1
|
do Nascimento NN, Cansian ABM, de Sousa JS, Negrão FN, Tardioli PW, Vieira AMS. Plants lipases: challenges, recent advances, and future prospects - a review. Bioprocess Biosyst Eng 2025:10.1007/s00449-025-03164-y. [PMID: 40220056 DOI: 10.1007/s00449-025-03164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/30/2025] [Indexed: 04/14/2025]
Abstract
Plant lipases offer a sustainable and promising alternative for various industrial applications, with increasing use in biocatalytic processes in recent years. Leveraging plants as renewable resources reduces dependence on animal or microbial sources, providing significant potential for sustainable lipase production. These lipases are biodegradable and less toxic, enhancing their cost-effectiveness, particularly when sourced from plants with additional economic value. The diversity of plant species offers a wide array of lipases with different properties, broadening their industrial applications. Additionally, integrating plant lipase production into existing agricultural processes by using agricultural residues or by-products as enzyme sources can reduce costs and add value to waste materials. Despite their potential, several challenges must be addressed for the effective utilization of plant-derived lipases. Reducing extraction and purification costs is essential to make these enzymes competitive with other sources. Advancements in the biochemical and structural characterization of plant lipases have facilitated enzymatic engineering approaches to enhance enzyme stability, specificity, and catalytic efficiency. A review of the current research can help identify gaps and suggest new directions for enzyme development and technological advancements. Understanding the mechanisms of action and unique properties of plant lipases can drive innovations in biocatalytic processes. This review aims to highlight the characteristics of plant lipases and the challenges in their extraction, purification, and stability. This study conducted a narrative review using a database of relevant studies, selecting 92 studies. The future of plant lipases holds great promise for transformative impacts across various industries, promoting more sustainable and innovative practices.
Collapse
Affiliation(s)
- Nicole Novelli do Nascimento
- Postgraduate Program in Food Science, Centre of Agrarian Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Ana Bárbara Moulin Cansian
- Postgraduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
- Institute of Chemistry, University of São Paulo, São Paulo, SP, Brasil
| | - Jumara Silva de Sousa
- Postgraduate Program in Chemical Engieering, State University of Maringá, Maringá, PR, Brazil
| | - Fernanda Novelli Negrão
- Postgraduate Program in Genetics and Enhancement, Centre of Agrarian Sciences, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Waldir Tardioli
- Postgraduate Program in Chemical Engineering, Federal University of São Carlos, São Carlos, SP, Brazil
| | | |
Collapse
|
2
|
Tegegne M, Abate KH, Belechew T. Effect of counselling about complementary food flour soaking on nutritional and health status of children 6-23 months, a quasi-experimental study. Clin Nutr ESPEN 2025; 66:281-289. [PMID: 39864523 DOI: 10.1016/j.clnesp.2025.01.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND Strategies for achieving improved nutrition in young children in developing countries where plant-based complementary foods are the main source of nutrients can address the challenge of meeting nutritional needs from these foods. OBJECTIVES This study aimed to assess the effect of counseling about complementary food flour soaking on nutritional and health status of children 6-23 months. METHODS A total of 726 mother-child pairs (intervention n = 363 and control n = 363) were enrolled in this study. Participants in the intervention district received personalized nutritional counseling for six months. Interviewer-administered questionnaires and anthropometric measurements were used to collect data. The data were analyzed using SPSS. The difference in difference regression analysis and the Poisson regression analyses were used to estimate the effect of the interventions on anthropometric Z-score and incidence of disease episodes, respectively. Mean differences and Incidence Rate Ratio were computed as a measure of intervention effects. RESULT The results showed that the intervention improved the Weight-for-Age Z score of children by 0.30 (β = 0.30, 95 % CI: 0.15-0.45) and Weight-for-length Z score by 0.47 (β = 0.47, 95 % CI: 0.25-0.69). However, the intervention did not improve Length-for-age and health status. CONCLUSION The findings imply the need for strengthening social behavior change communication to improve the complementary feeding practices of mothers in the study area. The trial was registered on ClinicalTrials.gov with a registration number NCT05254717.
Collapse
Affiliation(s)
- Mekonnen Tegegne
- Department of Public Health, College of Health Science, Madda Walabu University Goba Referral Hospital, Bale, Ethiopia; Department of Nutrition and Dietetics, Faculty of Public Health, Jimma University, Jimma, Ethiopia.
| | - Kalkidan Hassen Abate
- Department of Nutrition and Dietetics, Faculty of Public Health, Jimma University, Jimma, Ethiopia.
| | - Tefera Belechew
- Department of Nutrition and Dietetics, Faculty of Public Health, Jimma University, Jimma, Ethiopia.
| |
Collapse
|
3
|
Heberle T, do Nascimento LÁ, Wang YJ, Colussi R, de Souza JF, Fajardo AR, Mesko MF. Germination time: impact on nutritional, thermal, and paste properties of red rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025. [PMID: 40088068 DOI: 10.1002/jsfa.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND The study investigates how varying germination times affect the nutritional, thermal, and pasting properties of red rice. Germination was conducted over 32 h, with aliquots collected every 2 h starting from 18 h for property evaluation. RESULTS At all evaluated germination times, the red rice samples exhibited low to intermediate amylose levels, while resistant starch content remained relatively constant (approximately 15-20%). Structural changes in the starch were observed: the peak viscosity decreased, maximum gelatinization of the granules occurred at 76 °C, and spectroscopic bands characteristic of this polysaccharide were detected at 3400 cm-1 (OH stretching) and within the 1150-1000 cm-1 range (COH and COC stretching). Protein and fiber content remained unchanged throughout the process, whereas carbohydrate content varied by 10 g kg-1. Protein digestibility increased after 26 h and continued to rise until the end of germination, while starch digestibility decreased throughout the process, particularly between 24 and 26 h. CONCLUSION The thermal properties of the grains remained unchanged, as did the starch digestibility, suggesting the potential application of this flour in gluten-free bakery products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thauana Heberle
- Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Ya-Jane Wang
- Department of Food Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Rosana Colussi
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | | | - André Ricardo Fajardo
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| | - Marcia Foster Mesko
- Center for Chemical, Pharmaceutical and Food Sciences, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
4
|
Mudgal S, Singh N. Impact of ultrasonication on the physicochemical, pasting, amino acid, mineral, phenolic, and sugar profile of germinated brown rice from various varieties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2025; 62:492-507. [PMID: 39917347 PMCID: PMC11794897 DOI: 10.1007/s13197-024-06039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 02/09/2025]
Abstract
Germinated rice, recognized for its enhanced nutritional and functional properties, is a subject of increasing interest due to its potential health benefits. Ultrasonic low-frequency sound waves (40 kHz) treatment of seeds is a green technology that promises to enhance germination capacity of the grains and functional and biochemical properties through the stimulation of water-oxygen uptake and seed metabolism. Ultrasonication treatment (5, 10 and 15 min) significantly enhanced the protein and total dietary fibre content of (brown rice) BR from different varieties. Results showed that ultrasonication accelerated starch and phytic acid degradation and increased the reduced sugar content via activation of alpha-amylase. Moreover, the ultrasonically treated BR had higher levels of gamma-aminobutyric acid, essential amino acids and other bioactive compounds. Ultrasonicated germinated grain can be utilize further by food industry for making functional foods. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-024-06039-4.
Collapse
Affiliation(s)
- Swasti Mudgal
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, 143005 India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, 143005 India
- Department of Food Science and Technology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand 248002 India
| |
Collapse
|
5
|
Karki R, Ojha P, Maharjan S, Manandhar U, Maharjan S. Optimization of the germination time of proso and foxtail millets to enhance the bioactive properties, antioxidant activity, and enzymatic power and reduce antinutritional factor. Curr Res Food Sci 2025; 10:100987. [PMID: 40114744 PMCID: PMC11923759 DOI: 10.1016/j.crfs.2025.100987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/12/2025] [Accepted: 01/23/2025] [Indexed: 03/22/2025] Open
Abstract
The germination of millets is a traditional yet underutilized method to enhance their nutritional and functional attributes. This study investigates the impact of germination time on the bioactive, enzymatic, and antinutritional properties of proso millet (Chino Dude) and foxtail millet (Kaguno Red and Kaguno White) varieties. Germination was conducted over five days (0-5 days), and changes in total phenolic and flavonoid content, tannin content, antioxidant activity, diastatic power, α-amylase activity, reducing sugars, and trypsin inhibition activity were measured. A two-way ANOVA revealed significant effects (p < 0.05) of varietal differences and germination time on these properties. Total phenolic and flavonoid content and antioxidant activity increased significantly (p < 0.05) unit day 3 of germination after which it decreased until day 5. Tannin content and trypsin inhibitor decreased significantly (p < 0.05) from day 1 to day 5 of germination, whereas diastatic power and α-amylase increased (p < 0.05) with an increase in germination time. The optimal germination time was determined to be 3.46 days using multiple regression models to maximize bioactive compounds and enzymatic activity while minimizing antinutritional factors. Moreover, Kaguno Red exhibited the highest bioactive levels, while Kaguno White had the lowest trypsin inhibition activity, indicating varietal-specific differences in analyzed parameters. This study highlights the potential of tailored germination strategies to enhance the nutritional and functional profiles of millets, providing actionable insights for functional food development in regions reliant on millet as a staple crop.
Collapse
Affiliation(s)
- Roman Karki
- National Food Research Centre, Nepal Agricultural Research Council, Lalitpur, 44700, Nepal
| | - Pravin Ojha
- National Food Research Centre, Nepal Agricultural Research Council, Lalitpur, 44700, Nepal
| | - Sushma Maharjan
- National Food Research Centre, Nepal Agricultural Research Council, Lalitpur, 44700, Nepal
| | - Utshah Manandhar
- National Food Research Centre, Nepal Agricultural Research Council, Lalitpur, 44700, Nepal
| | - Sophi Maharjan
- National Food Research Centre, Nepal Agricultural Research Council, Lalitpur, 44700, Nepal
| |
Collapse
|
6
|
Sreechithra TV, Sakhare SD. Development of novel process for production of high-protein soybean semolina and its functionality. Food Res Int 2025; 203:115865. [PMID: 40022386 DOI: 10.1016/j.foodres.2025.115865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/13/2025] [Accepted: 01/29/2025] [Indexed: 03/03/2025]
Abstract
This study aims to develop a semolina roller milling process for differently processed soybeans and investigate the physicochemical, functional, and pasting properties of the resulting milled products. Soybeans underwent pre-milling treatments: roasting (RT), germination (GT), and hydrothermal processing (HT) before being roller-milled to produce fine semolina (FS), coarse semolina (CS), husk (H), and flour (F) fractions. The results indicated that FS yield was highest for GT (47.21%) and lowest for HT (42.52%), while CS yield was highest for control (31.83%) and lowest for GT (26.79%). Nutrients were unevenly distributed among the milled products, with ash, protein, and total dietary fiber concentrated in the CS across all treatments. Both water and oil holding capacities were highest for HT and lowest for GT. Pasting properties, including peak viscosity, hot paste viscosity, and cold paste viscosity, were highest for control and lowest for HT and RT soybean. These findings demonstrate that soybeans can produce uniformly sized semolina under standardized roller milling parameters. This emerging process will provide a new possibility for utilizing protein-rich soybeans. Utilizing soybean semolina as an ingredient could enhance the use of protein-rich soybeans in daily diets and open new opportunities for the soy-processing industry.
Collapse
Affiliation(s)
- T V Sreechithra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Flour Milling, Baking & Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India
| | - Suresh D Sakhare
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Flour Milling, Baking & Confectionery Technology Department, CSIR-Central Food Technological Research Institute, Mysuru 570020, Karnataka, India.
| |
Collapse
|
7
|
Abdennbi S, Trabelsi L, Ben Ahmed G, Ayadi M, Maktouf S, Gargouri K, Chaieb M, Mekki A. Assessment of the germination power and α-amylase activity in the soil rhizospheric compartment amended with olive mill waste waters. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1203. [PMID: 39547983 DOI: 10.1007/s10661-024-13380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Olive mill wastewater (OMWW) was used in ferti-irrigation due to its high water content, as well as its organic and mineral richness. However, this by-product also contains elevated levels of polyphenols, which may pose phytotoxic risks to soil microbiota and plants over time. To address this concern, we conducted a thorough examination of the phenolic composition of OMWW and the phenolic content of amended soils using HPLC analysis. Additionally, we assessed the residual phytotoxicity of OMWW across various soil rhizospheric layers (0-30 cm, 30-60 cm, and 60-90 cm). Standard germination tests were performed using soil extracts with sorghum (Sorghum bicolor) and tomato (Solanum lycopersicum) seeds. We also measured α-amylase activities in the germinated seeds for both species, comparing them to raw OMWW and control soil extracts. HPLC analysis revealed that tyrosol, ferulic acid, and hydroxytyrosol were the predominant phenolic compounds in crude OMWW, while no detectable compounds were found in the soil extracts. Germination tests indicated minimal toxicity in the topsoil amended with OMWW, with a noticeable reduction in residual phytotoxicity at greater depths. These results aligned with the α-amylase activity assessments, which demonstrated significantly higher enzyme activity in the deeper soil layers (30-60 cm and 60-90 cm), with no substantial differences compared to control extracts.
Collapse
Affiliation(s)
- Siwar Abdennbi
- Laboratory of Sustainability of Olive Growing and Arboriculture in Semi-Arid and Arid Regions, Olive Tree Institute, Sfax, Tunisia
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Lina Trabelsi
- Laboratory of Sustainability of Olive Growing and Arboriculture in Semi-Arid and Arid Regions, Olive Tree Institute, Sfax, Tunisia
| | - Gouta Ben Ahmed
- Laboratory of Sustainability of Olive Growing and Arboriculture in Semi-Arid and Arid Regions, Olive Tree Institute, Sfax, Tunisia
| | - Mohamed Ayadi
- Laboratory of Sustainability of Olive Growing and Arboriculture in Semi-Arid and Arid Regions, Olive Tree Institute, Sfax, Tunisia
| | - Sameh Maktouf
- Laboratory of Sustainability of Olive Growing and Arboriculture in Semi-Arid and Arid Regions, Olive Tree Institute, Sfax, Tunisia
| | - Kamel Gargouri
- Laboratory of Sustainability of Olive Growing and Arboriculture in Semi-Arid and Arid Regions, Olive Tree Institute, Sfax, Tunisia
| | - Mohamed Chaieb
- Laboratory of Plant Biodiversity and Dynamics of Ecosystems in Arid Environment, Faculty of Sciences of Sfax, Sfax, Tunisia
| | - Ali Mekki
- Laboratory of Sustainability of Olive Growing and Arboriculture in Semi-Arid and Arid Regions, Olive Tree Institute, Sfax, Tunisia.
- Laboratory of Environmental Bioprocesses, Center of Biotechnology of Sfax, AUF (PER-LBP), BP: 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
8
|
Guillaume JB, Da Lage JL, Mezdour S, Marion-Poll F, Terrol C, Brouzes CMC, Schmidely P. Amylase activity across black soldier fly larvae development and feeding substrates: insights on starch digestibility and external digestion. Animal 2024; 18:101337. [PMID: 39476591 DOI: 10.1016/j.animal.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 11/18/2024] Open
Abstract
Black soldier fly larvae (BSFL; Hermetia illucens) hold promise for converting biowaste into proteins and lipids for feed. Dietary starch is efficiently digested by the larvae and influences larval performance, but the mechanisms of starch digestion remain poorly understood. This study investigated changes in individual weight and amylase activity in BSFL after 4, 7 and 11 days of feeding for five substrates varying in starch content and type: chicken feed (CF), corn gluten feed (CGF), wheat bran (WB), wheat distillers grain (WDG) and discarded potatoes (DP). Substrate amylase activities were also measured with and without larvae (feeding and fermenting trays, respectively) over time in order to explore external digestion. Feed conversion ratio (FCR) and estimated digestibility (ED) of DM and starch were assessed at the end of the experiment. The ranking for best FCR was CF, WB, CGF, WDG and DP. In feeding trays, ED of DM was 69.8 ± 1.8, 59.5 ± 2.9, 58.6 ± 0.7, 45.4 ± 0.6 and 19.5 ± 0.8% in CF, DP, WB, CGF and WDG, respectively. Estimated digestibility of starch reached 100% with WB and CGF, followed by CF (88.2 ± 2.3%), DP (85.2 ± 1.2%) and WDG (43.1 ± 1.0%). Larval amylase activity increased with growth for all substrates and dropped when approaching pupation. No relationship was found between larval amylase activity and substrate starch or other nutrient content, but a negative correlation was reported with the reducing sugar content of the larvae, suggesting glucose repression of amylase production. Amylase activity decreased with time in all feeding and fermenting substrates except WDG and DP. In vitro degradation assays indicated that BSFL amylase was nine times more efficient on raw corn or wheat starch than on raw potato starch, highlighting that starch structure is a major driver of digestibility. Western blot analysis revealed the presence of BSFL amylase in the feeding substrate, hinting at external digestion. Larval amylase was purified to identify its optimal pH (5.0-6.5) and temperature (70 °C). These results highlight that starch content is not a major driver of amylase activity in BSFL and suggest that other non-investigated factors could have had a crucial impact on the activity of larval digestive enzymes, such as microbial community of the substrate and presence of amylase inhibitors. This study also provides insights into the evolution of BSFL digestive activity during their development and the occurrence of external digestion.
Collapse
Affiliation(s)
- J B Guillaume
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France; Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 91190 Gif-sur-Yvette, France; Agronutris, R&D Department, 31650 Saint-Orens de Gameville, France.
| | - J L Da Lage
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 91190 Gif-sur-Yvette, France
| | - S Mezdour
- Université Paris-Saclay, UMR Sayfood, AgroParisTech, INRAE, 91120 Palaiseau, France
| | - F Marion-Poll
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), 91190 Gif-sur-Yvette, France; Université Paris-Saclay, AgroParisTech, 91120 Palaiseau, France
| | - C Terrol
- Agronutris, R&D Department, 31650 Saint-Orens de Gameville, France
| | - C M C Brouzes
- Agronutris, R&D Department, 31650 Saint-Orens de Gameville, France
| | - P Schmidely
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Modélisation Systémique Appliquée aux Ruminants, 91120 Palaiseau, France; Université Paris-Saclay, AgroParisTech, 91120 Palaiseau, France
| |
Collapse
|
9
|
Yan H, Chen H, Liu J, Yao T, Xia M, Liao Q, Huang L, Li W, Song Y, Peng L, Zhao J, Zou L, Zhao G. Pyridoxal phosphate promotes the γ-aminobutyric acid accumulation, antioxidant and anti-hypertensive activity of germinated tartary buckwheat. J Cereal Sci 2024; 120:104024. [DOI: 10.1016/j.jcs.2024.104024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
10
|
Onwuka QI, Chinma CE, Ezeocha VC, Otegbayo B, Oyeyinka SA, Adebo JA, Wilkin J, Bamidele OP, Adebo OA. Short-term germinated legume flours as functional ingredients in food products. J Food Sci 2024; 89:6070-6085. [PMID: 39251487 DOI: 10.1111/1750-3841.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/11/2024]
Abstract
Unlocking the potential of legumes through short-term germination offers an innovative approach to improving the functionality of the resultant flour. This review examines the multifaceted benefits of short-term germinated legume flour, emphasizing the enzymatic activities that breakdown complex legume compounds into simpler forms and reduce anti-nutritional factors. This process improves digestibility, nutrient bioavailability, and health-promoting properties. Furthermore, short-term germination enhances the techno-functional properties of legume flours without compromising their quality, avoiding excessive starch and protein degradation associated with prolonged germination. This review also explores the applications of short-term germinated legume flours in developing nutritious and healthy food products tailored to diverse dietary needs. Subsequent integration of these short-term germinated flours into food products provides a route for the development of cost-effective, nutritious, and sustainable options that can address malnutrition and enhance overall well-being.
Collapse
Affiliation(s)
- Queeneth Ijeoma Onwuka
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
| | - Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology, Minna, Nigeria
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| | - Vanessa Chinelo Ezeocha
- Department of Food Science and Technology, Michael Okpara University of Agriculture Umudike, Umudike, Nigeria
| | - Bolanle Otegbayo
- Food Science and Technology Program, Bowen University, Iwo, Nigeria
| | - Samson Adeoye Oyeyinka
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- National Centre for Food Manufacturing, University of Lincoln, Holbeach, UK
| | - Janet Adeyinka Adebo
- Food Evolution Research Laboratory, School of Tourism and Hospitality, University of Johannesburg, Johannesburg, South Africa
| | - Jon Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | | | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology, Minna, Nigeria
| |
Collapse
|
11
|
Gutiérrez-Cortez E, Hernandez-Becerra E, Zubieta-Otero LF, Gaytán-Martínez M, Barrón-García OY, Rodriguez-Garcia ME. Physicochemical changes in Amaranthus spp grains, flour, isolated starch, and nanocrystals during germination and malting. Food Chem 2024; 451:139395. [PMID: 38703736 DOI: 10.1016/j.foodchem.2024.139395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/06/2024]
Abstract
Amaranth is a pseudocereal that contains between 50 and 60% starch, gluten-free protein, and essential amino acids. This study investigates the physicochemical changes in Amaranthus spp. grains, flour, isolated starch and nanocrystals during germination and malting. The moisture content increased from 8.9% to 41% over 2 h of soaking. The percentage of germination increased rapidly, reaching 96% after 60 h, a remarkable advantage over other cereals. The nutrient composition varied, including protein synthesis and lipid degradation. Lipid concentration decreased during malting, except for soaking, which increased by 62%. Scanning electron microscopy shows that germination does not cause morphological changes on the outer surface of the grains, while transmission electron microscopy indicates the presence of isolated nanocrystals with orthorhombic crystal structure confirmed by X-ray diffraction. The viscosity profile shows a decrease in peak viscosity. Therefore, amaranth is a potential pseudocereal that can be used as an additive in the production of fermented beverages.
Collapse
Affiliation(s)
- Elsa Gutiérrez-Cortez
- Unidad de Investigación Multidisciplinaria, FES-Cuautitlán, Laboratorio de Procesos en Ingeniería Agroalimentaria Universidad Nacional Autónoma de México, Km 2.5 Carretera Cuautitlán-Teoloyucan, San Sebastián Xhala, Cuautitlán Izcalli, Edo de México 54714, Mexico
| | - Ezequiel Hernandez-Becerra
- Escuela de Bachilleres Plantel Norte, Universidad Autónoma de Querétaro, Av Somrereta s/n Colonia las Américas, 76121 Querétaro, Qro, Mexico; Ciencias de la Salud, Universidad del Valle de México campus Querétaro, Blvd Juriquilla No. 1000, Santa Rosa Jauregui, Querétaro, Qro 76230, Mexico
| | - Luis Fernando Zubieta-Otero
- Posgrado en Ciencia e Ingeniería de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Qro 76230, Mexico
| | - Marcela Gaytán-Martínez
- Programa de Posgrado en Alimentos del Centro de la República (PROPAC), Research and Graduate Studies in Food Science, School of Chemistry, Universidad Autónoma de Querétaro, Centro Universitario, Cerro de las Campanas S/N, Querétaro, Qro 76010, Mexico
| | - Oscar Yael Barrón-García
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro 76230, Mexico; División Industrial, Universidad Tecnológica de Querétaro, Av. Pie de la Cuesta 2501, Nacional, 76148 Santiago de Querétaro, Qro, Mexico.
| | - Mario Enrique Rodriguez-Garcia
- Departamento de Nanotecnología, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, Qro 76230, Mexico.
| |
Collapse
|
12
|
Li B, Zhou Y, Wen L, Yang B, Farag MA, Jiang Y. The occurrence, role, and management strategies for phytic acid in foods. Compr Rev Food Sci Food Saf 2024; 23:e13416. [PMID: 39136997 DOI: 10.1111/1541-4337.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Phytic acid, a naturally occurring compound predominantly found in cereals and legumes, is the focus of this review. This review investigates its distribution across various food sources, elucidating its dual roles in foods. It also provides new insights into the change in phytic acid level during food storage and the evolving trends in phytic acid management. Although phytic acid can function as a potent color stabilizer, flavor enhancer, and preservative, its antinutritional effects in foods restrict its applications. In terms of management strategies, numerous treatments for degrading phytic acid have been reported, each with varying degradation efficacies and distinct mechanisms of action. These treatments encompass traditional methods, biological approaches, and emerging technologies. Traditional processing techniques such as soaking, milling, dehulling, heating, and germination appear to effectively reduce phytic acid levels in processed foods. Additionally, fermentation and phytase hydrolysis demonstrated significant potential for managing phytic acid in food processing. In the future, genetic modification, due to its high efficiency and minimal environmental impact, should be prioritized to downregulate the biosynthesis of phytic acid. The review also delves into the biosynthesis and metabolism of phytic acid and elaborates on the mitigation mechanism of phytic acid using biotechnology. The challenges in the application of phytic acid in the food industry were also discussed. This study contributes to a better understanding of the roles phytic acid plays in food and the sustainability and safety of the food industry.
Collapse
Affiliation(s)
- Bailin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yijie Zhou
- Guangdong AIB Polytechnic, Guangzhou, China
| | - Lingrong Wen
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Yang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Yuan J, Wang H, Jiang Y, Jiang Y, Tang Y, Li X, Zhao Y. Utilization of Germinated Seeds as Functional Food Ingredients: Optimization of Nutrient Composition and Antioxidant Activity Evolution Based on the Germination Characteristics of Chinese Chestnut ( Castanea mollissima). Foods 2024; 13:2605. [PMID: 39200532 PMCID: PMC11353505 DOI: 10.3390/foods13162605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The current study investigated the impact of germination duration on the functional components (vitamin C, γ-aminobutyric acid (GABA), polyphenols, flavonoids) and antioxidant activity of germs and cotyledons of the germinated Chinese chestnut (Castanea mollissima). We utilized seeds of the "Zaofeng" Chinese chestnut to germinate, and sowed the seeds in wet sand at 22 °C and 85% relative humidity. The germination rate, length, diameter, and fresh weight of the sprouts were investigated at 0, 2, 4, 6, 8, and 10 days after sowing, and the kinetic changes of amylose, amylopectin, sugar components, soluble protein, vitamin C, GABA, total phenols, flavonoids, and the DPPH and ABTS free radical scavenging activity in the germs and cotyledons were monitored, respectively. The findings revealed that the germination rate and germ biomass increased continuously during germination. The germination rate reached 90% on the 8th day after sowing. Germination reduced amylose in cotyledons from 42.3% to 34.2%, amylopectin from 42.9% to 25.8%, total sugar from 12.6% to 11.4%, and vitamin C from 1.45 mg/g to 0.77 mg/g. Meanwhile, soluble protein in the embryos rose from 0.31% to 0.60%, vitamin C from 21.1 to 29.4 mg/g, GABA from 0.49 to 1.68 mg/g, total flavonoids from 53.6 to 129.7 mg/g, and ABTS antioxidant activity from 1.52 to 3.27 μmol TE/g. The average contents of D-fructose, inositol, vitamin C, GABA, polyphenols, and flavonoids and the DPPH and ABTS antioxidant activity in germs were as high as 22.5, 6, 35, 7.5, 10, 20, and 10 and 20-fold those of cotyledons, respectively. Especially, the average content of glucose in germ was as high as 80-fold that of cotyledon. D-xylulose, D-galacturonic acid, and D-ribose were only found in germs, but not in cotyledons. Considering the germ biomass and functional components content, germs of Chinese chestnuts germinated at 22 °C for 8 days are considered the most suitable raw material for functional food products. In conclusion, controlled germination not only enhances the physicochemical and functional properties of Chinese chestnut germs but also reduces the caloric content and improves the nutritional composition of the cotyledons appropriately. Moreover, the comprehensive evaluation of compositional changes and functionality in the embryo and cotyledon of Chinese chestnuts will provide a solid foundation for subsequent functional food processing utilizing germinated Chinese chestnuts.
Collapse
Affiliation(s)
- Junwei Yuan
- Chestnut Research Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (J.Y.); (Y.J.)
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China;
| | - Haifen Wang
- Chestnut Research Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (J.Y.); (Y.J.)
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China;
| | - Yunbin Jiang
- Chestnut Research Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (J.Y.); (Y.J.)
| | - Yuqian Jiang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (Y.T.); (X.L.)
| | - Yao Tang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (Y.T.); (X.L.)
| | - Xihong Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (Y.J.); (Y.T.); (X.L.)
| | - Yuhua Zhao
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China;
| |
Collapse
|
14
|
Ouyang Z, Fu X, Zhong Z, Bai R, Cheng Q, Gao G, Li M, Zhang H, Zhang Y. An exploration of the influence of ZnO NPs treatment on germination of radish seeds under salt stress based on the YOLOv8-R lightweight model. PLANT METHODS 2024; 20:110. [PMID: 39044226 PMCID: PMC11267839 DOI: 10.1186/s13007-024-01238-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/14/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Since traditional germination test methods have drawbacks such as slow efficiency, proneness to error, and damage to seeds, a non-destructive testing method is proposed for full-process germination of radish seeds, which improves the monitoring efficiency of seed quality. RESULTS Based on YOLOv8n, a lightweight test model YOLOv8-R is proposed, where the number of parameters, the amount of calculation, and size of weights are significantly reduced by replacing the backbone network with PP-LCNet, the neck part with CCFM, the C2f of the neck part with OREPA, the SPPF with FocalModulation, and the Detect of the head part with LADH. The ablation test and comparative test prove the performance of the model. With adoption of germination rate, germination index, and germination potential as the three vitality indicators, the seed germination phenotype collection system and YOLOv8-R model are used to analyze the full time-series sequence effects of different ZnO NPs concentrations on germination of radish seeds under varying degrees of salt stress. CONCLUSIONS The results show that salt stress inhibits the germination of radish seeds and that the inhibition effect is more obvious with the increased concentration of NaCl solution; in cultivation with deionized water, the germination rate of radish seeds does not change significantly with increased concentration of ZnO NPs, but the germination index and germination potential increase initially and then decline; in cultivation with NaCl solution, the germination rate, germination potential and germination index of radish seeds first increase and then decline with increased concentration of ZnO NPs.
Collapse
Affiliation(s)
- Zhiqian Ouyang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Xiuqing Fu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China.
| | - Zhibo Zhong
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Ruxiao Bai
- Institute of Farmland Water Conservancy and Soil-Fertilizer, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, 832000, Xinjiang, China
| | - Qianzhe Cheng
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Ge Gao
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Meng Li
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Haolun Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Yaben Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| |
Collapse
|
15
|
Chen R, Zhang H, Cai J, Cai M, Dai T, Liu Y, Wu J. Germination-Induced Enhancement of Brown Rice Noodle Nutritional Profile and Gut Microbiota Modulation. Foods 2024; 13:2279. [PMID: 39063363 PMCID: PMC11275603 DOI: 10.3390/foods13142279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
This study explored how germination influences the starch digestion and intestinal fermentation characteristics of brown rice noodle. The study began with in vitro starch digestion tests to assess how germination affects starch digestibility in brown rice noodles, revealing an increase in rapidly digestible starch content and a decrease in resistant starch content. Subsequently, an in vitro human fecal fermentation model was used to simulate the human intestinal environment, showing that germination altered pH levels and the production of short-chain fatty acids, particularly by increasing propionate while decreasing acetate and butyrate. Additionally, the study noted a decrease in gut microbiota diversity following fermentation, accompanied by an increase in Megamonas growth and a decrease in Bacteroides and Bifidobacterium. In conclusion, these findings suggest that germination could enhance the nutritional value and intestinal probiotic properties of brown rice noodles. This research contributes valuable insights into the role of germination in improving the nutritional properties of rice-based products and provides a foundation for further exploration into the development of health-promoting rice noodles.
Collapse
Affiliation(s)
- Ruiyun Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
- Jiangxi General Institute of Testing and Certification, Nanchang 330052, China
| | - Huibin Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Jiamei Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Mingxi Cai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Taotao Dai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Yunfei Liu
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Jianyong Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| |
Collapse
|
16
|
Xi X, Fan G, Xue H, Peng S, Huang W, Zhan J. Harnessing the Potential of Quinoa: Nutritional Profiling, Bioactive Components, and Implications for Health Promotion. Antioxidants (Basel) 2024; 13:829. [PMID: 39061898 PMCID: PMC11273950 DOI: 10.3390/antiox13070829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Quinoa, a globally cultivated "golden grain" belonging to Chenopodium in the Amaranthaceae family, is recognized for being gluten-free, with a balanced amino acid profile and multiple bioactive components, including peptides, polysaccharides, polyphenols, and saponins. The bioactive compounds extracted from quinoa offer multifaceted health benefits, including antioxidative, anti-inflammatory, antimicrobial, cardiovascular disease (CVD) improvement, gut microbiota regulation, and anti-cancer effects. This review aims to intricately outline quinoa's nutritional value, functional components, and physiological benefits. Importantly, we comprehensively provide conclusions on the effects and mechanisms of these quinoa-derived bioactive components on multiple cancer types, revealing the potential of quinoa seeds as promising and effective anti-cancer agents. Furthermore, the health-promoting role of quinoa in modulating gut microbiota, maintaining gut homeostasis, and protecting intestinal integrity was specifically emphasized. Finally, we provided a forward-looking description of the opportunities and challenges for the future exploration of quinoa. However, in-depth studies of molecular targets and clinical trials are warranted to fully understand the bioavailability and therapeutic application of quinoa-derived compounds, especially in cancer treatment and gut microbiota regulation. This review sheds light on the prospect of developing dietary quinoa into functional foods or drugs to prevent and manage human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Jicheng Zhan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (X.X.); (G.F.); (H.X.); (S.P.); (W.H.)
| |
Collapse
|
17
|
BiBi R, Elahi NN, Danish S, Alahmadi TA, Ansari MJ. Enhancing germination and growth of canola (Brassica napus L.) through hydropriming and NaCl priming. Sci Rep 2024; 14:14026. [PMID: 38890414 PMCID: PMC11189385 DOI: 10.1038/s41598-024-63948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
The excessive accumulation of sodium chloride (NaCl) in soil can result in soil salinity, which poses a significant challenge to plant growth and crop production due to impaired water and nutrient uptake. On the other hand, hydropriming (WP) and low level of NaCl priming can improve the germination of seeds, chlorophyll contents, oil and seed yield in plants. That's why this study investigates the impact of hydro and different levels of NaCl (0.5, 1.0, 1.5 and 2.0%) priming, as pre-treatment techniques on canola seeds germination, growth and yield of two varieties Punjab and Faisal Canola. Results showed that, WP performed significant best for increase in germination (~ 20 and ~ 22%) and shoot length (~ 6 and ~ 10%) over non-priming (NP) in Punjab Canola and Faisal Canola respectively. A significant increase in plant height (~ 6 and ~ 7%), root length (~ 1 and ~ 7%), shoot fresh weight (~ 5 and ~ 7%), root fresh weight (~ 6 and ~ 7%) in Punjab Canola and Faisal Canola respectively. It was also observed that plants under WP and 0.5%NaCl priming were also better in production of seed yield per plant, oil contents, silique per plant, seeds per silique, and branches per plant chlorophyll contents and leaf relative water contents over NP. In conclusion, WP and 0.5%NaCl has potential to improve the germination, growth, yield and oil attributes of canola compared to non-priming, 1.0%NaCl priming, 1.5%NaCl priming and 2.0%NaCl priming.
Collapse
Affiliation(s)
- Rahila BiBi
- Institute of Botany, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Nosheen Noor Elahi
- Institute of Botany, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Old Shujabad Road, Multan, Punjab, Pakistan.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King, Khalid University Hospital, King Saud University, Medical City, PO Box-2925, 11461, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| |
Collapse
|
18
|
Gugino IM, Alfeo V, Ashkezary MR, Marconi O, Pirrone A, Francesca N, Cincotta F, Verzera A, Todaro A. Maiorca wheat malt: A comprehensive analysis of physicochemical properties, volatile compounds, and sensory evaluation in brewing process and final product quality. Food Chem 2024; 435:137517. [PMID: 37748254 DOI: 10.1016/j.foodchem.2023.137517] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023]
Abstract
This study explores the potential of Maiorca wheat malt as an alternative ingredient in beer production, investigating its impact on the brewing process and beer quality at different recipe contents (50 %, 75 %, 100 %). The study encompasses a comprehensive analysis of key malt parameters, revealing Maiorca malt's positive influence on maltose, glucose, filterability, extract, free amino nitrogen, and fermentability. Notably, the malt exhibited heightened levels of α-amylase and β-amylase enzymes compared to conventional commercial malt. Furthermore, the analysis of aroma compounds and subsequent sensory evaluations unveiled a significant correlation between the proportion of Maiorca malt in the formulation and intensified estery, fruity, malty, honey, complemented by a reduction in attributes such as aromatic compounds, phenolic, yeasty, sulfury, oxidized, and solvent-like odors. This research underscores the favorable contribution of Maiorca wheat malt to enhancing both the brewing process and final beer quality, highlighting its potential as an innovative ingredient in brewing practices.
Collapse
Affiliation(s)
- Ignazio Maria Gugino
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Vincenzo Alfeo
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy.
| | - Mansour Rabie Ashkezary
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Ombretta Marconi
- Italian Brewing Research Centre, University of Perugia, via San Costanzo s.n.c., 06126 Perugia, Italy
| | - Antonino Pirrone
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Nicola Francesca
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| | - Fabrizio Cincotta
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale G. Palatucci, 98168 Messina, Italy
| | - Antonella Verzera
- Department of Veterinary Sciences, University of Messina, Polo Universitario dell'Annunziata, Viale G. Palatucci, 98168 Messina, Italy
| | - Aldo Todaro
- Department of Agricultural, Food and Forest Science, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy
| |
Collapse
|
19
|
Zhu Y, Xu W, Feng C, Zhu L, Ji L, Wang K, Jiang J. Study on structure and properties of galactomannan and enzyme changes during fenugreek seeds germination. Carbohydr Polym 2024; 327:121653. [PMID: 38171675 DOI: 10.1016/j.carbpol.2023.121653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Fenugreek (Trigonella foenum-graecum L) galactomannan play an important role in the food and pharmaceutical sectors due to its attractive physicochemical properties. In this study, the changes of structure, properties and biological activity of fenugreek galactomannan (FG) during germination are analyzed by the activity and mechanism of endogenous enzymes (α-D-galactosidase and β-D-mannanase). The enzymes generally increased during germination and synergistically altered the structure of GM by cutting down the main chains and removing partial side residues. The mannose to galactose ratio (M/G) increased from 1.11 to 1.59, which is accompanied by a drastic decrease in molecular weight from 3.606 × 106 to 0.832 × 106 g/mol, and the drop of viscosity from 0.27 to 0.06 Pa·sn. The degraded macromolecules are attributed to the increase in solubility (from 64.55 % to 88.62 %). In terms of antioxidation and antidiabetic ability, germinated fenugreek galactomannan has the ability to scavenge 67.17 % ABTS free radicals and inhibit 86.89 % α-glucosidase. This galactomannan with low molecular weight and excellent biological activity precisely satisfies the current demands of pharmaceutical reagents and food industry. Seeds germination holds promise as a means of industrial scale production of low molecular weight galactomannans.
Collapse
Affiliation(s)
- Yana Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Wei Xu
- School of Materials Science and Engineering, Linyi University, Linyi 276005, China
| | - Chi Feng
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Liwei Zhu
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Li Ji
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Kun Wang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China
| | - Jianxin Jiang
- Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
20
|
Barakat H, Al-Qabba MM, Algonaiman R, Radhi KS, Almutairi AS, Al Zhrani MM, Mohamed A. Impact of Sprouting Process on the Protein Quality of Yellow and Red Quinoa ( Chenopodium quinoa). Molecules 2024; 29:404. [PMID: 38257317 PMCID: PMC10821386 DOI: 10.3390/molecules29020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The demand for plant-based proteins has increased remarkably over the last decade. Expanding the availability and variety of plant-based protein options has shown positive potential. This study aimed to investigate the qualitative and quantitative changes in amino acids of yellow and red quinoa seeds (YQ and RQ) during a 9-day germination period. The results showed that the germination process led to an increase in the total amino acids by 7.43% and 14.36% in the YQ and RQ, respectively. Both varieties exhibited significant (p < 0.05) increases in non-essential and essential amino acids, including lysine, phenylalanine, threonine, and tyrosine. The content of non-essential amino acids nearly reached the standard values found in chicken eggs. These results were likely attributed to the impact of the germination process in increasing enzymes activity and decreasing anti-nutrient content (e.g., saponins). A linear relationship between increased seeds' hydration and decreased saponins content was observed, indicating the effect of water absorption in changing the chemical composition of the plant. Both sprouts showed positive germination progression; however, the sprouted RQ showed a higher germination rate than the YQ (57.67% vs. 43.33%, respectively). Overall, this study demonstrates that germination is a promising technique for enhancing the nutritional value of quinoa seeds, delivering sprouted quinoa seeds as a highly recommended source of high-protein grains with notable functional properties.
Collapse
Affiliation(s)
- Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Maryam M. Al-Qabba
- Maternity and Children Hospital, Qassim Health Cluster, Ministry of Health, Buraydah 52384, Saudi Arabia;
| | - Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Khadija S. Radhi
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Abdulkarim S. Almutairi
- Al Rass General Hospital, Qassim Health Cluster, Ministry of Health, Ibn Sina Street, King Khalid District, Al Rass 58883, Saudi Arabia;
| | - Muath M. Al Zhrani
- Department of Applied Medical Science, College of Applied, Bishah University, Bishah 67714, Saudi Arabia;
| | - Ahmed Mohamed
- Department of Biochemistry, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt;
| |
Collapse
|
21
|
Murungweni KT, Ramashia SE, Mashau ME. Effect of malting on physicochemical, antioxidant, and microstructural properties of finger millet ( Eleusine coracana) flours. Food Sci Nutr 2024; 12:547-563. [PMID: 38268874 PMCID: PMC10804109 DOI: 10.1002/fsn3.3790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 01/26/2024] Open
Abstract
Finger millet (Eleusine coracana L. Gaertn.) is a gluten-free crop with a high amount of fiber, calcium and iron, outstanding malting qualities and a low glycemic index. The study aimed to determine the physicochemical, functional, antioxidant and microstructural properties of malted finger millet (light and dark brown) flours. The two varieties of finger millet grains were germinated for 0, 24, 48 and 72 h and kilned for 8 h. The lightness (L*) values of malted finger millet flours significantly increased, with light brown having the highest L* value of 76.62. The hue angle and total color differences (ΔE) of the malted finger millet flours increased significantly (p ≤ .05.), and values ranged from 63.43° to 71.20° (light brown) and 2.12° to 4.32° (dark brown), respectively. The moisture, ash, fiber, protein, total phenolic, total flavonoids contents and DPPH activity of both malted finger millet flours significantly increased. On the contrary, the fat, carbohydrate, energy contents and FRAP activity significantly decreased with each malting period of both finger millet flours. Both malted finger millet flours' solubility index, water and oil absorption capacity increased significantly while the packed and loose bulk density decreased. Malting had no significant effect on the viscosity of the cold paste; however, a significant decrease in the viscosity of the cooked paste in both finger millet flours was observed, with values ranging from 285 to 424.00 cP (light brown) and 271.33 to 418.00 cP (dark brown), respectively. Malting resulted in changes in the thermal properties of finger millet flours with an increase in the onset, peak and conclusion temperatures. Fourier-Transform Infrared Spectra showed that malting slightly changed the peaks of both finger millet flours. Scanning electron microscopy showed that malting altered the microstructural characteristics of finger millet flours. The results showed that malted finger millet flours are promising raw materials for gluten-free bakery products.
Collapse
Affiliation(s)
- Kundai Thelma Murungweni
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| | - Shonisani Eugenia Ramashia
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
- School of Bioengineering and Food Technology, Faculty of Applied Sciences and BiotechnologyShoolini UniversitySolanIndia
| | - Mpho Edward Mashau
- Department of Food Science and Technology, Faculty of Science, Engineering and AgricultureUniversity of VendaThohoyandouSouth Africa
| |
Collapse
|
22
|
Chinma CE, Adedeji OE, Jolayemi OS, Ezeocha VC, Ilowefah MA, Rosell CM, Adebo JA, Wilkin JD, Adebo OA. Impact of germination on the techno-functional properties, nutritional composition, and health-promoting compounds of brown rice and its products: A review. J Food Sci 2024; 89:8-32. [PMID: 37997506 DOI: 10.1111/1750-3841.16832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 09/20/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
Rice is a popular grain and forms part of the daily diet of people throughout the world. However, the consumption of rice and its products is sometimes limited by its high glycemic index due to its high starch content, low protein content and quality, and low bioavailability of minerals due to the presence of anti-nutritional factors. This has partly stimulated research interest in recent times toward the use of bioprocessing techniques such as germination as cheap and natural means to improve the nutritional quality, digestibility, and health properties of cereals, including rice, to partially achieve nutrition and food security in the developing regions of the world. This review highlights the impact of germination on the nutritional quality, health-promoting properties, and techno-functional characteristics of germinated brown rice grains and their products. The review demonstrated that germinated rice grains and their products have improved nutritional quality and digestibility, modified functional properties, and showed antioxidant, anti-inflammatory, anti-diabetic, anti-obesity, anti-cancer, and anti-cardiovascular activities. Germination appears to be a suitable bioprocessing method to improve the nutritional quality and bioactive constituents and modify the techno-functional properties of rice grains for diverse food applications and improved global nutrition and food safety.
Collapse
Affiliation(s)
- Chiemela Enyinnaya Chinma
- Department of Food Science and Technology, Federal University of Technology Minna, Minna, Nigeria
- Food Innovation Research Group, Department of Biotechnology and Food Technology, University of Johannesburg, Gauteng, South Africa
| | | | - Olusola Samuel Jolayemi
- Department of Food Science and Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Vanessa Chinelo Ezeocha
- Department of Food Science and Technology, Michael Okpara University of Agriculture Umudike, Umudike, Nigeria
| | - Muna Abdulsalam Ilowefah
- Department of Food Technology, Faculty of Engineering and Technology, Sabha University, Sabha, Libya
| | - Cristina M Rosell
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Paterna, Spain
- Department of Food and Human Nutritional Science, University of Manitoba, Winnipeg, Canada
| | - Janet Adeyinka Adebo
- Food Evolution Research Laboratory, School of Tourism and Hospitality, College of Business and Economics, University of Johannesburg, Johannesburg, South Africa
| | - Jonathan D Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, UK
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, University of Johannesburg, Gauteng, South Africa
| |
Collapse
|
23
|
Bansal S, Sundararajan S, Shekhawat PK, Singh S, Soni P, Tripathy MK, Ram H. Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:985-1003. [PMID: 37649880 PMCID: PMC10462582 DOI: 10.1007/s12298-023-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01343-3.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306 India
| | - Sathish Sundararajan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | - Shivangi Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004 India
| | - Manas K. Tripathy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
24
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Post-sprouting thermal treatment of green barley malt to produce functional clean-label ingredients: Impact on fermentation, bread-making properties and bread quality. Food Res Int 2023; 167:112696. [PMID: 37087264 DOI: 10.1016/j.foodres.2023.112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/08/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
Malt flour represents a potential clean label bread improver, but a high enzymatic activity can lead to some bread defects. Thus, this study was focused on applying different thermal treatments (10 and 40 min; 70-90 °C) to green barley malt in order to promote a partial enzyme inactivation. The addition of 1.5 g of thermally treated malt (TTM) per 100 g of flour in wheat bread formulation was evaluated regarding the resulting bread-making properties, dough fermentation and overall bread quality. Activity of starch-degrading enzymes was not detectable above 80 °C/10 min. TTM incorporation improved the gas production by up to 60% during fermentation, mainly in formulations to which malts thermally treated under mild conditions have been added. Compared to untreated malt, thermal treatment reduced dough thermal weakening, improved gel strength during gelatinization and maintained low setback values. Bread collapse observed by baking follow-up was related to gas inflation and low mechanical resistance. Formulations with the addition of malts thermally treated at 70 °C for 40 min resulted in breads with higher specific volume, improved coloration and a crumb with slightly smaller pores than control and untreated malts. Thus, thermal treatment can be used as a technique to produce standardized malted flour to be used as clean label bread improvers.
Collapse
|
25
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Horbowicz M, Górecki RJ, Railean V, Pomastowski P, Buszewski B. Exogenously Applied Cyclitols and Biosynthesized Silver Nanoparticles Affect the Soluble Carbohydrate Profiles of Wheat ( Triticum aestivum L.) Seedling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1627. [PMID: 37111851 PMCID: PMC10145852 DOI: 10.3390/plants12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cyclitols, such as myo-inositol and its isomers and methyl derivatives (i.e., d-chiro-inositol and d-pinitol (3-O-methyl-chiro-inositol)), are classified as osmolytes and osmoprotectants and are significantly involved in plant responses to abiotic stresses, such as drought, salinity and cold. Moreover, d-pinitol demonstrates a synergistic effect with glutathione (GSH), increasing its antioxidant properties. However, the role of cyclitols in plant protection against stresses caused by metal nanoparticles is not yet known. Therefore, the present study examined the effects of myo-inositol, d-chiro-inositol and d-pinitol on wheat germination, seedling growth and changes in the profile of soluble carbohydrates in response to biologically synthesized silver nanoparticles ((Bio)Ag NPs). It was found that cyclitols were absorbed by germinating grains and transported within the growing seedlings but this process was disrupted by (Bio)Ag NPs. Cyclitols applied alone induced sucrose and 1-kestose accumulation in seedlings slightly, while (Bio)Ag NP doubled the concentrations of both sugars. This coincided with a decrease in monosaccharides; i.e., fructose and glucose. Cyclitols and (Bio)Ag NPs present in the endosperm resulted in reductions in monosaccharides, maltose and maltotriose, with no effect on sucrose and 1-kestose. Similar changes occurred in seedlings developing from primed grains. Cyclitols that accumulated in grain and seedlings during grain priming with d-pinitol and glutathione did not prevent the phytotoxic effects of (Bio)Ag NPs.
Collapse
Affiliation(s)
- Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| |
Collapse
|
26
|
Schmidt M, Raczyk M. FODMAP reduction strategies for nutritionally valuable baking products: current state and future challenges. Crit Rev Food Sci Nutr 2023; 64:8036-8053. [PMID: 37000015 DOI: 10.1080/10408398.2023.2195026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
Fermentable oligo-, di- and monosaccharides and polyols (FODMAP) comprise several previously unrelated carbohydrates, such as fructans, fructo-oligosaccharides, galacto-oligosaccharides, fructose (in excess of glucose), mannitol and sorbitol, and among others. For many patients with gastro-intestinal disorders, such as irritable bowel syndrome, the ingestion of FODMAP triggers symptoms and causes discomfort. Among the main contributors to the dietary FODMAP intake are baking products, in particular bread as a major global staple food. This is primarily due to the fructan content of the cereal flours, but also process induced accumulation of FODMAP is possible. To provide low-FODMAP baking products, researchers have investigated various approaches, such as bio-process reduction by yeast, lactic acid bacteria, germination of the raw material or the use of exogenous enzymes. In addition, the selection of appropriate ingredients, which are either naturally or after pretreatment suitable for low-FODMAP products, is discussed. The sensory and nutritional quality of low-FODMAP baking products is another issue, that is addressed, with particular focus on providing sufficient dietary fiber intake. Based on this information, the current state of low-FODMAP baking and future research necessities, to establish practical strategies for low-FODMAP products, are evaluated in this article.
Collapse
Affiliation(s)
- Marcus Schmidt
- Department of Safety and Quality of Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Detmold, Germany
| | - Marianna Raczyk
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
27
|
Hsieh CC, Yu SH, Cheng KW, Liou YW, Hsu CC, Hsieh CW, Kuo CH, Cheng KC. Production and analysis of metabolites from Solid-State Fermentation of Chenopodium formosanum (Djulis) Sprouts in a Bioreactor. Food Res Int 2023; 168:112707. [PMID: 37120190 DOI: 10.1016/j.foodres.2023.112707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The study utilized fresh fourth-day Chenopodium formosanum sprouts as the substrate for Rhizopus oligosporus fermentation. The resultant products showed higher antioxidant capacity than those from C. formosanum grains. Compared to traditional plate fermentation (PF), fermentation in a bioreactor (BF) (35 °C, 0.4 vvm aeration at 5 rpm) led to higher free peptide content (99.56 ± 7.77 mg casein tryptone/g) and enzyme activity (amylase, glucosidase, and proteinase are 2.21 ± 0.01, 54.57 ± 10.88, and 40.81 ± 6.52 U/g, respectively) than traditional plate fermentation (PF). Using mass spectrometry analysis, two peptides TDEYGGSIENRFMN and DNSMLTFEGAPVQGAAAITEK were predicted to possess high bioactive properties as DPP IV and ACE inhibitors. Additionally, over twenty new metabolites (aromatics, amines, fatty acids, and carboxylic acids) were discovered in the BF system compared to its PF counterpart. Results suggest that using a BF system to ferment C. formosanum sprouts is an appropriate method to scale-up fermentation and enhance nutritional values as well as bioactivities.
Collapse
Affiliation(s)
- Chen-Che Hsieh
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Kai-Wen Cheng
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Yu-Wei Liou
- Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd, South Dist, Taichung 40227, Taiwan, ROC
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, No. 142, Haijhuan Rd, Nanzih District, Kaohsiung 81157, Taiwan, ROC
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC; Institute of Food Science Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan, ROC; Department of Optometry, Asia University, 500, Lioufeng Rd, Wufeng, Taichung 41354, Taiwan, ROC; Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung 40402, Taiwan, ROC.
| |
Collapse
|
28
|
Conjugated type A trichothecenes in oat-based products: Occurrence data and estimation of the related risk. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Sofi SA, Rafiq S, Singh J, Mir SA, Sharma S, Bakshi P, McClements DJ, Khaneghah AM, Dar B. Impact of germination on structural, physicochemical, techno-functional, and digestion properties of desi chickpea (Cicer arietinum L.) flour. Food Chem 2022; 405:135011. [DOI: 10.1016/j.foodchem.2022.135011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
|
30
|
Torbica A, Radosavljević M, Belović M, Tamilselvan T, Prabhasankar P. Biotechnological tools for cereal and pseudocereal dietary fibre modification in the bakery products creation – Advantages, disadvantages and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
31
|
De-La-Cruz-Yoshiura S, Vidaurre-Ruiz J, Alcázar-Alay S, Encina-Zelada CR, Cabezas DM, Correa MJ, Repo-Carrasco-Valencia R. Sprouted Andean grains: an alternative for the development of nutritious and functional products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2083158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Shigeki De-La-Cruz-Yoshiura
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Julio Vidaurre-Ruiz
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Sylvia Alcázar-Alay
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Christian R. Encina-Zelada
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Tecnología de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Dario M. Cabezas
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Buenos Aires, Argentina
| | - María Jimena Correa
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (Facultad de Ciencias Exactas-UNLP, la Plata, Argentina
| | - Ritva Repo-Carrasco-Valencia
- Centro de Investigación e Innovación en Productos Derivados de Cultivos Andinos CIINCA, Universidad Nacional Agraria La Molina, Lima, Perú
- Departamento de Ingeniería de Alimentos y Productos Agropecuarios, Facultad de Industrias Alimentarias, Universidad Nacional Agraria La Molina, Lima, Perú
| |
Collapse
|
32
|
The molecular basis of cereal grain proteostasis. Essays Biochem 2022; 66:243-253. [PMID: 35818971 PMCID: PMC9400069 DOI: 10.1042/ebc20210041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Storage proteins deposited in the endosperm of cereal grains are both a nitrogen reserve for seed germination and seedling growth and a primary protein source for human nutrition. Detailed surveys of the patterns of storage protein accumulation in cereal grains during grain development have been undertaken, but an in-depth understanding of the molecular mechanisms that regulate these patterns is still lacking. Accumulation of storage proteins in cereal grains involves a series of subcellular compartments, a set of energy-dependent events that compete with other cellular processes, and a balance of protein synthesis and protein degradation rates at different times during the developmental process. In this review, we focus on the importance of rates in cereal grain storage protein accumulation during grain development and outline the potential implications and applications of this information to accelerate modern agriculture breeding programmes and optimize energy use efficiency in proteostasis.
Collapse
|
33
|
Nguyen THD, Vu DC, Ho T, Nguyen NTM, Nguyen NT, Tran DT, Nguyen TTN, Rose DJ. Changes in enzymatic activity and
in vitro
protein digestibility of four millet varieties upon germination and quality evaluation of cookies prepared from germinated millet composite flours. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Trang H. D. Nguyen
- Institute of Biotechnology and Food Technology Industrial University of Ho Chi Minh City Vietnam
| | - Danh C. Vu
- Institute of Applied Technology Thu Dau Mot University Binh Duong Vietnam
| | - Thien‐Hoang Ho
- Institute of Biotechnology and Food Technology Industrial University of Ho Chi Minh City Vietnam
| | - Nguyet T. M. Nguyen
- Institute of Biotechnology and Food Technology Industrial University of Ho Chi Minh City Vietnam
| | - Ngoc Tuan Nguyen
- Institute of Biotechnology and Food Technology Industrial University of Ho Chi Minh City Vietnam
| | - Dinh Thang Tran
- Institute of Biotechnology and Food Technology Industrial University of Ho Chi Minh City Vietnam
| | - Trinh Thi Nu Nguyen
- Institute of Biotechnology and Food Technology Industrial University of Ho Chi Minh City Vietnam
| | - Devin J. Rose
- Department of Food Science and Technology University of Nebraska‐Lincoln NE USA
- Nebraska Food for Health Center University of Nebraska‐Lincoln NE USA
- Department of Agronomy and Horticulture University of Nebraska‐Lincoln NE USA
| |
Collapse
|
34
|
Elliott H, Woods P, Green BD, Nugent AP. Can sprouting reduce phytate and improve the nutritional composition and nutrient bioaccessibility in cereals and legumes? NUTR BULL 2022; 47:138-156. [DOI: 10.1111/nbu.12549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023]
Affiliation(s)
- Hannah Elliott
- Linwoods Health Foods Co. Armagh UK
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
| | | | - Brian D. Green
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
| | - Anne P. Nugent
- School of Biological Sciences Institute for Global Food Security Queen's University Belfast Stranmillis UK
- School of Agriculture and Food Sciences Institute of Food and Health University College Dublin Dublin Ireland
| |
Collapse
|
35
|
Characterization of Two Wheat-Derived Glycoside Hydrolase Family-10 Xylanases Resistant to Xylanase Inhibitors. J FOOD QUALITY 2022. [DOI: 10.1155/2022/9590243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Xylanase inhibitors inhibit the activities of microbial xylanases and seriously compromise the efficacy of microbial xylanases added to modify cereals. Cereal endogenous xylanases are unaffected by these xylanase inhibitors, but little information is available regarding their effects in improving cereal quality, a neglected potential application. As a strategy for circumventing the negative effects of xylanase inhibitors, the objective of this study was to use genetic engineering to obtain sufficient amounts of active endo-1,4-β-D-xylanase from wheat to analyze the characteristics of its structure. The endo-1,4-β-D-xylanase from wheat was heterologously expressed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blotting, MALDI-TOF/TOF (MS) analyses, and enzyme activity determination confirmed 2 active endo-1,4-β-D-xylanases (EXY3 and EXY4) were successfully obtained. The molecular weights (MW) and isoelectric point (pI) of EXY3 were 36.108 kDa and 5.491, while those of the EXY4 protein were 41.933 kDa and 5.726. They both contained the same catalytic domain of GH10 xylanases from G266 to V276 and have the same catalytic site, Glu273. They shared the same putative N-glycosylation sites (N62-T63-S64 and N280–V281–S282) and 3 putative O-glycosylation sites (Ser8, Ser9, and Thr21), but EXY4 had an additional O-glycosylation site (Thr358). EXY3 was smaller than EXY4 by 51 amino acids because of a nonsense mutation and premature termination. They both had the 8-fold beta/alpha-barrel (TIM-barrel) fold. The specific activities of EXY3 and EXY4 were 152.0891 and 67.2928 U/mg, respectively. This work demonstrates a promising way to obtain wheat xylanases by genetic engineering; the properties of the enzymes indicate their potential application in cereal-based industries.
Collapse
|
36
|
Oliveira MEAS, Coimbra PPS, Galdeano MC, Carvalho CWP, Takeiti CY. How does germinated rice impact starch structure, products and nutrional evidences? – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
Binodh AK, Thankappan S, Ravichandran A, Mitra D, Alagarsamy S, Panneerselvam P, Senapati A, Sami R, Al-Mushhin AAM, Aljahani AH, Alyamani A, Alqurashi M. Synergistic Modulation of Seed Metabolites and Enzymatic Antioxidants Tweaks Moisture Stress Tolerance in Non-Cultivated Traditional Rice Genotypes during Germination. PLANTS 2022; 11:plants11060775. [PMID: 35336657 PMCID: PMC8955497 DOI: 10.3390/plants11060775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Traditional rice landraces are treasures for novel genes to develop climate-resilient cultivars. Seed viability and germination determine rice productivity under moisture stress. The present study evaluated 100 rice genotypes, including 85 traditional landraces and 15 improved cultivars from various agro-ecological zones of Tamil Nadu, along with moisture-stress-susceptible (IR 64) and moisture-stress-tolerant (IR 64 Drt1) checks. The landraces were screened over a range of osmotic potentials, namely (−) 1.0 MPa, (−) 1.25 MPa and (−) 1.5 MPa, for a period of 5 days in PEG-induced moisture stress. Physio-morphological traits, such as rate of germination, root and shoot length, vigor index, R/S ratio and relative water content (RWC), were assessed during early moisture stress at the maximum OP of (−) 1.5 MPa. The seed macromolecules, phytohormones (giberellic acid, auxin (IAA), cytokinin and abscisic acid), osmolytes and enzymatic antioxidants (catalase and superoxide dismutase) varied significantly between moisture stress and control treatments. The genotype Kuliyadichan registered more IAA and giberellic acid (44% and 35%, respectively, over moisture-stress-tolerant check (IR 64 Drt1), whereas all the landraces showed an elevated catalase activity, thus indicating that the tolerant landraces effectively eliminate oxidative damages. High-performance liquid chromatography analysis showed a reduction in cytokinin and an increase in ABA level under induced moisture stress. Hence, the inherent moisture-stress tolerance of six traditional landraces, such as Kuliyadichan, Rajalakshmi, Sahbhagi Dhan, Nootripathu, Chandaikar and Mallikar, was associated with metabolic responses, such as activation of hydrolytic enzymes, hormonal crosstalk, ROS signaling and antioxidant enzymes (especially catalase), when compared to the susceptible check, IR 64. Hence, these traditional rice landraces can serve as potential donors for introgression or pyramiding moisture-stress-tolerance traits toward developing climate-resilient rice cultivars.
Collapse
Affiliation(s)
- Asish Kanakaraj Binodh
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore 641003, India
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Sugitha Thankappan
- School of Agriculture and Biosciences, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore 641114, India;
| | - Anupriya Ravichandran
- Department of Plant Breeding and Genetics, Agricultural College & Research Institute, Tamil Nadu Agricultural University, Killikulam 628252, India;
| | - Debasis Mitra
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
| | - Senthil Alagarsamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India;
| | - Periyasamy Panneerselvam
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Ansuman Senapati
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack 753006, India; (D.M.); (A.S.)
| | - Rokayya Sami
- Department of Food Science and Nutrition, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (A.K.B.); (P.P.); (R.S.)
| | - Amina A. M. Al-Mushhin
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Amani H. Aljahani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Amal Alyamani
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (M.A.)
| | - Mohammed Alqurashi
- Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.A.); (M.A.)
| |
Collapse
|
38
|
Adetokunboh AH, Obilana AO, Jideani VA. Enzyme and Antioxidant Activities of Malted Bambara Groundnut as Affected by Steeping and Sprouting Times. Foods 2022; 11:783. [PMID: 35327205 PMCID: PMC8947651 DOI: 10.3390/foods11060783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Bambara groundnut (BGN) is termed a complete food due to its nutritional composition and has been researched often for its nutritional constituents. Malting BGN seeds have shown improved nutritional and functional characteristics, which can be used to produce an amylase-rich product as a functional ingredient for food and beverage production in homes and industries. The aim of this study was to investigate the enzyme and antioxidant activities of malted BGN affected by steeping and sprouting times. BGN was malted by steeping in distilled water at 25-30 °C for 36 and 48 h and then sprouted for 144 h at 30 °C. Samples were drawn every 24 h for drying to study the effect of steeping and sprouting times on the moisture, sprout length, pH, colour, protein content, amylase, total polyphenols, and antioxidant activities of the BGN seeds. The steeping and sprouting times significantly affected the BGN malt colour quality and pH. The protein content of the malted BGN seeds was not significantly different based on steeping and sprouting times. Steeping and sprouting times significantly affected the α- and β-amylase activities of the BGN seeds. The activity of amylases for 36 and 48 h steeping times were 0.16 and 0.15 CU/g for α-amylase and were 0.22 and 0.23 BU/g for β-amylase, respectively. Amylase-rich BGN malt was produced by steeping for 36 h and sprouting for 96 h. Amylase-rich BGN malt can be useful as a functional food ingredient in food and beverage formulations.
Collapse
Affiliation(s)
| | | | - Victoria A. Jideani
- Department of Food Science and Technology, Cape Peninsula University of Technology, Bellville 7535, South Africa; (A.H.A.); (A.O.O.)
| |
Collapse
|
39
|
Polachini TC, Norwood EA, Le-Bail P, Le-Bail A. Clean-label techno-functional ingredients for baking products - a review. Crit Rev Food Sci Nutr 2022; 63:7461-7476. [PMID: 35258383 DOI: 10.1080/10408398.2022.2046541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The increased awareness of consumers regarding unfamiliar labels speeded up the ongoing clean label trend. As baking products are widely consumed worldwide, the reduction of non-natural baking aids and improvers is of great interest for consumer's health but also representing a big challenge for food industries. Thus, this paper aims at describing new techno-functional clean label ingredients for baked products and their production processes conditions. Firstly, it includes ingredients such as sustainable protein sources, fat replacers and leavening alternatives. Then, it addresses new process alternatives for producing baking ingredients with natural claim as well as current concepts as the natural fermentation. In particular, molecular and functional modifications of the flour are discussed regarding malting and dry heat treatments. By being considered as green and emerging technologies that improve flour functionality, the resulting ingredients can replace additives. Changes in quality and technological attributes of breads and cakes will be discussed as a consequence of the partial to total replacement of conventional ingredients. This paper provides new alternatives for the baking industry to meet the demand of a growing health-concerned population. In addition, it focused on opening up new possibilities for the food industry to go in line with the consumers' expectations.
Collapse
Affiliation(s)
| | | | | | - Alain Le-Bail
- ONIRIS-GEPEA, Nantes, France
- SFR 4202 IBSM, Nantes, France
| |
Collapse
|
40
|
MUÑOZ-LLANDES CB, GUZMÁN-ORTIZ FA, ROMÁN-GUTIÉRREZ AD, PALMA-RODRÍGUEZ HM, CASTRO-ROSAS J, HERNÁNDEZ-SÁNCHEZ H, ZAMORA-NATERA JF, VARGAS-TORRES A. Effect of germination time on protein subunits of Lupinus angustifolius L. and its influence on functional properties and protein digestibility. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.90821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
41
|
Crosstalk during the Carbon-Nitrogen Cycle That Interlinks the Biosynthesis, Mobilization and Accumulation of Seed Storage Reserves. Int J Mol Sci 2021; 22:ijms222112032. [PMID: 34769462 PMCID: PMC8585027 DOI: 10.3390/ijms222112032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Carbohydrates are the major storage reserves in seeds, and they are produced and accumulated in specific tissues during the growth and development of a plant. The storage products are hydrolyzed into a mobile form, and they are then translocated to the developing tissue following seed germination, thereby ensuring new plant formation and seedling vigor. The utilization of seed reserves is an important characteristic of seed quality. This review focuses on the seed storage reserve composition, source–sink relations and partitioning of the major transported carbohydrate form, i.e., sucrose, into different reserves through sucrolytic processes, biosynthetic pathways, interchanging levels during mobilization and crosstalk based on vital biochemical pathways that interlink the carbon and nitrogen cycles. Seed storage reserves are important due to their nutritional value; therefore, novel approaches to augmenting the targeted storage reserve are also discussed.
Collapse
|
42
|
Zhang Q, Pritchard J, Mieog J, Byrne K, Colgrave ML, Wang J, Ral JF. Overexpression of a wheat α-amylase type 2 impact on starch metabolism and abscisic acid sensitivity during grain germination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:378-393. [PMID: 34312931 PMCID: PMC9290991 DOI: 10.1111/tpj.15444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 05/27/2023]
Abstract
Despite being of vital importance for seed establishment and grain quality, starch degradation remains poorly understood in organs such as cereal or legume seeds. In cereals, starch degradation requires the synergetic action of different isoforms of α-amylases. Ubiquitous overexpression of TaAmy2 resulted in a 2.0-437.6-fold increase of total α-amylase activity in developing leaf and harvested grains. These increases led to dramatic alterations of starch visco-properties and augmentation of soluble carbohydrate levels (mainly sucrose and α-gluco-oligosaccharide) in grain. Interestingly, the overexpression of TaAMY2 led to an absence of dormancy in ripened grain due to abscisic acid (ABA) insensitivity. Using an allosteric α-amylase inhibitor (acarbose), we demonstrated that ABA insensitivity was due to the increased soluble carbohydrate generated by the α-amylase excess. Independent from the TaAMY2 overexpression, inhibition of α-amylase during germination led to the accumulation of soluble α-gluco-oligosaccharides without affecting the first stage of germination. These findings support the hypotheses that (i) endosperm sugar may overcome ABA signalling and promote sprouting, and (ii) α-amylase may not be required for the initial stage of grain germination, an observation that questions the function of the amylolytic enzyme in the starch degradation process during germination.
Collapse
Affiliation(s)
- Qin Zhang
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuan611130China
| | - Jenifer Pritchard
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
| | - Jos Mieog
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- Present address:
Plant ScienceSouthern Cross UniversityLismoreACTAustralia
| | - Keren Byrne
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- CSIRO Agriculture and FoodSt. LuciaQLD4067Australia
| | - Michelle L. Colgrave
- Agriculture and foodCSIRO Agriculture and FoodCanberraACT2601Australia
- CSIRO Agriculture and FoodSt. LuciaQLD4067Australia
| | - Ji‐Rui Wang
- Triticeae Research InstituteSichuan Agricultural UniversityChengduSichuan611130China
| | | |
Collapse
|
43
|
Keszthelyi S, Fajtai D, Pónya Z, Somfalvi-Tóth K, Donkó T. A Non-Invasive Approach in the Assessment of Stress Phenomena and Impairment Values in Pea Seeds Caused by Pea Weevil. PLANTS 2021; 10:plants10071470. [PMID: 34371673 PMCID: PMC8309221 DOI: 10.3390/plants10071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022]
Abstract
Pea (Pisum sativum L.) is an important leguminous plant worldwide, in which pests trigger significant damage every year. One of the most important pest is pea weevil (Bruchus pisorum, L) which causes covert damage in crops. In the present study, our aim was to obtain precise information pertaining to the extent and the nature of damage in pea caused by B. pisorum by means of non-invasive imaging methods. The infested pea samples were analysed by an infrared thermometer and a bioluminescence plant imaging system as well as a computer tomograph under laboratory conditions. The calculated weight of organic matter destroyed by the developing larvae was 36.46%. The changing of RGB (red, blue, green) codes obtained through thermal imaging and the CPS (counts per second) values originating from bioluminescence imaging in infested samples were statistically verifiable. According to our CT assay, the damage caused by B. pisorum changed the tissue density, volume and shape of the pea seeds by the end of the development of the pest. The results of thermal and bioluminescence imaging contribute to a better understanding of the internal chemical processes and the CT analysis helps to understand the alteration trends of the inner structure of seeds caused by this pest.
Collapse
Affiliation(s)
- Sándor Keszthelyi
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, S. Guba str 40., H-7400 Kaposvár, Hungary;
- Correspondence:
| | - Dániel Fajtai
- Medicopus Nonprofit Ltd., S. Guba str 40., H-7400 Kaposvár, Hungary; (D.F.); (T.D.)
| | - Zsolt Pónya
- Department of Agronomy, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, S. Guba str 40., H-7400 Kaposvár, Hungary;
| | - Katalin Somfalvi-Tóth
- Department of Water Management and Climate Adaption, Institute of Environmental Science, Hungarian University of Agriculture and Life Sciences, S. Guba str 40., H-7400 Kaposvár, Hungary;
| | - Tamás Donkó
- Medicopus Nonprofit Ltd., S. Guba str 40., H-7400 Kaposvár, Hungary; (D.F.); (T.D.)
| |
Collapse
|
44
|
Bansal S, Sardar S, Sinha K, Bhunia RK, Katoch M, Sonah H, Deshmukh R, Ram H. Identification and molecular characterization of rice bran-specific lipases. PLANT CELL REPORTS 2021; 40:1215-1228. [PMID: 34028583 DOI: 10.1007/s00299-021-02714-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Among the 113 lipases present in rice genome, bran and endosperm-specific lipases were identified and lipase activity for one of the selected lipase gene is demonstrated in yeast. Rice bran is nutritionally superior than endosperm as it has major reservoirs of various minerals, vitamins, essential mineral oils and other bioactive compounds, however it is often under-utilized as a food product due to bran instability after milling. Various hydrolytic enzymes, such as lipases, present in bran causes degradation of the lipids present and are responsible for the bran instability. Here, in this study, we have systematically analyzed the 113 lipase genes present in rice genome, and identified 21 seed-specific lipases. By analyzing the expression of these genes in different seed tissues during seed development, we have identified three bran-specific and three endosperm-specific lipases, and one lipase which expresses in both bran and endosperm tissues. Further analysis of these genes during seed maturation and seed germination revealed that their expression increases during seed maturation and decreases during seed germination. Finally, we have shown the lipase activity for one of the selected genes, LOC_Os05g30900, in heterologous system yeast. The bran-specific lipases identified in this study would be very valuable for engineering designer rice varieties having increased bran stability in post-milling.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Shaswati Sardar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kshitija Sinha
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Rupam Kumar Bhunia
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Megha Katoch
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Sector-81, SAS Nagar, Mohali, 140306, India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
45
|
Kaushik N, Yadav P, Khandal RK, Aggarwal M. Review of ways to enhance the nutritional properties of millets for their value‐addition. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nidhi Kaushik
- Department of Basic and Applied Science National Institute of Food Technology, Entrepreneurship and Management Sonipat India
| | - Prachi Yadav
- Department of Basic and Applied Science National Institute of Food Technology, Entrepreneurship and Management Sonipat India
| | | | - Manjeet Aggarwal
- Department of Basic and Applied Science National Institute of Food Technology, Entrepreneurship and Management Sonipat India
| |
Collapse
|
46
|
Febrianto NA, Wang S, Zhu F. Chemical and biological properties of cocoa beans affected by processing: a review. Crit Rev Food Sci Nutr 2021; 62:8403-8434. [PMID: 34047627 DOI: 10.1080/10408398.2021.1928597] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cocoa (Theobroma cacao L.) is widely cultivated in tropical countries. The cocoa beans are a popular ingredient of confectionery. Cocoa beans contain various chemicals that contribute to their bioactivity and nutritional properties. There has been increasing interest in developing cocoa beans for "healthy" food products. Cocoa beans have special combination of nutrients such as lipids, carbohydrates, proteins and other compounds of biological activities. The bioactive phytochemicals include methylxanthines, polyphenols, biogenic amines, melanoidins, isoprostanoids and oxalates. These phytochemicals of cocoa are related to various in vivo and in vitro biological activities such as antioxidation, anti-cancer, anti-microbial, anti-inflammation, anti-diabetes, cardiovascular protection, physical improvement, anti-photoaging, anti-depression and blood glucose regulation. The potential of bioactive compounds in cocoa remains to be maximized for food and nutritional applications. The current processing technology promotes the degradation of beneficial bioactive compounds, while maximizing the flavors and its precursors. It is not optimized for the utilization of cocoa beans for "healthy" product formulations. Modifications of the current processing line and non-conventional processing are needed to better preserve and utilize the beneficial bioactive compounds in cocoa beans.
Collapse
Affiliation(s)
- Noor Ariefandie Febrianto
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Indonesian Coffee and Cocoa Research Institute (ICCRI), Jember, East Java, Indonesia
| | - Sunan Wang
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand.,Canadian Food and Wine Institute, Niagara College, Ontario, Canada
| | - Fan Zhu
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
47
|
Watt EE, Dunn ML, Steele FM, Pike OA. Optimization of oat amylase activity during sprouting to enhance sugar production. Cereal Chem 2021. [DOI: 10.1002/cche.10421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Erin E. Watt
- Department of Nutrition, Dietetics and Food Science Brigham Young University Provo UT USA
| | - Michael L. Dunn
- Department of Nutrition, Dietetics and Food Science Brigham Young University Provo UT USA
| | - Frost M. Steele
- Department of Nutrition, Dietetics and Food Science Brigham Young University Provo UT USA
| | - Oscar A. Pike
- Department of Nutrition, Dietetics and Food Science Brigham Young University Provo UT USA
| |
Collapse
|
48
|
Møller MS, Svensson B. Enzymes in grain processing. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Aljabi HR, Pawelzik E. Impact of Cultivar and Growing Conditions on Alpha‐Amylase Properties in Wheat. STARCH-STARKE 2021. [DOI: 10.1002/star.202000032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hanadi Riyad Aljabi
- Department of Crop Science, Division Quality of Plant Products University of Goettingen Carl‐Sprengel‐Weg 1 Goettingen 37075 Germany
| | - Elke Pawelzik
- Department of Crop Science, Division Quality of Plant Products University of Goettingen Carl‐Sprengel‐Weg 1 Goettingen 37075 Germany
| |
Collapse
|
50
|
Latha M, Dolui AK, Vijayaraj P. Proteoform of Arabidopsis seed storage protein identified by functional proteomics approach exhibits acyl hydrolase activity during germination. Int J Biol Macromol 2021; 172:452-463. [PMID: 33454325 DOI: 10.1016/j.ijbiomac.2021.01.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 02/01/2023]
Abstract
Lipases play a crucial role in the life cycle of seed plants and the oil content of the seed is highly regulated by the lipase activity. Hence, understanding the role of lipases during germination and post-germination will provide insights into lipid mobilization. However, to date, no lipase gene has been identified in seeds except, Sugar-dependent-1 in Arabidopsis. Hence, in the present study, we employed a functional proteomic approach for the identification of seed-specific lipase. Activity-Based Proteome Profiling (ABPP) of Arabidopsis mature and germinating seeds revealed the expression of a functional serine hydrolase exclusively during germination. The mass-spectrometry analysis reveals the identity and amino acid sequence of the protein correspond to AT4G28520 gene, a canonical 12S Seed Storage Protein (SSP). Interestingly, the identified SSP was a proteoform of AT4G28520 (SL-AT4G28520) and exhibited >90% identity with the canonical AT4G28520 (FL-AT4G28520). Heterologous expression and enzyme assays indicated that SL-AT4G28520 protein indeed possesses monoacylglycerol lipase activity, while the FL-AT4G28520 protein didn't exhibit any detectable activity. Functional proteomics and lipidomics analysis demonstrated a catalytic function of this SSP. Collectively, this is the first report, which suggests that SL-AT4G28520 encodes a lipase, and the activity is depending on the physiological condition.
Collapse
Affiliation(s)
- Mahadev Latha
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Achintya Kumar Dolui
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Panneerselvam Vijayaraj
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka 570020, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|