performed a comprehensive flow cytometry analysis of B cell subpopulations, analyzed gene expression patterns with qPCR, and examined serum cytokine levels with multiplex cytokine/chemokine assay. RESULTS We discovered distribution of specific B cell subsets, especially CD38+ cells, plasmablasts, associated with the presence and severity of the disease. Changes in expression of MBD2, DNMT1 and APRIL genes were not only associated with activity of SLE but also were significantly changed in patients with RI. CONCLUSIONS All these results shed new light on the role of circulating B cells, their subpopulations, function, and activity in the SLE with kidney manifestation.
Collapse
Affiliation(s)
- Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Komorniczak
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| | - Barbara Bułło-Piontecka
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | | | - M Alicja Dębska-Ślizień
- Department of Nephrology, Transplantology and Internal Diseases, Medical University of Gdansk, Gdansk, Poland
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|