1
|
Samanta S, Bagchi D, Gold MS, Badgaiyan RD, Barh D, Blum K. A Complex Relationship Among the Circadian Rhythm, Reward Circuit and Substance Use Disorder (SUD). Psychol Res Behav Manag 2024; 17:3485-3501. [PMID: 39411118 PMCID: PMC11479634 DOI: 10.2147/prbm.s473310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
The human brain not only controls the various physiological functions but is also the prime regulator of circadian rhythms, rewards, and behaviors. Environmental factors, professional stress, and social disintegration are regarded as the initial causative factors of addiction behavior. Shift work, artificial light exposure at night, and chronic and acute jet lag influence circadian rhythm dysfunction. The result is impaired neurotransmitter release, dysfunction of neural circuits, endocrine disturbance, and metabolic disorder, leading to advancement in substance use disorder. There is a bidirectional relationship between chronodisruption and addiction behavior. Circadian rhythm dysfunction, neuroadaptation in the reward circuits, and alteration in clock gene expression in the mesolimbic areas influence substance use disorder (SUD), and chronotherapy has potential benefits in the treatment strategies. This review explores the relationship among the circadian rhythm dysfunction, reward circuit, and SUD. The impact of chronotherapy on SUD has also been discussed.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, West Bengal, 721101, India
| | - Debasis Bagchi
- Department of Biology, College of Arts and Sciences, Adelphi University, Garden City, NY, USA and Department of Psychology, Gordon F. Derner School of Psychology, Adelphi University, Garden City, NY, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Southern University, Houston, TX, 77004, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra D Badgaiyan
- Department of Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Debmalya Barh
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, BeloHorizonte, 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, 721172, West Bengal, India
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
- Institute of Psychology, Eotvos Loránd University, Budapest, 1053, Hungary
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Center, Dayton, OH, 45435, USA
- Department of Psychiatry, University of Vermont, Burlington, VT, 05405, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX, 78701, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| |
Collapse
|
2
|
Grigsby K, Usmani Z, Anderson J, Ozburn A. Development and implementation of a Dependable, Simple, and Cost-effective (DSC), open-source running wheel in High Drinking in the Dark and Heterogeneous Stock/Northport mice. Front Behav Neurosci 2024; 17:1321349. [PMID: 38288095 PMCID: PMC10823001 DOI: 10.3389/fnbeh.2023.1321349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024] Open
Abstract
Maintaining healthy and consistent levels of physical activity (PA) is a clinically proven and low-cost means of reducing the onset of several chronic diseases and may provide an excellent strategy for managing mental health and related outcomes. Wheel-running (WR) is a well-characterized rodent model of voluntary PA; however, its use in biomedical research is limited by economical and methodical constraints. Here, we showcase the DSC (Dependable, Simple, Cost-effective), open-source running wheel by characterizing 24-h running patterns in two genetically unique mouse lines: inbred High Drinking in the Dark line 1 [iHDID-1; selectively bred to drink alcohol to intoxication (and then inbred to maintain phenotype)] and Heterogeneous Stock/Northport (HS/Npt; the genetically heterogeneous founders of iHDID mice). Running distance (km/day), duration (active minutes/day) and speed (km/hour) at 13-days (acute WR; Experiment 1) and 28-days (chronic WR; Experiment 2) were comparable to other mouse strains, suggesting the DSC-wheel reliably captures murine WR behavior. Analysis of 24-h running distance supports previous findings, wherein iHDID-1 mice tend to run less than HS/Npt mice in the early hours of the dark phase and more than HS/Npt in the late hours of dark phase/early light phase. Moreover, circadian actograms were generated to highlight the broad application of our wheel design across disciplines. Overall, the present findings demonstrate the ability of the DSC-wheel to function as a high-throughput and precise tool to comprehensively measure WR behaviors in mice.
Collapse
Affiliation(s)
- Kolter Grigsby
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Zaynah Usmani
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Justin Anderson
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| | - Angela Ozburn
- Portland Veterans Affairs Medical Center, Research and Development Service, Portland, OR, United States
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
3
|
de Zavalia N, Ferraro S, Amir S. Sexually dimorphic role of circadian clock genes in alcohol drinking behavior. Psychopharmacology (Berl) 2023; 240:431-440. [PMID: 36184679 DOI: 10.1007/s00213-022-06247-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Sex differences in alcohol use and abuse are pervasive and carry important implications for the prevention and treatment of alcohol use disorder (AUD), yet insight into underlying sexually dimorphic mechanisms is limited. Growing experimental and clinical evidence points to an important influence of circadian rhythms and circadian clock genes in the control of alcohol drinking behavior and AUD. Sex differences in the expression of circadian rhythms and in the molecular circadian clock that drive these rhythms have been reported in humans and animals. While studying the role of striatal circadian clock gene expression in the control of affective and goal-directed behaviors, we uncovered a novel sexually dimorphic function of the clock genes Bmal1 and Per2 in the control of voluntary alcohol consumption in mice, which may contribute to sex differences in alcohol drinking behavior. In this mini review, we briefly discuss relevant literature on AUD, circadian rhythms and clock genes, and on sex differences in these domains, and describe our own findings on clock genes as sexually dimorphic regulators of alcohol drinking behavior in mice.
Collapse
Affiliation(s)
- Nuria de Zavalia
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Sarah Ferraro
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Shimon Amir
- Center for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Capri KM, Maroni MJ, Deane HV, Pierre A, Adams AM, Goncalves FL, Meyer AS, Seggio JA. Effects of time of day and constant light on the behavioral responses and ethanol metabolism to acute alcohol administration in male Black Swiss mice. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1543640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Kimberly M. Capri
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Marissa J. Maroni
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Hannah V. Deane
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Audeline Pierre
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Abigail M. Adams
- Department of Mathematics, Bridgewater State University, Bridgewater, MA, USA
| | - Fatiana L. Goncalves
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Andrew S. Meyer
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| | - Joseph A. Seggio
- Department of Biological Sciences, Bridgewater State University, Bridgewater, MA, USA
| |
Collapse
|
5
|
Lindsay JH, Prosser RA. The Mammalian Circadian Clock Exhibits Chronic Ethanol Tolerance and Withdrawal-Induced Glutamate Hypersensitivity, Accompanied by Changes in Glutamate and TrkB Receptor Proteins. Alcohol Clin Exp Res 2017; 42:315-328. [PMID: 29139560 DOI: 10.1111/acer.13554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/07/2017] [Indexed: 11/27/2022]
Abstract
BACKGROUND Alcohol tolerance and withdrawal-induced effects are criteria for alcohol use disorders listed by the DSM-V. Although tolerance and withdrawal have been studied over many decades, there is still uncertainty regarding mechanistic distinctions that characterize these different forms of ethanol (EtOH)-induced plasticity. Previously, we demonstrated that the suprachiasmatic nucleus (SCN) circadian clock develops both acute and rapid tolerance to EtOH inhibition of glutamate-induced circadian phase shifts. Here, we demonstrate that chronic EtOH tolerance and withdrawal-induced glutamate hypersensitivity occur in vitro and that rapid tolerance, chronic tolerance, and glutamate hypersensitivity have distinct cellular changes. METHODS We use single-unit extracellular electrophysiological recordings to determine whether chronic tolerance to EtOH inhibition of glutamatergic phase shifts and withdrawal-induced glutamate hypersensitivity develop in the SCN. We use Western blotting to compare phosphorylation state and total expression of N-methyl-D-aspartate (NMDA) receptor subunits and associated proteins in the SCN after mice were exposed to varying EtOH consumption paradigms. RESULTS Chronic tolerance developed after a minimum of 8 days of 4 h/d EtOH access, as indicated by a decreased sensitivity to EtOH inhibition of glutamate-induced phase shifts. We also observed an increased sensitivity to glutamate-induced phase shifts in SCN tissue following withdrawal. We demonstrated an increase in the ratio of NR2B:NR2A NMDA receptor subunit expression after 21 days, but not after 10 days of EtOH drinking. This increase persisted during EtOH withdrawal, along with an increase in NR2B Y1472 phosphorylation, mature brain-derived neurotrophic factor, and phosphorylated TrkB. CONCLUSIONS These results demonstrate that multiple tolerance forms and withdrawal-induced glutamate hypersensitivity occur in the SCN and that these different forms of EtOH-induced plasticity are accompanied by distinct changes in cellular physiology. Importantly, this study further demonstrates the power of using the SCN as a model system to investigate EtOH-induced plasticity.
Collapse
Affiliation(s)
- Jonathan H Lindsay
- Department of Biochemistry and Cellular and Molecular Biology (JHL, RAP), University of Tennessee Knoxville, NeuroNET Research Center, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry and Cellular and Molecular Biology (JHL, RAP), University of Tennessee Knoxville, NeuroNET Research Center, Knoxville, Tennessee
| |
Collapse
|
6
|
Chronobiology of ethanol: animal models. Alcohol 2015; 49:311-9. [PMID: 25971539 DOI: 10.1016/j.alcohol.2015.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/10/2015] [Accepted: 04/10/2015] [Indexed: 01/08/2023]
Abstract
Clinical and epidemiological observations have revealed that alcohol abuse and alcoholism are associated with widespread disruptions in sleep and other circadian biological rhythms. As with other psychiatric disorders, animal models have been very useful in efforts to better understand the cause and effect relationships underlying the largely correlative human data. This review summarizes the experimental findings indicating bidirectional interactions between alcohol (ethanol) consumption and the circadian timing system, emphasizing behavioral studies conducted in the author's laboratory. Together with convergent evidence from multiple laboratories, the work summarized here establishes that ethanol intake (or administration) alters fundamental properties of the underlying circadian pacemaker. In turn, circadian disruption induced by either environmental or genetic manipulations can alter voluntary ethanol intake. These reciprocal interactions may create a vicious cycle that contributes to the downward spiral of alcohol and drug addiction. In the future, such studies may lead to the development of chronobiologically based interventions to prevent relapse and effectively mitigate some of the societal burden associated with such disorders.
Collapse
|
7
|
Nascimento NF, Carlson KN, Amaral DN, Logan RW, Seggio JA. Alcohol and lithium have opposing effects on the period and phase of the behavioral free-running activity rhythm. Alcohol 2015; 49:367-76. [PMID: 25850902 DOI: 10.1016/j.alcohol.2015.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/30/2015] [Accepted: 02/04/2015] [Indexed: 12/15/2022]
Abstract
Bipolar patients have a high prevalence of comorbid alcohol use and abuse disorders, while chronic alcohol drinking may increase the presence and severity of certain symptoms of bipolar disorder. As such, there may be many individuals that are prescribed lithium to alleviate the manic symptoms of bipolar disorder, but also drink alcohol concurrently. In addition, both alcoholics and individuals with bipolar disorder often exhibit disruptions to their sleep-wake cycles and other circadian rhythms. Interestingly, both ethanol and lithium are known to alter both the period and the phase of free-running rhythms in mammals. While lithium is known to lengthen the period, ethanol seems to shorten the period and attenuate the responses to acute light pulses. Therefore, the present study aimed to determine whether ethanol and lithium have opposing effects on the circadian pacemaker when administered together. C57BL/6J mice were provided drinking solutions containing lithium, alcohol, or both, and their free-running rhythms along with their response to photic phase shifts were investigated. Mice treated with lithium displayed period lengthening, which was almost completely negated when ethanol was added. Moreover, ethanol significantly attenuated light-induced phase delays while the addition of lithium partially restored this response. These results indicate that alcohol and lithium have opposing effects on behavioral circadian rhythms. Individuals with bipolar disorder who are prescribed lithium and who drink alcohol might be inadvertently altering their sleep and circadian cycles, which may exacerbate their symptoms.
Collapse
Affiliation(s)
- Nara F Nascimento
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Karen N Carlson
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Danielle N Amaral
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA
| | - Ryan W Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, USA
| | - Joseph A Seggio
- Department of Biological Sciences, Bridgewater State University, 24 Park Ave., Bridgewater, MA 02325, USA.
| |
Collapse
|
8
|
Forsyth CB, Voigt RM, Burgess HJ, Swanson GR, Keshavarzian A. Circadian rhythms, alcohol and gut interactions. Alcohol 2015; 49:389-98. [PMID: 25499101 DOI: 10.1016/j.alcohol.2014.07.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/09/2014] [Accepted: 07/17/2014] [Indexed: 12/14/2022]
Abstract
The circadian clock establishes rhythms throughout the body with an approximately 24 hour period that affect expression of hundreds of genes. Epidemiological data reveal chronic circadian misalignment, common in our society, significantly increases the risk for a myriad of diseases, including cardiovascular disease, diabetes, cancer, infertility and gastrointestinal disease. Disruption of intestinal barrier function, also known as gut leakiness, is especially important in alcoholic liver disease (ALD). Several studies have shown that alcohol causes ALD in only a 20-30% subset of alcoholics. Thus, a better understanding is needed of why only a subset of alcoholics develops ALD. Compelling evidence shows that increased gut leakiness to microbial products and especially LPS play a critical role in the pathogenesis of ALD. Clock and other circadian clock genes have been shown to regulate lipid transport, motility and other gut functions. We hypothesized that one possible mechanism for alcohol-induced intestinal hyperpermeability is through disruption of central or peripheral (intestinal) circadian regulation. In support of this hypothesis, our recent data shows that disruption of circadian rhythms makes the gut more susceptible to injury. Our in vitro data show that alcohol stimulates increased Clock and Per2 circadian clock proteins and that siRNA knockdown of these proteins prevents alcohol-induced permeability. We also show that intestinal Cyp2e1-mediated oxidative stress is required for alcohol-induced upregulation of Clock and Per2 and intestinal hyperpermeability. Our mouse model of chronic alcohol feeding shows that circadian disruption through genetics (in Clock(▵19) mice) or environmental disruption by weekly 12h phase shifting results in gut leakiness alone and exacerbates alcohol-induced gut leakiness and liver pathology. Our data in human alcoholics show they exhibit abnormal melatonin profiles characteristic of circadian disruption. Taken together our data support circadian mechanisms for alcohol-induced gut leakiness that could provide new therapeutic targets for ALD.
Collapse
Affiliation(s)
- Christopher B Forsyth
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA; Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA.
| | - Robin M Voigt
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Helen J Burgess
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, IL USA
| | - Garth R Swanson
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, USA; Department of Pharmacology, Rush University Medical Center, Chicago, IL, USA; Department of Molecular Biophysics & Physiology, Rush University Medical Center, Chicago, IL, USA; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Prosser RA, Glass JD. Assessing ethanol's actions in the suprachiasmatic circadian clock using in vivo and in vitro approaches. Alcohol 2015; 49:321-339. [PMID: 25457753 DOI: 10.1016/j.alcohol.2014.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/18/2022]
Abstract
Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts.
Collapse
|
10
|
Rosenwasser AM, McCulley WD, Fecteau M. Circadian activity rhythms and voluntary ethanol intake in male and female ethanol-preferring rats: effects of long-term ethanol access. Alcohol 2014; 48:647-55. [PMID: 25281289 DOI: 10.1016/j.alcohol.2014.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/12/2014] [Accepted: 07/01/2014] [Indexed: 01/13/2023]
Abstract
Chronic alcohol (ethanol) intake alters fundamental properties of the circadian clock. While previous studies have reported significant alterations in free-running circadian period during chronic ethanol access, these effects are typically subtle and appear to require high levels of intake. In the present study we examined the effects of long-term voluntary ethanol intake on ethanol consumption and free-running circadian period in male and female, selectively bred ethanol-preferring P and HAD2 rats. In light of previous reports that intermittent access can result in escalated ethanol intake, an initial 2-week water-only baseline was followed by either continuous or intermittent ethanol access (i.e., alternating 15-day epochs of ethanol access and ethanol deprivation) in separate groups of rats. Thus, animals were exposed to either 135 days of continuous ethanol access or to five 15-day access periods alternating with four 15-day periods of ethanol deprivation. Animals were maintained individually in running-wheel cages under continuous darkness throughout the experiment to allow monitoring of free-running activity and drinking rhythms, and 10% (v/v) ethanol and plain water were available continuously via separate drinking tubes during ethanol access. While there were no initial sex differences in ethanol drinking, ethanol preference increased progressively in male P and HAD2 rats under both continuous and intermittent-access conditions, and eventually exceeded that seen in females. Free-running period shortened during the initial ethanol-access epoch in all groups, but the persistence of this effect showed complex dependence on sex, breeding line, and ethanol-access schedule. Finally, while females of both breeding lines displayed higher levels of locomotor activity than males, there was little evidence for modulation of activity level by ethanol access. These results are consistent with previous findings that chronic ethanol intake alters free-running circadian period, and show further that the development of chronobiological tolerance to ethanol may vary by sex and genotype.
Collapse
Affiliation(s)
- Alan M Rosenwasser
- Department of Psychology, University of Maine, Orono, ME 04469, USA; School of Biology and Ecology, University of Maine, Orono, ME 04469, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME 04469, USA.
| | | | - Matthew Fecteau
- Department of Psychology, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
11
|
Logan RW, Williams WP, McClung CA. Circadian rhythms and addiction: mechanistic insights and future directions. Behav Neurosci 2014; 128:387-412. [PMID: 24731209 DOI: 10.1037/a0036268] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Circadian rhythms are prominent in many physiological and behavioral functions. Circadian disruptions either by environmental or molecular perturbation can have profound health consequences, including the development and progression of addiction. Both animal and humans studies indicate extensive bidirectional relationships between the circadian system and drugs of abuse. Addicted individuals display disrupted rhythms, and chronic disruption or particular chronotypes may increase the risk for substance abuse and relapse. Moreover, polymorphisms in circadian genes and an evening chronotype have been linked to mood and addiction disorders, and recent efforts suggest an association with the function of reward neurocircuitry. Animal studies are beginning to determine how altered circadian gene function results in drug-induced neuroplasticity and behaviors. Many studies suggest a critical role for circadian rhythms in reward-related pathways in the brain and indicate that drugs of abuse directly affect the central circadian pacemaker. In this review, we highlight key findings demonstrating the importance of circadian rhythms in addiction and how future studies will reveal important mechanistic insights into the involvement of circadian rhythms in drug addiction.
Collapse
Affiliation(s)
- Ryan W Logan
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Wilbur P Williams
- Department of Psychiatry, University of Pittsburgh School of Medicine
| | - Colleen A McClung
- Department of Psychiatry, University of Pittsburgh School of Medicine
| |
Collapse
|
12
|
Lindsay JH, Glass JD, Amicarelli M, Prosser RA. The mammalian circadian clock in the suprachiasmatic nucleus exhibits rapid tolerance to ethanol in vivo and in vitro. Alcohol Clin Exp Res 2014; 38:760-9. [PMID: 24512529 DOI: 10.1111/acer.12303] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/16/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND Ethanol (EtOH) triggers cellular adaptations that induce tolerance in many brain areas, including the suprachiasmatic nucleus (SCN), the site of the master circadian clock. EtOH inhibits light-induced phase shifts in the SCN in vivo and glutamate-induced phase shifts in vitro. The in vitro phase shifts develop acute tolerance to EtOH, occurring within minutes of initial exposure, while the in vivo phase shifts exhibit no evidence of chronic tolerance. An intermediate form, rapid tolerance, is not well studied but may predict subsequent chronic tolerance. Here, we investigated rapid tolerance in the SCN clock. METHODS Adult C57BL/6 mice were provided 15% EtOH or water for one 12-hour lights-off period. For in vitro experiments, SCN-containing brain slices were prepared in the morning and treated for 10 minutes with glutamate +/- EtOH the following night. Single-cell neuronal firing rates were recorded extracellularly during the subsequent day to determine SCN clock phase. For in vivo experiments, mice receiving EtOH 24 hours previously were exposed to a 30-minute light pulse immediately preceded by intraperitoneal saline or 2 g/kg EtOH injection. Mice were then placed in constant darkness and their phase-shifting responses measured. RESULTS In vitro, the SCN clock from EtOH-exposed mice exhibited rapid tolerance, with a 10-fold increase in EtOH needed to inhibit glutamate-induced phase shifts. Co-application of brain-derived neurotrophic factor prevented EtOH inhibition, consistent with experiments using EtOH-naïve mice. Rapid tolerance lasts 48 to 96 hours, depending on whether assessing in vitro phase advances or phase delays. Similarly, in vivo, prior EtOH consumption prevented EtOH's acute blockade of photic phase delays. Finally, immunoblot experiments showed no changes in SCN glutamate receptor subunit (NR2B) expression or phosphorylation in response to rapid tolerance induction. CONCLUSIONS The SCN circadian clock develops rapid tolerance to EtOH as assessed both in vivo and in vitro, and the tolerance lasts for several days. These data demonstrate the utility of the circadian system as a model for investigating cellular mechanisms through which EtOH acts in the brain.
Collapse
Affiliation(s)
- Jonathan H Lindsay
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | | | | | | |
Collapse
|
13
|
Filiano AN, Millender-Swain T, Johnson R, Young ME, Gamble KL, Bailey SM. Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus. PLoS One 2013; 8:e71684. [PMID: 23951220 PMCID: PMC3741117 DOI: 10.1371/journal.pone.0071684] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 07/08/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic ethanol consumption disrupts several metabolic pathways including β-oxidation and lipid biosynthesis, facilitating the development of alcoholic fatty liver disease. Many of these same metabolic pathways are directly regulated by cell autonomous circadian clocks, and recent studies suggest that disruption of daily rhythms in metabolism contributes to multiple common cardiometabolic diseases (including non-alcoholic fatty liver disease). However, it is not known whether ethanol disrupts the core molecular clock in the liver, nor whether this, in turn, alters rhythms in lipid metabolism. Herein, we tested the hypothesis that chronic ethanol consumption disrupts the molecular circadian clock in the liver and potentially changes the diurnal expression patterns of lipid metabolism genes. Consistent with previous studies, male C57BL/6J mice fed an ethanol-containing diet exhibited higher levels of liver triglycerides compared to control mice, indicating hepatic steatosis. Further, the diurnal oscillations of core clock genes (Bmal1, Clock, Cry1, Cry2, Per1, and Per2) and clock-controlled genes (Dbp, Hlf, Nocturnin, Npas2, Rev-erbα, and Tef) were altered in livers from ethanol-fed mice. In contrast, ethanol had only minor effects on the expression of core clock genes in the suprachiasmatic nucleus (SCN). These results were confirmed in Per2Luciferase knock-in mice, in which ethanol induced a phase advance in PER2::LUC bioluminescence oscillations in liver, but not SCN. Further, there was greater variability in the phase of PER2::LUC oscillations in livers from ethanol-fed mice. Ethanol consumption also affected the diurnal oscillations of metabolic genes, including Adh1, Cpt1a, Cyp2e1, Pck1, Pdk4, Ppargc1a, Ppargc1b and Srebp1c, in the livers of C57BL/6J mice. In summary, chronic ethanol consumption alters the function of the circadian clock in liver. Importantly, these results suggest that chronic ethanol consumption, at levels sufficient to cause steatosis, disrupts the core hepatic clock as well as the diurnal rhythms of key lipid metabolism genes.
Collapse
Affiliation(s)
- Ashley N. Filiano
- Department of Pathology-Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Telisha Millender-Swain
- Department of Pathology-Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Russell Johnson
- Department of Psychiatry-Division of Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Martin E. Young
- Department of Medicine-Division of Cardiovascular Diseases, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karen L. Gamble
- Department of Psychiatry-Division of Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Shannon M. Bailey
- Department of Pathology-Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
14
|
McCulley WD, Ascheid S, Crabbe JC, Rosenwasser AM. Selective breeding for ethanol-related traits alters circadian phenotype. Alcohol 2013; 47:187-94. [PMID: 23414725 DOI: 10.1016/j.alcohol.2013.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/10/2013] [Accepted: 01/12/2013] [Indexed: 10/27/2022]
Abstract
Previous studies in mice and rats have shown that selective breeding for high and low ethanol preference results in divergence of circadian phenotype in the selected lines. These results indicate that some alleles influencing ethanol preference also contribute to circadian rhythm regulation. Selective breeding has also been used to produce lines of mice differing in a number of other ethanol-related traits, while studies of phenotypic and genetic correlation indicate that diverse ethanol-related traits are influenced by both shared and unshared genetics. In the present study, we examined several features of circadian activity rhythms in a mouse line selected for binge-like drinking and in mouse lines selected for high and low severity of ethanol withdrawal convulsions. Specifically, Experiment 1 compared High Drinking in the Dark (HDID-1) mice to their genetically heterogeneous progenitor line (HS/Npt), and Experiment 2 compared Withdrawal Seizure-Prone (WSP-2) and Withdrawal Seizure-Resistant (WSR-2) mice. Both line pairs displayed differences in their daily activity patterns under light-dark conditions. In addition, HDID-1 mice showed shorter free-running periods in constant light and less coherent activity rhythms across lighting conditions relative to HS/Npt controls, while WSP-2 mice showed longer free-running periods in constant darkness relative to WSR-2 mice. These results strengthen the evidence for genetic linkages between responsiveness to ethanol and circadian regulation, and extend this evidence to include ethanol-related phenotypes other than preference drinking. However, the present results also indicate that the nature of genetic correlations between and within phenotypic domains is highly complex.
Collapse
|
15
|
Rosenwasser AM, Fixaris MC. Chronobiology of alcohol: studies in C57BL/6J and DBA/2J inbred mice. Physiol Behav 2013; 110-111:140-7. [PMID: 23313401 DOI: 10.1016/j.physbeh.2013.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/02/2012] [Accepted: 01/06/2013] [Indexed: 12/18/2022]
Abstract
Human alcoholics display dramatic disruptions of circadian rhythms that may contribute to the maintenance of excessive drinking, thus creating a vicious cycle. While clinical studies cannot establish direct causal mechanisms, recent animal experiments have revealed bidirectional interactions between circadian rhythms and ethanol intake, suggesting that the chronobiological disruptions seen in human alcoholics are mediated in part by alterations in circadian pacemaker function. The present study was designed to further explore these interactions using C57BL/6J (B6) and DBA/2J (D2) inbred mice, two widely employed strains differing in both circadian and alcohol-related phenotypes. Mice were maintained in running-wheel cages with or without free-choice access to ethanol and exposed to a variety of lighting regimens, including standard light-dark cycles, constant darkness, constant light, and a "shift-lag" schedule consisting of repeated light-dark phase shifts. Relative to the standard light-dark cycle, B6 mice showed reduced ethanol intake in both constant darkness and constant light, while D2 mice showed reduced ethanol intake only in constant darkness. In contrast, shift-lag lighting failed to affect ethanol intake in either strain. Access to ethanol altered daily activity patterns in both B6 and D2 mice, and increased activity levels in D2 mice, but had no effects on other circadian parameters. Thus, the overall pattern of results was broadly similar in both strains, and consistent with previous observations that chronic ethanol intake alters circadian activity patterns while environmental perturbation of circadian rhythms modulates voluntary ethanol intake. These results suggest that circadian-based interventions may prove useful in the management of alcohol use disorders.
Collapse
|
16
|
Social rank, chronic ethanol self-administration, and diurnal pituitary-adrenal activity in cynomolgus monkeys. Psychopharmacology (Berl) 2012; 224:133-43. [PMID: 22526537 PMCID: PMC3469782 DOI: 10.1007/s00213-012-2707-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/24/2012] [Indexed: 12/20/2022]
Abstract
RATIONALE Dominance hierarchies affect ethanol self-administration, with greater intake among subordinate animals compared to dominant animals. Excessive ethanol intake disrupts circadian rhythms. Diurnal rhythms of the hypothalamic-pituitary-adrenal axis have not been characterized in the context of ethanol self-administration with regard to social rank. OBJECTIVE This study aimed to determine whether diurnal pituitary-adrenal hormonal rhythms account for differences between social ranks in ethanol self-administration or are differentially affected by ethanol self-administration between social ranks. METHODS During alternating individual (n = 11-12) and social (n = 3 groups) housing of male cynomolgus monkeys (Macaca fascicularis), diurnal measures of cortisol and adrenocorticotropic hormone (ACTH) were obtained from plasma samples three times per week. Social rank was determined, ethanol (4 %, w/v) self-administration was induced, and then the monkeys were allowed a choice of water or ethanol for 22 h/day for 49 weeks. RESULTS For all social ranks, plasma ACTH was elevated during social housing, but cortisol was stable, although greater among dominant monkeys. Ethanol self-administration blunted the effect of social housing, cortisol, and the diurnal rhythm for both hormones, regardless of daily ethanol intake (1.2-4.2 g/kg/day). Peak ACTH and cortisol were more likely to be observed in the morning during ethanol access. Ethanol, not vehicle, intake was lower during social housing across social ranks. Only dominant monkeys showed significantly lower blood-ethanol concentration during social housing. CONCLUSIONS There was a low threshold for disruption of diurnal pituitary rhythms by ethanol drinking, but sustained adrenal corticosteroid rhythms. Protection against heavy drinking among dominant monkeys may have constrained ethanol intoxication, possibly to preserve dominance rank.
Collapse
|
17
|
Perreau-Lenz S, Vengeliene V, Noori HR, Merlo-Pich EV, Corsi MA, Corti C, Spanagel R. Inhibition of the casein-kinase-1-ε/δ/ prevents relapse-like alcohol drinking. Neuropsychopharmacology 2012; 37:2121-31. [PMID: 22549116 PMCID: PMC3398717 DOI: 10.1038/npp.2012.62] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
During the past decade, it has been shown that circadian clock genes have more than a simple circadian time-keeping role. Clock genes also modulate motivational processes and have been implicated in the development of psychiatric disorders such as drug addiction. Recent studies indicate that casein-kinase 1ε/δ (CK1ε/δ)--one of the components of the circadian molecular clockwork-might be involved in the etiology of addictive behavior. The present study was initiated to study the specific role of CK1ε/δ in alcohol relapse-like drinking using the 'Alcohol Deprivation Effect' model. The effect of CK1ε/δ inhibition was tested on alcohol consumption in long-term alcohol-drinking rats upon re-exposure to alcohol after deprivation using a four-bottle free-choice paradigm with water, 5%, 10%, and 20% ethanol solutions, as well as on saccharin preference in alcohol-naive rats. The inhibition of CK1ε/δ with systemic PF-670462 (0, 10, and 30 mg/kg) injections dose-dependently decreased, and at a higher dosage prevented the alcohol deprivation effect, as compared with vehicle-treated rats. The impact of the treatment was further characterized using nonlinear regression analyses on the daily profiles of drinking and locomotor activity. We reveal that CK1ε/δ inhibition blunted the high daytime alcohol intake typically observed upon alcohol re-exposure, and induced a phase shift of locomotor activity toward daytime. Only the highest dose of PF-670462 shifted the saccharin intake daily rhythm toward daytime during treatment, and decreased saccharin preference after treatment. Our data suggest that CK1 inhibitors may be candidates for drug treatment development for alcoholism.
Collapse
Affiliation(s)
- Stéphanie Perreau-Lenz
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.
| | - Valentina Vengeliene
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Hamid R Noori
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | | | | | - Corrado Corti
- Aptuit, Medicine Research Centre, Verona, Italy,Aptuit, Medicine Research Centre, via Alessandro Fleming 4, 37129 Verona, Italy, Tel: +39 045 8219 576, Fax: +39 045 8218 047, E-mail:
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
18
|
Seggio JA, Possidente B, Ahmad ST. Larval ethanol exposure alters adult circadian free-running locomotor activity rhythm in Drosophila melanogaster. Chronobiol Int 2012; 29:75-81. [PMID: 22217104 DOI: 10.3109/07420528.2011.635236] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Alcohol consumption causes disruptions in a variety of daily rhythms, including the sleep-wake cycle. Few studies have explored the effect of alcohol exposure only during developmental stages preceding maturation of the adult circadian clock, and none have examined the effects of alcohol on clock function in Drosophila. This study investigates developmental and behavioral correlates between larval ethanol exposure and the adult circadian clock in Drosophila melanogaster, a well-established model for studying circadian rhythms and effects of ethanol exposure. We reared Drosophila larvae on 0%, 10%, or 20% ethanol-supplemented food and assessed effects upon eclosion and the free-running period of the circadian rhythm of locomotor activity. We observed a dose-dependent effect of ethanol on period, with higher doses resulting in shorter periods. We also identified the third larval instar stage as a critical time for the developmental effects of 10% ethanol on circadian period. These results demonstrate that developmental ethanol exposure causes sustainable shortening of the adult free-running period in Drosophila melanogaster, even after adult exposure to ethanol is terminated, and suggests that the third instar is a sensitive time for this effect.
Collapse
Affiliation(s)
- Joseph A Seggio
- Department of Biology, Bridgewater State University, Bridgewater, Massachusetts 02325, USA.
| | | | | |
Collapse
|
19
|
Fernández-Mateos P, Jiménez-Ortega V, Cano Barquilla P, Cardinali DP, Esquifino AI. Discontinuous versus continuous drinking of ethanol in peripubertal rats: effect on 24-hour pattern of hypophyseal-gonadal axis activity and anterior pituitary oxidative stress. Neuroendocrinology 2012; 96:194-203. [PMID: 22286266 DOI: 10.1159/000334963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 11/09/2011] [Indexed: 12/24/2022]
Abstract
AIMS Discontinuous (weekend) consumption of alcohol is common in adolescents and young adults. This study therefore assesses, in peripubertal male rats, the effect of discontinuous as compared to chronic feeding of ethanol or control liquid diet. METHODS Animals received an ethanol liquid diet (6.2 % w/v) starting on day 35 of life. Every week for 5 weeks, the discontinuous ethanol group received the ethanol diet for 3 consecutive days and the control liquid diet for 4 days. At the 5th week, 24 h after the last ethanol administration to the discontinuously ethanol-treated animals, rats were killed at 4-hour intervals beginning at 09.00 h. Chronically administered rats received the ethanol diet until immediately before study. RESULTS Disrupted 24-hour rhythmicity together with a significant nocturnal increase in plasma luteinizing hormone (LH), testosterone and prolactin (PRL) occurred in the discontinuous ethanol group. Plasma ethanol levels were undetectable at 24 h after the last ethanol treatment. In contrast, after chronic ethanol administration, plasma PRL was increased late in scotophase while LH and testosterone decreased; blood ethanol levels were 2-fold greater than those in discontinuously ethanol-administered rats killed immediately after ethanol withdrawal. Circulating testosterone positively correlated with LH levels in control rats only. Chronic administration of ethanol significantly augmented mean expression of pituitary nitric oxide synthase (NOS)-2, heme oxygenase (HO)-1, Per1 and Per2 genes and disrupted their diurnal rhythmicity. Decreased NOS-1 and NOS-2 expression during scotophase, together with suppression of the rhythm in Per1 and Per2 expression, were found in the discontinuous ethanol group. CONCLUSIONS Abstinence after discontinuous drinking of alcohol in rats, as compared to chronic administration of ethanol, is accompanied by increases of plasma LH and testosterone, a greater PRL response and a less pronounced oxidative damage of the anterior pituitary.
Collapse
Affiliation(s)
- Pilar Fernández-Mateos
- Department of Biochemistry and Molecular Biology III, Universidad Complutense, Madrid, Spain
| | | | | | | | | |
Collapse
|
20
|
Logan RW, McCulley WD, Seggio JA, Rosenwasser AM. Effects of withdrawal from chronic intermittent ethanol vapor on the level and circadian periodicity of running-wheel activity in C57BL/6J and C3H/HeJ mice. Alcohol Clin Exp Res 2011; 36:467-76. [PMID: 22013893 DOI: 10.1111/j.1530-0277.2011.01634.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Alcohol withdrawal is associated with behavioral and chronobiological disturbances that may persist during protracted abstinence. We previously reported that C57BL/6J (B6) mice show marked but temporary reductions in running-wheel activity, and normal free-running circadian rhythms, following a 4-day chronic intermittent ethanol (CIE) vapor exposure (16 hours of ethanol vapor exposure alternating with 8 hours of withdrawal). In the present experiments, we extend these observations in 2 ways: (i) by examining post-CIE locomotor activity in C3H/HeJ (C3H) mice, an inbred strain characterized by high sensitivity to ethanol withdrawal, and (ii) by directly comparing the responses of B6 and C3H mice to a longer-duration CIE protocol. METHODS In Experiment 1, C3H mice were exposed to the same 4-day CIE protocol used in our previous study with B6 mice (referred to here as the 1-cycle CIE protocol). In Experiment 2, C3H and B6 mice were exposed to 3 successive 4-day CIE cycles, each separated by 2 days of withdrawal (the 3-cycle CIE protocol). Running-wheel activity was monitored prior to and following CIE, and post-CIE activity was recorded in constant darkness to allow assessment of free-running circadian period and phase. RESULTS C3H mice displayed pronounced reductions in running-wheel activity that persisted for the duration of the recording period (up to 30 days) following both 1-cycle (Experiment 1) and 3-cycle (Experiment 2) CIE protocols. In contrast, B6 mice showed reductions in locomotor activity that persisted for about 1 week following the 3-cycle CIE protocol, similar to the results of our previous study using a 1-cycle protocol in this strain. Additionally, C3H mice showed significant shortening of free-running period following the 3-cycle, but not the 1-cycle, CIE protocol, while B6 mice showed normal free-running rhythms. CONCLUSIONS These results reveal genetic differences in the persistence of ethanol withdrawal-induced hypo-locomotion. In addition, chronobiological alterations during extended abstinence may depend on both genetic susceptibility and an extended prior withdrawal history. The present data establish a novel experimental model for long-term behavioral and circadian disruptions associated with ethanol withdrawal.
Collapse
Affiliation(s)
- Ryan W Logan
- Graduate School of Biomedical Sciences, University of Maine, Orono, Maine 04469-5742, USA
| | | | | | | |
Collapse
|
21
|
Swanson G, Forsyth CB, Tang Y, Shaikh M, Zhang L, Turek FW, Keshavarzian A. Role of intestinal circadian genes in alcohol-induced gut leakiness. Alcohol Clin Exp Res 2011; 35:1305-14. [PMID: 21463335 DOI: 10.1111/j.1530-0277.2011.01466.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several studies have indicated that endotoxemia is the required co-factor for alcoholic steatohepatitis (ASH) that is seen in only about 30% of alcoholics. Recent studies have shown that gut leakiness that occurs in a subset of alcoholics is the primary cause of endotoxemia in ASH. The reasons for this differential susceptibility are not known. Since disruption of circadian rhythms occurs in some alcoholics and circadian genes control the expression of several genes that are involved in regulation of intestinal permeability, we hypothesized that alcohol induces intestinal hyperpermeability by stimulating expression of circadian clock gene proteins in the intestinal epithelial cells. METHODS We used Caco-2 monolayers grown on culture inserts as an in vitro model of intestinal permeability and performed Western blotting, permeability, and siRNA inhibition studies to examine the role of Clock and Per2 circadian genes in alcohol-induced hyperpermeability. We also measured PER2 protein levels in intestinal mucosa of alcohol-fed rats with intestinal hyperpermeability. RESULTS Alcohol, as low as 0.2%, induced time dependent increases in both Caco-2 cell monolayer permeability and in CLOCK and PER2 proteins. SiRNA specific inhibition of either Clock or Per2 significantly inhibited alcohol-induced monolayer hyperpermeability. Alcohol-fed rats with increased total gut permeability, assessed by urinary sucralose, also had significantly higher levels of PER2 protein in their duodenum and proximal colon than control rats. CONCLUSIONS Our studies: (i) demonstrate a novel mechanism for alcohol-induced intestinal hyperpermeability through stimulation of intestinal circadian clock gene expression, and (ii) provide direct evidence for a central role of circadian genes in regulation of intestinal permeability.
Collapse
Affiliation(s)
- Garth Swanson
- Department of Medicine, Division of Digestive Diseases and Nutrition, Rush University Medical Center, 1725 W. Harrison, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Logan RW, Seggio JA, Robinson SL, Richard GR, Rosenwasser AM. Circadian wheel-running activity during withdrawal from chronic intermittent ethanol exposure in mice. Alcohol 2010; 44:239-44. [PMID: 20682191 DOI: 10.1016/j.alcohol.2010.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 01/14/2010] [Accepted: 02/10/2010] [Indexed: 01/19/2023]
Abstract
Alcohol withdrawal is associated with affective-behavioral disturbances in both human alcoholics and in animal models. In general, these phenomena are potentiated by increased alcohol exposure duration and by prior withdrawal episodes. Previous studies have also reported locomotor hypoactivity during ethanol withdrawal in rats and mice, but only in novel test environments and not in the home cage. In the present study, we examined the effects of withdrawal from chronic intermittent ethanol (CIE) vapor exposure on the level and circadian periodicity of wheel-running activity in C57BL/6J mice. CIE treatment resulted in reductions in wheel-running activity compared with plain-air controls that persisted for about 1 week after withdrawal. Analysis of circadian waveforms indicated that reduced activity occurred throughout the night phase, but that daily-activity patterns were otherwise unaltered. CIE failed to alter free-running circadian period or phase in animals maintained under constant darkness. These results show that ethanol withdrawal can result in locomotor hypoactivity even in the habitual, home-cage environment, and suggest that withdrawal-related reductions in wheel-running activity may reflect the specific motivational significance of this behavior.
Collapse
|
23
|
Rosenwasser AM, Clark JW, Fixaris MC, Belanger GV, Foster JA. Effects of repeated light-dark phase shifts on voluntary ethanol and water intake in male and female Fischer and Lewis rats. Alcohol 2010; 44:229-37. [PMID: 20488643 DOI: 10.1016/j.alcohol.2010.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 03/08/2010] [Accepted: 03/30/2010] [Indexed: 11/27/2022]
Abstract
Several lines of evidence implicate reciprocal interactions between excessive alcohol (ethanol) intake and dysregulation of circadian biological rhythms. Thus, chronic alcohol intake leads to widespread circadian disruption in both humans and experimental animals, while in turn, chronobiological disruption has been hypothesized to promote or sustain excessive alcohol intake. Nevertheless, the effects of circadian disruption on voluntary ethanol intake have not been investigated extensively, and prior studies have reported both increased and decreased ethanol intake in rats maintained under "shift-lag" lighting regimens mimicking those experienced by shift workers and transmeridian travelers. In the present study, male and female inbred Fischer and Lewis rats were housed in running wheel cages with continuous free-choice access to both water and 10% (vol/vol) ethanol solution and exposed to repeated 6-h phase advances of the daily light-dark (LD) cycle, whereas controls were kept under standard LD 12:12 conditions. Shift-lag lighting reduced overall ethanol and water intake, and reduced ethanol preference in Fischer rats. Although contrary to the hypothesis that circadian disruption would increase voluntary ethanol intake, these results are consistent with our previous report of reduced ethanol intake in selectively bred high-alcohol-drinking (HAD1) rats housed under a similar lighting regimen. We conclude that chronic circadian disruption is a form of chronobiological stressor that, like other stressors, can either increase or decrease ethanol intake, depending on a variety of poorly understood variables.
Collapse
|
24
|
Ando H, Ushijima K, Kumazaki M, Eto T, Takamura T, Irie S, Kaneko S, Fujimura A. Associations of metabolic parameters and ethanol consumption with messenger RNA expression of clock genes in healthy men. Chronobiol Int 2010; 27:194-203. [PMID: 20205566 DOI: 10.3109/07420520903398617] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recent studies suggest that the impairment of circadian clock function causes various pathological conditions, such as obesity, diabetes, and alcoholism, and an altered mRNA expression of clock genes was found under these conditions. However, it remains to be determined whether clock gene expression varies depending on metabolic conditions even in healthy people. To address this issue, we investigated the associations of metabolic parameters and alcohol consumption with mRNA expression of clock genes (CLOCK, BMAL1, PER1, PER2, and PER3) in peripheral blood cells obtained from 29 healthy non-obese elderly men (age 51-78 yrs) who adhered to a regular sleep-wake routine, through a single time-of-day venous blood sampling at approximately 09:00 h. There were significant correlations between (1) waist circumference and mRNA level of PER1 (r =-0.43), (2) plasma glucose concentration and PER2 (r =-0.50), (3) ethanol consumption and BMAL1 (r =-0.43), and (4) serum gamma-GTP concentration (a sensitive marker of alcohol consumption) and PER2 (r =-0.40). These results suggest mRNA expression of clock genes is associated with obesity, glucose tolerance, and ethanol consumption even in healthy people.
Collapse
Affiliation(s)
- Hitoshi Ando
- Division of Clinical Pharmacology, Department of Pharmacology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Seggio JA, Fixaris MC, Reed JD, Logan RW, Rosenwasser AM. Chronic ethanol intake alters circadian phase shifting and free-running period in mice. J Biol Rhythms 2009; 24:304-12. [PMID: 19625732 DOI: 10.1177/0748730409338449] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Chronic alcohol intake is associated with widespread disruptions in sleep and circadian rhythms in both human alcoholics and in experimental animals. Recent studies have demonstrated that chronic and acute ethanol treatments alter fundamental properties of the circadian pacemaker--including free-running period and responsiveness to photic and nonphotic phase-shifting stimuli--in rats and hamsters. In the present work, the authors extend these observations to the C57BL/6J mouse, an inbred strain characterized by very high levels of voluntary ethanol intake and by reliable and stable free-running circadian activity rhythms. Mice were housed individually in running-wheel cages under conditions of either voluntary or forced ethanol intake, whereas controls were maintained on plain water. Forced ethanol intake significantly attenuated photic phase delays (but not phase advances) and shortened free-running period in constant darkness, but voluntary ethanol intake failed to affect either of these parameters. Thus, high levels of chronic ethanol intake, beyond those normally achieved under voluntary drinking conditions, are required to alter fundamental circadian pacemaker properties in C57BL/6J mice. These observations may be related to the relative ethanol insensitivity displayed by this strain in several other phenotypic domains, including ethanol-induced sedation, ataxia, and withdrawal. Additional experiments will investigate chronobiological sensitivity to ethanol in a range of inbred strains showing diverse ethanol-related phenotypes.
Collapse
Affiliation(s)
- Joseph A Seggio
- School of Biology and Ecology, University of Maine, Orono, ME 04469-5742, USA
| | | | | | | | | |
Collapse
|
26
|
Danel T, Vantyghem MC, Touitou Y. Responses of the Steroid Circadian System to Alcohol in Humans: Importance of the Time and Duration of Intake. Chronobiol Int 2009; 23:1025-34. [PMID: 17050215 DOI: 10.1080/07420520600920742] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Reports provide conflicting data about the effects of alcohol consumption on the hormonal system. Any study of these effects must control for a number of variables, including sex, alcohol status (alcoholic addiction vs. non-addiction), medical status (malnutrition, liver disease), and conditions of alcohol exposure, including an acute or continuous pattern of intake. The latter appears to be an especially critical factor in interpreting these effects. The authors therefore conducted a trial with a circadian design in which alcohol was administered repeatedly and regularly over a 26 h period for a total dose of 256 g. Because this protocol involves continuous alcohol administration, it is similar to administration among alcoholics and thus sheds new light on alcohol's effect on hormone secretion. Using healthy volunteers rather than alcoholics, however, prevents any confounding due to liver disorders and nutritional deficiencies, and thus makes it possible to focus on the direct role of alcohol in hormonal modifications. In these conditions, the continuous administration of alcohol did not affect cortisol secretion, but serum testosterone levels were significantly higher at all time points during the alcohol session than at the corresponding time points during the control session. These data are not consistent with previously reported findings for the relation between alcohol and both cortisol and testosterone, because in the current experiment the action of ethanol on steroid secretion should involve the circadian clock more than the hormonal system itself.
Collapse
Affiliation(s)
- Thierry Danel
- Service d'Endocrinologie et Maladies Métaboliques, Centre Hospitalier Régional Universitaire, 59037 Lille Cedex, France.
| | | | | |
Collapse
|
27
|
Portaluppi F. Consistency and Accuracy of the Medical Subject Headings® Thesaurus for Electronic Indexing and Retrieval of Chronobiologic References. Chronobiol Int 2009; 24:1213-29. [DOI: 10.1080/07420520701791570] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Trujillo JL, Roberts AJ, Gorman MR. Circadian timing of ethanol exposure exerts enduring effects on subsequent ad libitum consumption in C57 mice. Alcohol Clin Exp Res 2009; 33:1286-93. [PMID: 19389184 DOI: 10.1111/j.1530-0277.2009.00954.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND There is a daily rhythm in the voluntary intake of ethanol in mice, with greatest consumption in the early night and lowest intake during the day. The role of daily timing of ethanol exposure on the development and control of long-term ethanol self-administration has been neglected. The present study examines these issues using C57BL/6J mice. METHODS Mice were repeatedly exposed to 10% ethanol for 2 hours early in the night or day for several weeks. Subsequently, ethanol was available at the opposite time (Expt 1) or 24 hours daily (Expts 1 and 2). Lick sensors recorded the patterns of drinking activity in Experiment 2. RESULTS Mice exposed to ethanol during the night drink more than mice exposed during the day. Prior history did not affect ethanol intake when the schedule was reversed. Under 24-hour exposure conditions, mice with a history of drinking during the night consumed significantly more than mice drinking during the day. The circadian patterns of drinking were not altered. CONCLUSIONS These results demonstrate that the daily timing of ethanol exposure exerts enduring effects of self-administration of ethanol in mice. Understanding how circadian rhythms regulate ethanol consumption may be valuable for modifying subsequent intake.
Collapse
Affiliation(s)
- Jennifer L Trujillo
- Department of Psychology, University of California (JLT, MRG), San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
29
|
Ruby CL, Prosser RA, DePaul MA, Roberts RJ, Glass JD. Acute ethanol impairs photic and nonphotic circadian phase resetting in the Syrian hamster. Am J Physiol Regul Integr Comp Physiol 2008; 296:R411-8. [PMID: 19073899 DOI: 10.1152/ajpregu.90782.2008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Disrupted circadian rhythmicity is associated with ethanol (EtOH) abuse, yet little is known about how EtOH affects the mammalian circadian clock of the suprachiasmatic nucleus (SCN). Clock timing is regulated by photic and nonphotic inputs to the SCN involving glutamate release from the retinohypothalamic tract and serotonin (5-HT) from the midbrain raphe, respectively. Our recent in vitro studies in the SCN slice revealed that EtOH blocks photic phase-resetting action of glutamate and enhances the nonphotic phase-resetting action of the 5-HT1A,7 agonist, 8-OH-DPAT. To explore the basis of these effects in the whole animal, we used microdialysis to characterize the pharmacokinetics of intraperitoneal injection of EtOH in the hamster SCN extracellular fluid compartment and then studied the effects of such EtOH treatment on photic and serotonergic phase resetting of the circadian locomotor activity rhythm. Peak EtOH levels (approximately 50 mM) from a 2 g/kg injection occurred within 20-40 min with a half-life of approximately 3 h. EtOH treatment dose-dependently attenuated photic phase advances but had no effect on phase delays and, contrary to in vitro findings, markedly attenuated 8-OH-DPAT-induced phase advances. In a complementary experiment using reverse microdialysis to deliver a timed SCN perfusion of EtOH during a phase-advancing light pulse, the phase advances were blocked, similar to systemic EtOH treatment. These results are evidence that acute EtOH significantly affects photic and nonphotic phase-resetting responses critical to circadian clock regulation. Notably, EtOH inhibition of photic signaling is manifest through direct action in the SCN. Such actions could underlie the disruption of circadian rhythmicity associated with alcohol abuse.
Collapse
Affiliation(s)
- Christina L Ruby
- Department Biological Sciences, Kent State University, Kent, OH 44242, USA
| | | | | | | | | |
Collapse
|
30
|
Hätönen T, Forsblom S, Kieseppä T, Lönnqvist J, Partonen T. Circadian phenotype in patients with the co-morbid alcohol use and bipolar disorders. Alcohol Alcohol 2008; 43:564-8. [PMID: 18644800 DOI: 10.1093/alcalc/agn057] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Alcohol misuse is associated with bipolar disorder. Abnormalities in the circadian clockwork play a role in the pathogenesis of bipolar disorder. Alcohol intake is likely to affect the circadian phenotype. We aimed at analysing the behavioural trait of the preference to morning or evening hours for the daily activities in bipolar disorder patients with or without the co-morbid alcohol use. METHODS Our nationwide sample of families included patients with bipolar disorder born during 1940-1969 having at least one hospitalization due to bipolar disorder during 1969-1991 and their first-degree relatives. All the 148 participants were interviewed using the Structured Clinical Interview for DSM-IV Axis I Disorders and assessed using the Morningness-Eveningness Questionnaire whose factor matrix applying for the maximum likelihood principle was calculated for the first time. RESULTS Patients with the co-morbid alcohol use disorder were more of the morning type as compared with patients with bipolar disorder only. CONCLUSIONS Co-morbid patients preferred more the morning hours for their daily activities, indicative of alcohol consumption having an effect on the circadian clock.
Collapse
Affiliation(s)
- Taina Hätönen
- Department of Mental Health and Alcohol Research, National Public Health Institute, Mannerheimintie 166, FI-00300 Helsinki, Finland
| | | | | | | | | |
Collapse
|
31
|
Acute ethanol modulates glutamatergic and serotonergic phase shifts of the mouse circadian clock in vitro. Neuroscience 2008; 152:837-48. [PMID: 18313227 DOI: 10.1016/j.neuroscience.2007.12.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 12/18/2007] [Accepted: 12/28/2007] [Indexed: 01/05/2023]
Abstract
Alcohol abuse is associated with sleep problems, which are often linked to circadian rhythm disturbances. However, there is no information on the direct effects of ethanol on the mammalian circadian clock. Acute ethanol inhibits glutamate signaling, which is the primary mechanism through which light resets the mammalian clock in the suprachiasmatic nucleus (SCN). Glutamate and light also inhibit circadian clock resetting induced by nonphotic signals, including 5-HT. Thus, we investigated the effects of acute ethanol on both glutamatergic and serotoninergic resetting of the mouse SCN clock in vitro. We show that ethanol dose-dependently inhibits glutamate-induced phase shifts and enhances serotonergic phase shifts. The inhibition of glutamate-induced phase shifts is not affected by excess glutamate, glycine or d-serine, but is prevented by excess brain-derived neurotrophic factor (BDNF). BDNF is known to augment glutamate signaling in the SCN and to be necessary for glutamate/light-induced phase shifts. Thus, ethanol may inhibit glutamate-induced clock resetting at least in part by blocking BDNF enhancement of glutamate signaling. Ethanol enhancement of serotonergic phase shifts is mimicked by treatments that suppress glutamate signaling in the SCN, including antagonists of glutamate receptors, BDNF signaling and nitric oxide synthase. The combined effect of ethanol with these treatments is not additive, suggesting they act through a common pathway. Our data indicate further that the interaction between 5-HT and glutamate in the SCN may occur downstream from nitric oxide synthase activation. Thus, acute ethanol disrupts normal circadian clock phase regulation, which could contribute to the physiological and psychological problems associated with alcohol abuse.
Collapse
|
32
|
Clark JW, Fixaris MC, Belanger GV, Rosenwasser AM. Repeated light-dark phase shifts modulate voluntary ethanol intake in male and female high alcohol-drinking (HAD1) rats. Alcohol Clin Exp Res 2007; 31:1699-706. [PMID: 17681032 DOI: 10.1111/j.1530-0277.2007.00476.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Chronic disruption of sleep and other circadian biological rhythms, such as occurs in shift work or in frequent transmeridian travel, appears to represent a significant source of allostatic load, leading to the emergence of stress-related physical and psychological illness. Recent animal experiments have shown that these negative health effects may be effectively modeled by exposure to repeated phase shifts of the daily light-dark (LD) cycle. As chronobiological disturbances are thought to promote relapse in abstinent alcoholics, and may also be associated with increased risk of subsequent alcohol abuse in nonalcoholic populations, the present experiment was designed to examine the effects of repeated LD phase shifts on voluntary ethanol intake in rats. A selectively bred, high alcohol-drinking (HAD1) rat line was utilized to increase the likelihood of excessive alcoholic-like drinking. METHODS Male and female rats of the selectively bred HAD1 rat line were maintained individually under a LD 12:12 cycle with both ethanol (10% v/v) and water available continuously. Animals in the experimental group were subjected to repeated 6-hour LD phase advances at 3 to 4 week intervals, while control rats were maintained under a stable LD cycle throughout the study. Contact-sensing drinkometers were used to monitor circadian lick patterns, and ethanol and water intakes were recorded weekly. RESULTS Control males showed progressively increasing ethanol intake and ethanol preference over the course of the study, but males exposed to chronic LD phase shifts exhibited gradual decreases in ethanol drinking. In contrast, control females displayed decreasing ethanol intake and ethanol preference over the course of the experiment, while females exposed to experimental LD phase shifts exhibited a slight increase in ethanol drinking. CONCLUSIONS Chronic circadian desynchrony induced by repeated LD phase shifts resulted in sex-specific modulation of voluntary ethanol intake, reducing ethanol intake in males while slightly increasing intake in females. While partially contrary to initial predictions, these results are consistent with extensive prior research showing that chronic stress may either increase or decrease ethanol intake, depending on strain, sex, stressor type, and experimental history. Thus, repeated LD phase shifts may provide a novel chronobiological model for the analysis of stress effects on alcohol intake.
Collapse
Affiliation(s)
- James W Clark
- Department of Psychology, University of Maine, Orono, Maine 04469-5742, USA
| | | | | | | |
Collapse
|
33
|
Abstract
The study objective was to determine the acute effects of a moderate evening dose of alcohol on salivary melatonin levels in humans with stable prior sleep-wake histories and in a controlled environment. Twenty-nine adults (nine males) ages 21 to 25 (M=22.6, SD=1.2) yrs adhered to a 10-day at-home stabilized sleep schedule followed by three in-lab adaptation, placebo, and alcohol (order counterbalanced) study nights. Alcohol (vodka: 0.54 g/kg for men and 0.49 g/kg for women) or placebo beverage was consumed over 30 min, ending 1 h before stabilized bedtime. At 140 and 190 min after alcohol administration, melatonin level was reduced by 15% and 19%, respectively, in comparison to placebo. The findings indicate that a moderate dose of alcohol in the evening suppressed melatonin in young adults.
Collapse
Affiliation(s)
- Tracy L Rupp
- E.P. Bradley Sleep and Chronobiology Laboratory, Providence, Rhode Island, USA.
| | | | | |
Collapse
|
34
|
Seggio JA, Logan RW, Rosenwasser AM. Chronic ethanol intake modulates photic and non-photic circadian phase responses in the Syrian hamster. Pharmacol Biochem Behav 2007; 87:297-305. [PMID: 17544066 PMCID: PMC1989109 DOI: 10.1016/j.pbb.2007.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
Chronic alcohol intake disrupts sleep and other circadian biological rhythms in both human alcoholics and in experimental animals. Recent studies from our laboratory indicate that these effects may be due, in part, to ethanol-induced alterations in fundamental properties of the circadian pacemaker. The present study explored the effects of chronic voluntary ethanol intake (25% v/v) on circadian phase responses to both photic and non-photic stimuli in Syrian hamsters. Hamsters were used in these experiments because they are a popular model organism in behavioral chronobiology research, and are characterized by unusually high levels of voluntary ethanol intake. Relative to controls, ethanol-exposed animals showed attenuation of circadian phase responses and wheel running activity following acute administration of the benzodiazepine, triazolam, a non-photic phase-shifting stimulus. In addition, ethanol-exposed animals displayed reduced phase advances, but normal phase delays, in response to brief light pulses. While the mechanisms underlying these effects remain to be elucidated, we hypothesize that ionotropic GABA and glutamate receptors may be involved, since these proteins serve as important targets for the neurobiological effects of ethanol, and are also known to be critically involved in the modulation of photic and non-photic circadian phase responses.
Collapse
Affiliation(s)
- Joseph A. Seggio
- Department of Biological Sciences University of Maine Orono, ME 04469, USA
| | - Ryan W. Logan
- Department of Psychology University of Maine Orono, ME 04469, USA
| | - Alan M. Rosenwasser
- Department of Biological Sciences University of Maine Orono, ME 04469, USA
- Department of Psychology University of Maine Orono, ME 04469, USA
| |
Collapse
|
35
|
Spanagel R, Rosenwasser AM, Schumann G, Sarkar DK. Alcohol consumption and the body's biological clock. Alcohol Clin Exp Res 2006; 29:1550-7. [PMID: 16156052 DOI: 10.1097/01.alc.0000175074.70807.fd] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This review summarizes new findings on the bidirectional interactions between alcohol and the clock genes, underlying the generation of circadian rhythmicity. At the behavioral level, both adult and perinatal ethanol treatments after the free-running period and light response of the circadian clock in rodents; genetic ethanol preference in alcohol-preferring rat lines is also associated with alterations in circadian pacemaker function. At the neuronal level, it has been shown that ethanol consumption alters the circadian expression patterns of period (per) genes in various brain regions, including the suprachiasmatic nucleus. Notably, circadian functions of beta-endorphin-containing neurons that participate in the control of alcohol reinforcement become disturbed after chronic alcohol intake. In turn, per2 gene activity regulates alcohol intake through its effects on the glutamatergic system through glutamate reuptake mechanisms and thereby may affect a variety of physiological processes that are governed by our internal clock. In summary, a new pathologic chain has been identified that contributes to the negative health consequences of chronic alcohol intake. Thus, chronic alcohol intake alters the expression of per genes, and as a consequence, a variety of neurochemical and neuroendocrine functions become disturbed. Further steps in this pathologic chain are alterations in physiological and immune functions that are under circadian control, and, as a final consequence, addictive behavior might be triggered or sustained by this cascade.
Collapse
Affiliation(s)
- Rainer Spanagel
- Department of Psychopharmacology, Central Institute of Mental Health, Mannheim, Germany
| | | | | | | |
Collapse
|
36
|
Rosenwasser AM, Fecteau ME, Logan RW, Reed JD, Cotter SJN, Seggio JA. Circadian activity rhythms in selectively bred ethanol-preferring and nonpreferring rats. Alcohol 2005; 36:69-81. [PMID: 16396740 DOI: 10.1016/j.alcohol.2005.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 05/09/2005] [Accepted: 07/13/2005] [Indexed: 11/18/2022]
Abstract
Chronic alcohol intake is associated with dramatic disruptions in sleep and other circadian biological rhythms in both humans and experimental animals. In human alcoholics, these disruptions persist during extended abstinence and appear to promote relapse to drinking. Whereas chronic ethanol intake alters fundamental properties of the circadian pacemaker in unselected rats, nothing is known concerning circadian pacemaker function in selectively bred ethanol-preferring and nonpreferring rats, which are the most widely accepted animal models of genetic predisposition to alcoholism. The present experiments were designed to characterize free-running circadian activity (wheel-running) rhythms under both constant darkness and constant light in selectively bred ethanol-preferring (P, HAD2) and nonpreferring (NP, LAD2) rats. Differences in circadian organization between ethanol-preferring and nonpreferring animals were seen for both pairs of selected lines (P vs. NP; HAD2 vs. LAD2), but these differences were not identical in the two line pairs. For example, although P rats showed shorter free-running periods than NP rats only in constant light, HAD2 rats showed shorter free-running periods than LAD2 rats only in constant darkness. In addition, ethanol-preferring HAD2 rats showed a high rate of rhythm "splitting" that was not seen in any of the other three lines. Taken together, these results suggest that the circadian pacemakers of P and NP rats differ mainly in light sensitivity, whereas those of HAD2 and LAD2 rats differ in their intrinsic period.
Collapse
Affiliation(s)
- Alan M Rosenwasser
- Department of Psychology, University of Maine, Orono, ME 04469-5742, USA.
| | | | | | | | | | | |
Collapse
|